
TOWN OF WILLISTON ALLEN BROOK FLOW RESTORATION PLAN

September 2016 Rev. 11-10-16

Prepared for:

liston RMONT

Prepared by:

6 Green Tree Drive • South Burlington • Vermont 05403 802-878-7661

TABLE OF CONTENTS

I.	Introduction	1
II.	Background	1
III.	Identification of Required Controls	2
	A. Stormwater Discharge Permit Sites	2
	B. Town of Williston Parcel Best Management Practices	5
	C. VTrans Interstate 89 Best Management Practices	
	D. VTDEC BMP'SS Watershed Model Runs	
IV.	Design, Construction & FRP Incorporation Schedule	9
V.	Financial Plan	10
VI.	Regulatory Analysis	11
VII.	Identification of Regulatory Assistance	12
VIII.	Third Party Implementation	12
IX.	Summary	
	•	

Appendices

A.	Allen Brook Subwatershed Map	
	i men Brook Buo waterblied wap	

- B. Stormwater Permit Sites Overall Site Plans and BMP Hydrocad Models
- C. Town of Williston BMP Parcels Aerial Maps and BMP Hydrocad Models
- D. VTrans I-89 BMP Sites Aerial Maps and BMP Hydrocad Models
- E. VTDEC BMPDSS Model Run Summaries
- F. Tetra Tech Construction Cost Estimating Memo 10-30-2007
- G. Stormwater Agreements
- H. VTrans Inter-MS4 Cooperative Agreement

I. INTRODUCTION

The State of Vermont Agency of Natural Resources Department of Environmental Conservation (VTDEC) has issued a National Pollutant Discharge Elimination System (NPDES) General Permit 3-9014 for Stormwater Discharges from Small Municipal Separate Storm Sewer Systems (MS4). The permit requires MS4 communities, such as the Town of Williston, whose stormwater runoff drains to waters that are impaired to develop a Flow Restoration Plan (FRP) for these waters. Allen Brook is currently included on the Vermont Agency of Natural Resources (VANR) Stormwater Impaired List (EPA's approved 303(d) List). The Town of Williston and the Vermont Agency of Transportation (VTrans) have been working cooperatively to develop an Allen Brook FRP with the goal of identifying best management practices (BMP's) that will achieve compliance with the flow targets set forth in the VTDEC report, *Total Maximum Daily Load to Address Biological Impairment in Allen Brook* (September 2008).

II. BACKGROUND

The purpose of the FRP is to identify stormwater BMP's (including retrofits to existing practices) that will be recommended for implementation in an effort to achieve established EPA approved Total Maximum Daily Load (TMDL) Targets for Allen Brook and eventually allow Allen Brook to be removed from the State's Stormwater Impaired List.

In doing so, MS4 Permittees discharging to Allen Brook will be working towards compliance with the NPDES General Permit FRP requirements. The permit requirement states that all MS4 Permittees (Municipal and Non-Traditional MS4's) create an FRP for all stormwater impaired waters within their jurisdiction. The Allen Brook Impaired Watershed is located entirely within the Williston Municipal limits and is the only Stormwater Impaired Waterway needing an FRP in Williston.

Understanding that the Vermont Agency of Transportation (VTrans) has been designated a Non-Traditional MS4 and that VTrans Highway right-of-way (I-89, US 2 & US 2A) and facilities (I-89 Welcome Centers) comprise approximately 16% (63 acres) of the impervious surface within the Allen Brook Watershed, the development of this FRP includes coordination with VTrans as a partner in this FRP effort. In doing so, VTrans and the Town of Williston have entered into a Memorandum of Understanding to jointly develop and implement the Allen Brook FRP.

The Town of Williston has been focused on progressing improvements and maintenance of existing stormwater systems in support of the FRP targets over the last few years. This FRP and the Town's development of a Stormwater Management Program (SWMP) will intensify the process to educate and inform the community of the importance of water quality in the Allen Brook watershed as well as other important waterways throughout the Town.

The Vermont Department of Environmental Conservation (VTDEC) has EPA approved stormwater TMDL's for the Allen Brook impaired waters. This TMDL includes an aggregate waste load allocation (WLA) which applies to numerous watershed sources. No specific WLA's were specified in the MS4 General Permit. The flow targets were set forth in the *Total Maximum Daily Load to Address Biological Impairment in Allen Brook* (September 2008).

The flow targets were set based upon the exceedance flow where the percentage (%) designates the percentage (%) of time that stream flows are equal to or greater than the flow targets. For the Allen Brook watershed the high flow (Q0.3%) and low flow (Q95%) values were evaluated for the TMDL

targets. The TMDL incorporated a reduction FRP regulatory target for only the Q0.3 value. This was set in consultation with the EPA since it was determined that it was not appropriate to include low flow targets (Q95) as an actual allocation in the TMDL.

However, the restoration of base flows is important to the health of the biological communities and thus it is a VTDEC management objective to increase the low flow Q95. This management objective is not being addressed as part of the FRP, but the associated results have been included for use in future SWMP planning and updates to the expired permits. The use of infiltration and other BMP practices which improve the Q95 will be encouraged by the Town of Williston and VTrans during implementation of the FRP practices where practical. Additionally, the Town of Williston has enacted Planning & Zoning requirements unrelated to the FRP which provide for development practices which would improve these flows.

Table 1: Allen Brook TMDL Target Percentages

TMDL Target (Waste Load Allocation	Q0.3	Q95
including future growth)	-3.30%	7.40%

III. IDENTIFICATION OF REQUIRED CONTROLS

A. Stormwater Discharge Permit Sites

VTDEC provided a current listing of expired stormwater discharge permits that discharged to the impaired Allen Brook. These sites are comprised of a mix of residential and commercial developments throughout the watershed. As developed parcels, these locations have significant impervious areas and the potential to negatively contribute to the Allen Brook Q0.3 high flow volumes. Each of these sites was previously permitted under VTDEC stormwater discharge regulations, which required various BMP's to be implemented as conditions of construction. These BMP's, however, would not meet current 2002 Vermont Stormwater Manual requirements and in some cases were never built.

To bring these permits into compliance, these sites would need to meet current 2002 standards through the completion of a Town approved engineering feasibility analysis (EFA) or through the Residual Designation Authority of VTDEC. In either event, these expired permit sites are stormwater runoff contributors to Allen Brook and should be addressed as part of this FRP. The Town and VTrans agreed that these developments should bear the initial burden of their permit requirements. The ancillary benefit that these upgrades have on the FRP targets would then be reviewed, and any shortfall in meeting the targets would be addressed in the development of other BMP's by the Town or VTrans.

In conjunction with these individual stormwater permit owners, the Town of Williston has assisted with the implementation of EFA's to determine BMP upgrades and measures necessary to bring these permits up to date. The resulting designs for the BMP's were provided to the DEC's

Stormwater Analyst for inclusion in the State Hydrologic Analysis Model as well as their Allen Brook Best Management Practice Support System (BMPDSS) model to determine their affect in meeting the high flow TMDL target. These model runs are summarized in Section D.

Table 2 outlines the discharge permit sites in which BMP's were designed to meet current 2002 Vermont Stormwater Manual requirements. As the FRP is implemented, this listing of EFA and/or BMP upgrades will be reviewed annually to review their construction status and to determine if there are additional upgrades that should be incorporated. Any additional sites shall be identified in the SWMP annual report. The Town has reached agreements with the residential property/development owners from Table 2 to obtain responsibility of the new BMP's and stormwater permits once they are constructed and inspected. Incrementally, as these residential sites are adopted, they will be incorporated into the MS4 General Permit and identified in the SWMP. Once adopted, the expired permit holders for the residential sites will not be held to any additional requirements above what has been included in their individual agreements. All further improvements will be at the cost of the Town.

				Drainage
Permit No	Permittee	Development Name	Location	Area (acre)
1-0513/ 1-1275	Taft Farms	Lots A-B	Talcott Rd	8.61
1-0513	Taft Farms	Condo Pond	Talcott Rd	4.72
1-0513	Taft Farms	Lots C-D	Talcott Rd	1.45
1-0513	Taft Farms	Lots F-G, Respite House Pond	Talcott Rd	4.36
1-0513	Taft Farms	Lot H	Talcott Rd	2.41
1-0664	South Ridge Homeowners Association	South Ridge Estates	South Ridge Rd	68.74
1-0792	Sterling Construction Inc.	Turtle Crossing	Brookside Dr	2.64
1-0963	Williston Elder Housing Inc.	Whitney Hill	Whitney Hill Rd	8.18
1-10521-1217	Retrovest Associates Indian Ridge	Williston Commons Indian Ridge	Commons RdIsham Circle	23.828.63
1-12171-1258	Taft Farms - Indian RidgeHeritage Meadows Homeowner Association	Indian RidgeHeritage Meadows	Isham CircleOld Stage Rd	8.6316.6916.79
1-12581-1272 s/n 2	Heritage Meadows Homeowner Association Brennan Woods	Heritage MeadowsBrennan Woods	Old Stage RdHanon Dr	16.7971.41
1-1272 s/n 21-1507	Brennan Woods Andre & Patricia Martel	Brennan Woods Coyote Run	Hanon DrCoyote La/Raven Circle	71.4120.5
1-15072-0231	Andre & Patricia Martel	Coyote RunPleasant	Coyote La/Raven	20.510.69

Table 2: Stormwater Discharge Permit Sites

				Drainage
Permit No	Permittee	Development Name	Location	Area (acre)
	Leo Compagna &	Acres	CirclePleasant	
	Thomas Blanchette		Acres Dr	
2-02312-0954	Leo Compagna &	Pleasant Acres	Pleasant Acres	10.694.03
	Thomas Blanchette	Allenbrook Meadows	DrLeFebvre Lane	
	Allenbrook Meadows			
2-09542-1107	Allenbrook	Allenbrook	LeFebvre	4.03219.93
	MeadowsMeadow	MeadowsMeadow	LaneMeadow	
	Ridge Homeowners	Ridge	Ridge Rd	
	Association			240.0000.04
2-11072-1146	Meadow Ridge	Meadow RidgeOld Stage	Meadow Ridge	219.9330.21
	Homeowners	Estates	RdSouthfield	
	Association Hickock &		Dr/Paddock Lane	
	Boardman Referral			
	Services Inc.			
2-11462-1180	Hickock & Boardman	Old Stage Estates Golf	Southfield	30.2157.23
	Referral Services Inc.	Links	Dr/Paddock Lane	
	Ralph Goodrich		Tamarack	
			Dr/Hillcrest La	53 0043 65
2-11802-1190	Ralph Goodrich	Golf Links Meadowrun-	Tamarack	57.2317.65
	Meadowrun	Forest Run	Dr/Hillcrest La	
	Homeowners		Meadowrun Rd	
2 11002 1101	Association	Maadauurun Faraat Dur		17 (511 01
2-11902-1191	Meadowrun	Meadowrun-Forest Run	Meadowrun	17.6511.01
	Homeowners	Turtle Pond	RdTurtle Pond Rd	
	Association Sterling Construction			
2-11911-1078		Turtle Dend Lete 10, 11	Turtle Pond	11.012.42
2-11911-1078	Sterling Construction Hillside East	Turtle Pond Lots 10, 11,		11.012.42
	Commercial Park	15	RdHurricane Lane	
1-10781-1205		Lots 10, 11, 15Lot 7		2.422.1
1-10/81-1205	Hillside East		Hurricane	2.422.1
	Commercial ParkHillside East		LaneHurricane	
	Commercial Park		Lane	
1-12051-1245	Hillside East	Lot 7Lots 16 & 17	Hurricane	2.15.41
1-12031-1243	Commercial		LaneHurricane	2.13.41
	ParkHillside East		Lane	
	Commercial Park		Lane	
1-12451-1301	Hillside East	Lots 16 & 17Lots 12, 13,	Hurricane	5.418.07
1 12401-1001	Commercial	13A	LaneHurricane	5.710.07
	ParkHillside East	137	Lane	
	Commercial Park			
1-13012-1172	Hillside East	Lots 12, 13, 13AAccess	Hurricane	8.072.23
- 13012-11/2	Commercial	Road	LaneHurricane	0.072.23
	ParkHillside East	Nudu	Lane	
	Commercial Park			
	Hillside East	Access Road	Hurricane Lane	2.23
2-1172				

B. Town of Williston Parcel Best Management Practices

The Town of Williston, as the MS4 permittee for the Allen Brook watershed, has also identified parcels which would have the potential for the installation of stormwater best management practices. These parcels were chosen based upon the ownership of the property by the Town, location within Allen Brook subwatersheds, space available for a BMP practice, and ability to capture larger drainage areas.

The first location identified for a BMP was to the south of U.S. Route 2 behind the Town offices. This parcel location is currently undeveloped meadowland which is occasionally hayed. The proposed BMP practice is two separate retention ponds near the south side of the parcel where it abuts Interstate I-89. From this location the BMP's are situated to capture the drainage area of a portion of I-89 and the wooded areas to the south. The runoff from this drainage area enters the site via two I-89 culvert crossings.

Figure 1: Williston Parcel Behind Town Offices

The second location identified for a BMP was for a parcel located between U.S. Route 2 and Interstate I-89. This parcel location is currently undeveloped and for portions it is utilized as farmland. The BMP practice is intended to be installed near the south side of the parcel where it abuts Interstate I-89. From this location the BMP is situated to capture the drainage area of a portion of I-89, Hurricane Lane and the wooded areas to the south. The runoff from this drainage area enters the site via multiple I-89 culvert crossings. Implementation of this BMP would potentially require collaboration with VTrans for work within the Interstate Right-of-Way to direct stormwater flows to the practice.

This BMP location has been modeled as a detention/retention pond with a 2.40 acre-feet of storage at the 1 year 24-hour rainfall event flows.

Figure 2: Williston Parcel between US Route 2 and I-89

C. VTrans Interstate 89 Best Management Practices

VTrans as the non-traditional MS4 permittee in the Allen Brook watershed has chosen five sites to construct new BMP's and one site to upgrade an existing pond to meet VTDEC's 2002 Stormwater Manual requirements. These locations were chosen based upon being in the I-89

ROW, location within Allen Brook subwatersheds, space available for a BMP practice, and ability to capture larger drainage areas.

The proposed upgraded retention pond treats and retains stormwater from the Interstate I-89 Welcome Center, just west of the Town Offices parcel shown in Figure 1. This location was developed by the Vermont Department of Buildings and General Services under a land lease from VTrans. The development was covered by stormwater discharge general permit No. 1-1401 which had an expiration date of March 31, 2005.

The remaining median BMP locations that VTrans identified are located in Interstate I-89's median (between the northbound and southbound lanes).

The resulting designs for the BMP's were provided to the DEC's Stormwater Analyst for inclusion in the State Hydrologic Analysis Model as well as their Allen Brook Best Management Practice Support System (BMPDSS) model to determine their affect in meeting the high flow TMDL target. These model runs are summarized in Section D.

As the FRP is implemented and the VTrans BMP's are constructed they will be incorporated into the MS4 General Permit and identified in the SWMP. In addition to the six above VTrans sites included in the State's Hydrologic Analysis Model, seven additional BMP's are proposed to be implemented and added to the model at a later date.

Figure 3: VTrans BMP Locations

D. VTDEC BMP'S Watershed Model Runs

The flow targets for Allen Brook (Table 1) were set forth in the *Total Maximum Daily Load to Address Biological Impairment in Allen Brook* (September 2008). As described above the Allen Brook TMDL target for high flow is Q0.3 = -3.30%. The management objective for low flow Q95 = 7.40%.

TMDL targets are expressed in percent (%) change in flow. To assess the effects of various management options on watershed flow, the Vermont Department of Environmental Conservation (VTDEC) has developed a watershed model for the Allen Brook watershed using the Vermont Best Management Practice Decision Support System (BMPDSS). For modeling purposes, percent reductions in flow are compared to the flow under base conditions, which for the purpose of this exercise are considered to be the conditions of the watershed prior to the adoption of the 2002 Vermont Stormwater Management Manual. Therefore, any BMP's that were built prior to the adoption of the manual are included in the base scenario.

In addition to a "base scenario" model run, VTDEC has updated the Allen Brook watershed model to reflect development and BMP's that have been built since the adoption of the 2002 manual. The hydrologic benefits from these BMP's are counted as credit towards the TMDL target.

Dubois & King, Inc., representing the Town of Williston and VTrans, provided VTDEC with preliminary designs for upgraded and new BMP's. VTDEC then added these treatment practices to the BMPDSS to assess the change in flows (Table 3).

	Q0.3		Q95	
Model Run	Cumulative% Change in flow	% of TMDL FRP target	Cumulative % Change in flow	% of TMDL management objective
Current Development	-0.62%	18.8%	0.49%	6.6%
Expired Permit Site Upgrades & Proposed BMP's for MS4 owned properties (VTrans & Town Parcels)*	-3.67%	111.1%	0.00%	0%

Table 3: VTDEC BMPDSS Model Results

*Vermont VTDEC BMPDSS does not incorporate reduction of the Town Hall parcel BMP from three ponds to two.

Explanation of VTDEC Model Results:

• Current Development: This model scenario represents the current development of the watershed, based on best available information.

- Expired Permit Upgrades: This model iteration includes upgrades to expired permitted systems, as provided to the Town of Williston by the permit holder's consultants.
- Proposed BMP's for MS4 owned properties (VTrans & Town Parcels) Proposed BMP's described above for the Town of Williston and VTrans properties. These were incorporated since the expired permit upgrades failed to meet the TMDL target.

The above VTDEC model results for the identified BMP's exceed the Q0.3 target of -3.30% by approximately 2.7%. This factor of safety has been utilized for this FRP to address unknowns at the identified BMP locations which may reduce the affect that they would have on the high flow Q0.3 model results once designed and fully implemented. With the current factor of safety, it may be necessary to identify additional potential sites through the annual FRP review process if constructed BMP's cannot meet modeled specifications.

As described previously, the above results for the low flow Q95 have been shown for SWMP planning purposes only since the current Allen Brook TMDL does not have a Q95 FRP target requirement.

IV. DESIGN, CONSTRUCTION & FRP INCORPORATION SCHEDULE

In accordance with the MS4 permit, an FRP requires a design and construction schedule for the identified BMP's. This schedule must provide for implementation of the BMP's as soon as possible, but longer than 20 years from the effective date (12/5/12) of the MS4 General Permit re-issuance. The permittees will implement the identified BMP's upon the schedule as set forth in the Final MS4 General Permit once issued.

The Town has reached agreements with the expired permit owners which are part of residential properties/developments to obtain responsibility of the new BMP's and stormwater permits as listed in Table 4. On an incremental basis, once the upgrades have been constructed and inspected, the FRP Incorporation Forms for these permits will be submitted to the VTDEC. The Stormwater Agreements for these residential properties are included as Appendix G.

			Permit Flow Restoration Plan Designation		
Expired Permit Holders	Permit # Permit Entity		Construct By Date	To Be Incorporated into MS4 General Permit Upon Completion	Permit Retained by Permit Holder
Allen Brook School	1-1230	School	Pending		Х
Allenbrook Meadows	2-0954	Residential	December, 2020	Х	
Brennan Woods Neighborhood	1-1272	Residential	October, 2022	Х	
Coyote Run	1-1507	Residential	September, 2021	Х	
Golf Links Neighborhood	2-1180	Residential	December, 2021	Х	

				Permit Flow Restoration Plan Designation		
Expired Permit Holders	Permit #	Permit Entity	Construct By Date	To Be Incorporated into MS4 General Permit Upon Completion	Permit Retained by Permit Holder	
Hampton Direct (KBA- Planeta)	1-1078	Commercial	October, 2026		х	
Heritage Meadows	1-1258	Residential	July, 2026	Х		
Hillside East Lot 14	1-0754	Commercial	October, 2021		Х	
Hillside East Lot 16 17 (Industrial Park)	1-1245	Commercial	October, 2026		Х	
Hillside East Lot 5	1-0530	Commercial	October, 2026		Х	
Hillside East Lot 7 (Commercial Park)	1-1205	Commercial	October, 2026		Х	
Hillside East Lots 12 13 13A	1-1301	Commercial	October, 2026		Х	
Taft Farms - Indian Ridge	1-1217	Residential	June, 2023	Х		
Meadow Run and Forest Run Neighborhood	2-1190	Residential	December, 2024	х		
Meadowridge Neighborhood	2-1107	Residential	October, 2026	х		
Old Stage Estates	2-1146	Residential	August, 2026	Х		
Pleasant Acres	2-0231	Residential	December, 2019	Х		
South Ridge Neighborhood	1-0664	Residential	October, 2026	Х		
Tafts Farms Lots A & B	1-0513 & 1-1275	Commercial	Pending		Х	
Tafts Farms Lots - Condominiums	1-0513	Residential	June, 2023	Х		
Tafts Farms Lots C & D		Commercial	October, 2026		Х	
Tafts Farms Lots F & G	1-0513 1-0792	Commercial	October, 2026		Х	
Tafts Farms Lot H	1-0792	Commercial	October, 2021		Х	
Turtle Crossing		Residential	October, 2021	Х		
Turtle Pond	2-1191	Residential	September, 2021	х		
Whitney Hill	1-0963	Residential	October, 2021	Х		
Williston Central School	1-0932	School	Pending		Х	
Williston Commons	1-1052	Residential	October, 2026	Х		
Town Hall Fields		Town Owned	October, 2021	х		
Mahan Farms		Town Owned	October, 2026	х		

V. FINANCIAL PLAN

In accordance with the MS4 permit, an FRP requires a financing plan that estimates the costs for implementing the FRP and describes a strategy for financing the plan.

The implementation costs for the proposed BMP's for the Allen Brook FRP have been calculated utilizing the VTDEC BMPDSS planning cost rates as outlined in a memorandum from Tetra Tech, Inc. dated October 30, 2007. These cost rates are at a base year 2000 and have been updated to account for inflation to year 2016 utilizing a 2.5% rate of inflation. This calculation incorporates the following for calculation of the construction costs for BMP's

Total Cost = Installation Cost [I] + Land Cost [L] + Fixed Cost [F]

Detention BMP

I = \$5 per ft³ which inflated at 2.5% to year 2016 rates = \$7.42 per ft³ I = \$323,325 per acre-foot

Infiltration BMP

I =\$6 per ft³ which inflated at 2.5% to year 2016 rates = \$8.91 per ft³

I = \$387,990 per acre-foot

L =\$0 for our BMP's since no property is anticipated to be purchased

F =\$2000 for design & permitting

Table 5: Projected BMP Implementation Costs

TOWN PARCELS					
Permit #	BMP Location	Volume, Acre-ft	Installation Cost		
	Town Offices Fields	1.5	\$486,988		
	North of I-89	2.4	\$777,980		
	TOTAL WILLISTON PARCEL	\$1,264,968			

The above construction cost estimates provide a planning level estimate for overall FRP planning Individual sites and BMP's will require additional review through design and engineering feasibility analysis to confirm if their costs are higher or lower than these. For instance, many of the expired permitted sites already have structural practices that may make implementation easier (or potentially harder). The MS4 SWMP annual report should look to update these costs periodically based on additional available information.

Funding for the implementation of the FRP will be addressed by the Town and VTrans for their individual identified BMP's only. For Town parcel BMP's, funding will be evaluated as part of the Williston Town General Fund. For VTrans I-89 BMP's, funding will be incorporated as part of the State Transportation budget, which also has the potential for Federal Aid Highway funding. As private entities, the controlling interests at the expired permit sites would primarily be responsible for funding their stormwater improvements. However, if grants become available, these will be utilized to provide funding for any of the above as able.

VI. REGULATORY ANALYSIS

In accordance with the MS4 permit, an FRP requires a regulatory analysis that identifies and describes what, if any, additional regulatory authorities, including authority to require low impact development BMP's, that the permittees (Williston and VTrans) will need to effectively implement the FRP.

Currently, stormwater runoff within the Allen Brook watershed is regulated primarily by the VTDEC, Town of Williston, and VTrans. VTDEC regulates new developments through issuance of Stormwater Discharge Permits with technical requirements as outlined in the 2002 Vermont Stormwater Manual. The Town of Williston requires improved stormwater practices and low impact development for new developments through the Town bylaws. VTrans regulates stormwater discharges to the state Right of Way through 19V.S.A.1111 "Permitted use of the right-of-way".

The implementation of the Allen Brook FRP does not require a modification to the above current regulatory framework. Since the Town and VTrans have identified BMP's for the expired permit sites, Town parcels, and VTrans I-89 locations which reduce Allen Brook flows beyond the TMDL target, no additional regulatory authority would be required as part of this FRP.

VII. IDENTIFICATION OF REGULATORY ASSISTANCE

In accordance with the MS4 permit, an FRP requires an identification of regulatory assistance the permittees (Williston and VTrans) will need in order to effectively implement the FRP (e.g. use of residual designation authority by the Secretary). Stormwater discharges that the permitting authority determines requires stormwater controls based on waste load allocations that are part of TMDL's that address the pollutants of concern is a discharge category that may be residually designated under 40 CFR 122.26 (a)(9)).

Since the Town and VTrans have identified BMP's for the stormwater permit sites, Town parcels, and VTrans I-89 locations which reduce Allen Brook flows beyond the TMDL reduction threshold, no additional regulatory assistance would be required as part of this FRP.

VIII. THIRD PARTY IMPLEMENTATION

In accordance with the MS4 permit, an FRP requires identification of the name of any party, other than the permittee, that is responsible for implementing any portion of the FRP.

The controlling interest for each of the above listed stormwater permit sites will need to implement the identified BMP practices to meet their current VTDEC permit requirements. This in turn, will address a component of the TMDL target reductions as described in this FRP. To ensure the compliance of these expired permit sites, the MS4 permittees request that the VTDEC utilize its current residual designation authority (RDA) to enforce these permit requirements.

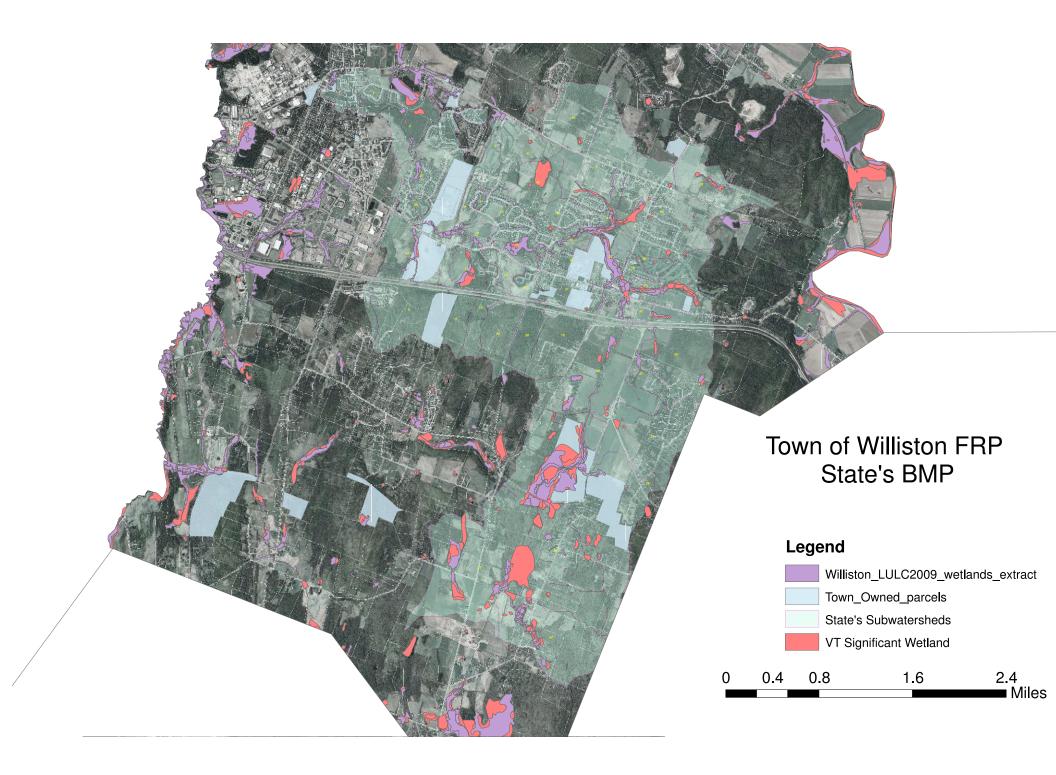
Given the progress made in upgrading these expired permit sites, the MS4 will only request RDA if the agreed upon improvements are not implemented in accordance with agreements and EFA's.

The Town of Williston has come to agreement with the residential properties from the above listed permit sites that upon completion of construction and certification by a Vermont licensed professional engineer that the BMP was constructed as permitted and designed the Town will take on responsibility of the stormwater permit and all responsibilities associated with the permit, such as maintenance and future improvements.

IX. SUMMARY

The Town of Williston and VTrans as the MS4 permittees, have developed the foregoing Flow Restoration Plan for the impaired Allen Brook Watershed under a Memorandum of Understanding. This agreement was developed to provide for the development of a shared plan within the watershed. The resulting Best Management Practices that constitute the Allen Brook FRP are as follows:

- Update of above listed VTDEC expired stormwater discharge permit properties by the individual property controlling interests.
- Town of Williston to implement BMP practices at the following locations
 - Parcel between U.S. Route 2 & Interstate I-89
 - Parcel behind Town Offices
- VTrans to implement BMP practices within the Interstate I-89 corridor at the following locations
 - Williston Welcome Center
 - o Five Median Areas


Upon approval by the Secretary, this Flow Restoration Plan shall be part of the permittee's SWMP. The permittee shall estimate and discuss in its annual report any progress towards meeting the flow restoration target from its MS4 in the previous year. The permittee shall base the estimate on quantifiable measures attributable to implementation of its FRP and its overall SWMP. The permitee shall submit to the Secretary the status of completion and implementation of stormwater BMP's identified in the FRP in the SWMP annual report.

APPENDIX A

ALLEN BROOK SUBWATERSHED MAP

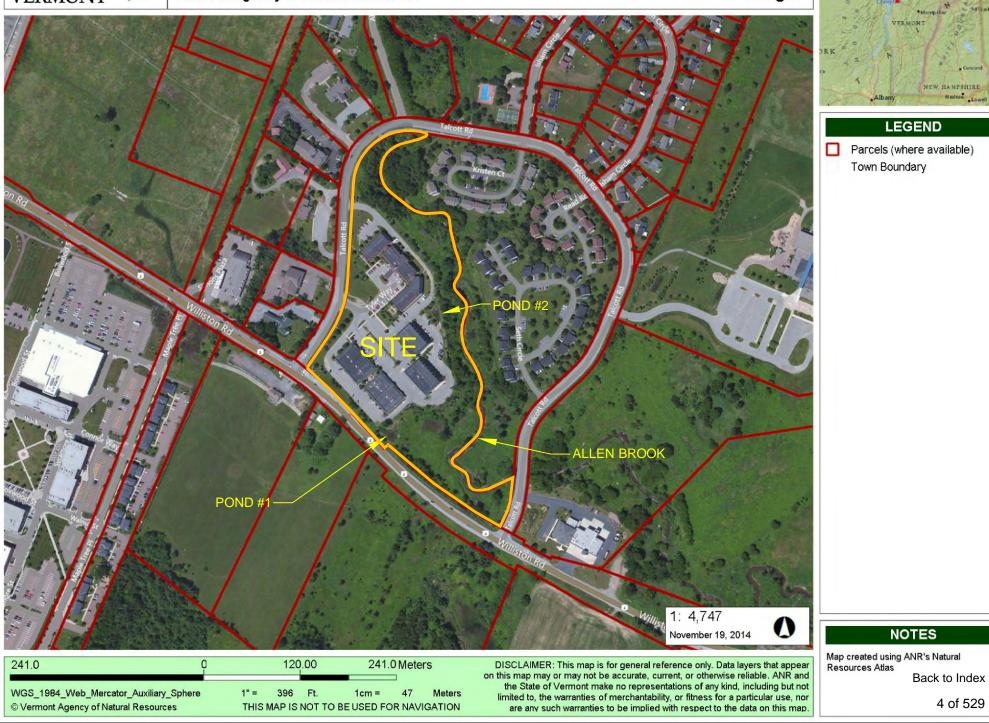
APPENDIX B

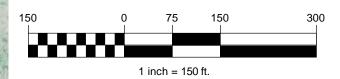
EXPIRED STORMWATER DISCHARGE PERMITS

AERIAL MAPS AND CPv BMP MODELS

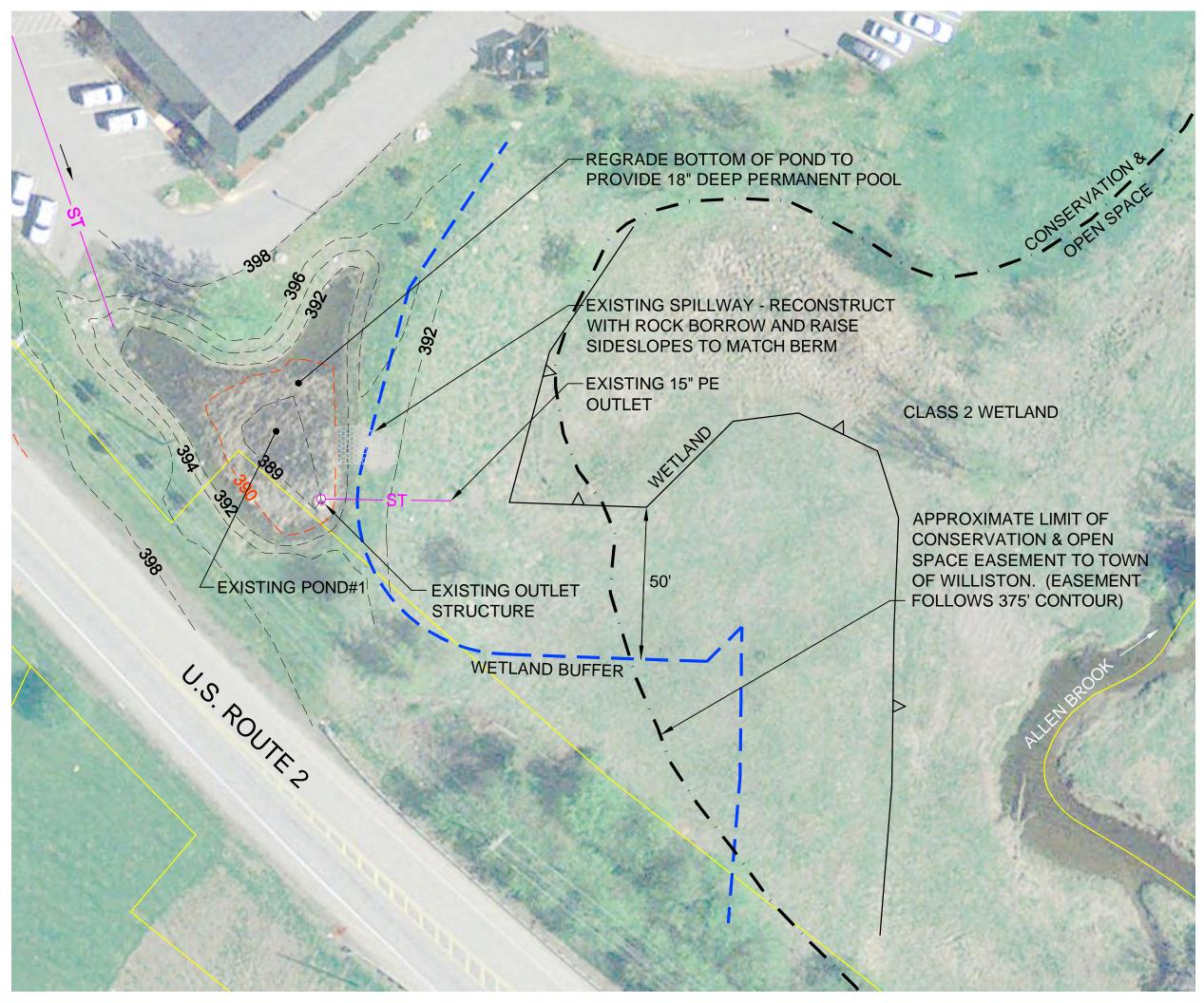
APPENDIX B – INDEX

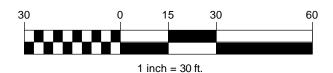
Permit No	Permittee	Development Name	Page
1-0513/ 1-1275	Taft Farms	Lots A-B	<u>4</u>
1-0513	Taft Farms	Taft Farms	<u>48</u>
	Taft Farms	Condo Pond	<u>50</u>
	Taft Farms	Lot C-D	<u>58</u>
	Taft Farms	Lot F-G, Respite House Pond	<u>75</u>
	Taft Farms	Lot H	<u>85</u>
1-0664	South Ridge Homeowners Association	South Ridge Estates	<u>94</u>
1-0792	Sterling Construction Inc.	Turtle Crossing	<u>117</u>
1-0963	Williston Elder Housing Inc.	Whitney Hill	<u>146</u>
1-1052	Retrovest Associates	Williston Commons	<u>181</u>
1-1217	Indian Ridge	Indian Ridge	<u>194</u>
1-1258	Heritage Meadows Homeowner Association	Heritage Meadows	<u>205</u>
1-1272 s/n 2	Brennan Woods	Brennan Woods	<u>221</u>
1-1507	Andre & Patricia Martel	Coyote Run	<u>244</u>
2-0231	Leo Compagna & Thomas Blanchette	Pleasant Acres	<u>269</u>
2-0954	Allenbrook Meadows	Allenbrook Meadows	<u>277</u>
2-1107	Meadow Ridge Homeowners Association	Meadow Ridge	<u>296</u>
2-1146	Hickock & Boardman Referral Services Inc.	Old Stage Estates	<u>338</u>
2-1180	Ralph Goodrich	Golf Links	<u>373</u>

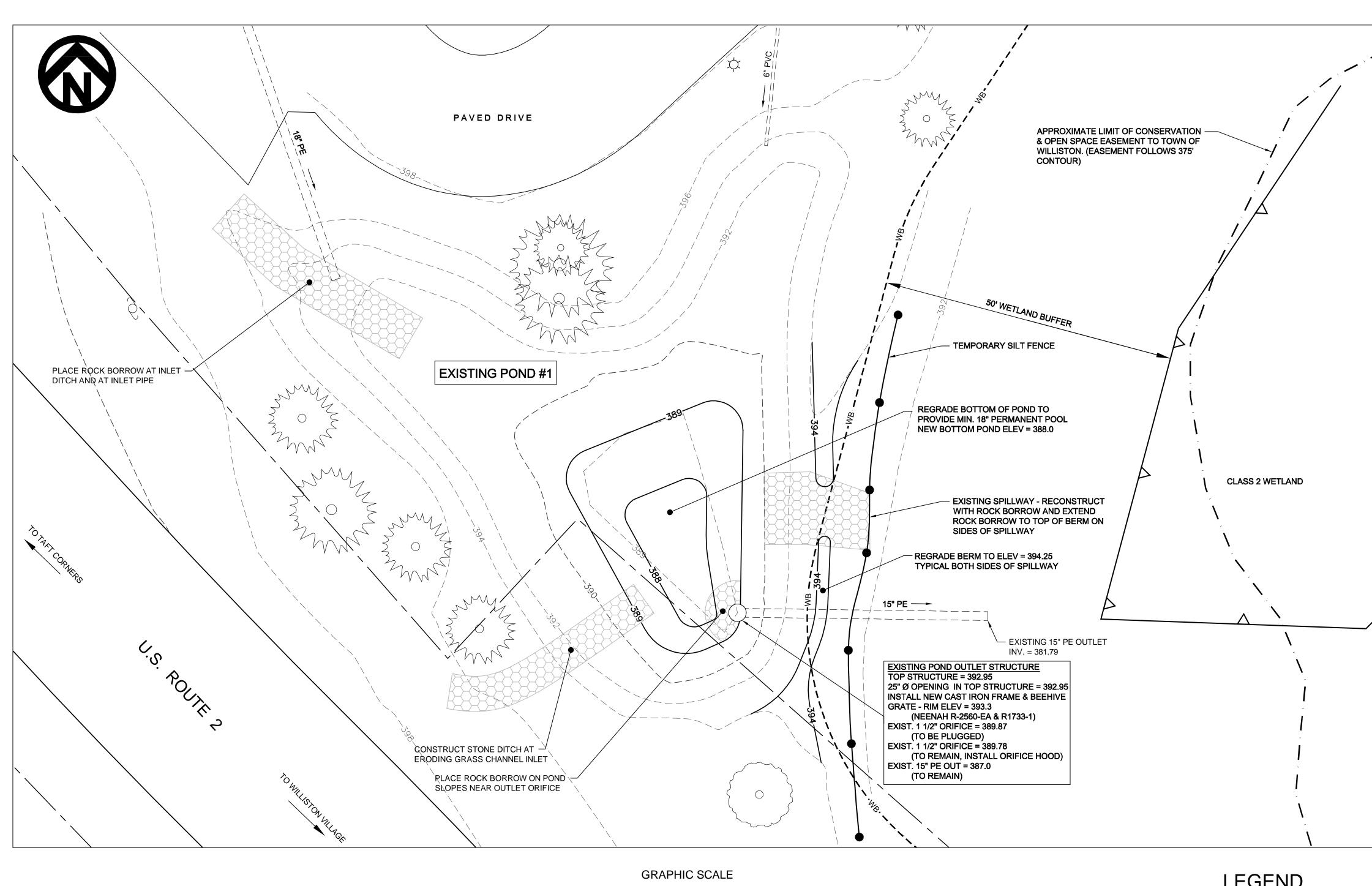

Permit No	Permittee	Development Name	Page
2-1190	Meadowrun Homeowners Association	Meadowrun-Forest	<u>432</u>
2-1191	Sterling Construction	Turtle Pond	<u>476</u>
1-1078	Hillside East Commercial Park	Lots 10, 11, 15	<u>487</u>
1-1205	Hillside East Commercial Park	Lot 7	<u>499</u>
1-1245	Hillside East Commercial Park	Lots 16 & 17	<u>508</u>
1-1301	Hillside East Commercial Park	Lots 12, 13, 13A	<u>519</u>


Natural Resources Atlas Vermont Agency of Natural Resources

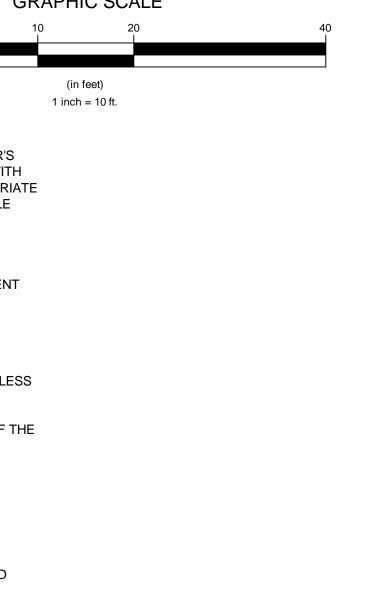
vermont.gov


Conwall

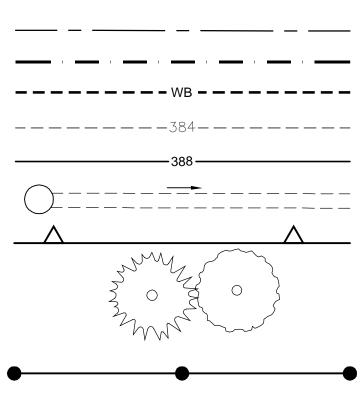


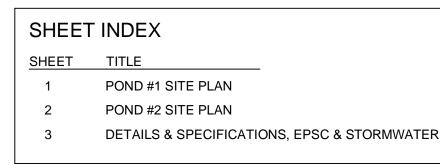


POND 1 RECOMMENDATIONS
 MODIFY OUTLET STRUCTURE
 AS NOTED ABOVE
 REGRADE BOTTOM OF POND
 TO PROVIDE 18" DEEP PERMANENT
 POOL. ADD STONE FILL AS
 REQUIRED TO STABILIZE INLETS



TAFT FARM LOTS A & B DISCHARGE 001 POND #1 CONCEPTUAL DESIGN NOVEMBER 2014 6 of 529




EROSION CONTROL NOTES

- 1. IT IS ANTICIPATED THAT LESS THAN 1 ACRE OF EARTH DISTURBANCE WILL OCCUR DURING PROJECT CONSTRUCTION. SHOULD THE CONTRACTOR'S OPERATIONS RESULT IN MORE THAN 1 ACRE OF EARTH DISTURBANCE, THE CONTRACTOR WILL BE RESPONSIBLE FOR ADDITIONAL PERMITTING WITH THE AGENCY OF NATURAL RESOURCES (ANR) VIA FILING A JOINT NOTICE OF INTENT WITH THE LANDOWNER FOR COVERAGE UNDER THE APPROPRIATE CONSTRUCTION GENERAL PERMIT (CGP 3-9020 OR INDIVIDUAL PERMIT) PRIOR TO SUCH DISTURBANCE. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY NECESSARY EROSION PREVENTION AND SEDIMENT CONTROL MEASURES NEEDED TO SATISFY ANY SUCH PERMIT REQUIREMENTS. REGARDLESS OF PERMIT APPLICABILITY, THE CONTRACTOR IS ALWAYS RESPONSIBLE FOR ENSURING THAT PROPER EROSION PREVENTION AND SEDIMENT CONTROL TECHNIQUES ARE UTILIZED DURING CONSTRUCTION.
- 2. ANR'S "LOW RISK SITE HANDBOOK FOR EROSION PREVENTION AND SEDIMENT CONTROL" AND THE "VERMONT EROSION PREVENTION AND SEDIMENT CONTROL FIELD GUIDE" SHALL BE USED AS GUIDANCE DURING CONSTRUCTION.
- 3. THE AREA OF DISTURBED SOILS AND THE DURATION OF EXPOSURE OF THE DISTURBED SOILS SHALL BE MINIMIZED. TO ACCOMPLISH THIS, WORK EFFORT SHOULD BE FOCUSED ON THE COMPLETION AND STABILIZATION OF ONE TASK BEFORE PROCEEDING TO THE NEXT.
- 4. EROSION PREVENTION AND SEDIMENT CONTROL MEASURES SHALL BE INSPECTED PRIOR TO AND FOLLOWING PRECIPITATION EVENTS, AND NOT LESS THAN ONCE EVERY SEVEN (7) DAYS. MAINTENANCE AND REPAIRS SHALL BE PROMPTLY COMPLETED.
- 5. TEMPORARY SOIL STOCKPILES SHALL BE MULCHED WITH HAY AND TEMPORARY SILT FENCE INSTALLED AROUND THE DOWNSLOPE PERIMETER OF THE PILES.
- 6. INLET PROTECTION SHALL BE INSTALLED AT ALL STORMWATER INLETS IN THE PROJECT WORK AREA.
- 7. THE CONTRACTOR SHALL SWEEP THE PAVEMENT AS NEEDED TO REMOVE ANY TRACKED SEDIMENT AND TO CONTROL DUST.
- 8. DISTURBED AREAS THAT ARE NOT BEING ACTIVELY WORKED SHALL BE STABILIZED WITH TEMPORARY SEED AND MULCH OR MATTING.
- 9. THE CONTRACTOR SHALL REMOVE ALL TEMPORARY EROSION PREVENTION AND SEDIMENT CONTROL MEASURES AFTER FINAL STABILIZATION AND PRIOR TO COMPLETION OF THE PROJECT.
- 10. PAYMENT FOR THE DISPOSAL OF UNSUITABLE OR EXCESS MATERIAL AT AN OFFSITE LOCATION INCLUDING TEMPORARY AND PERMANENT EROSION PREVENTION AND SEDIMENT CONTROL MEASURES, SHALL NOT BE PAID SEPARATELY, BUT SHALL BE INCIDENTAL TO THE VARIOUS ITEMS REQUIRED FOR COMPLETION OF THE WORK SHOWN ON THE PLANS.
- 11. PAYMENT FOR TEMPORARY STABILIZED BASE IN STAGING OR STORAGE AREAS OR TEMPORARY ACCESS ROADS SHALL NOT BE PAID SEPARATELY, BUT SHALL BE INCIDENTAL TO THE VARIOUS ITEMS REQUIRED FOR COMPLETION OF THE WORK SHOWN ON THE PLANS.

LEGEND

TEMPORARY SILT FENCE

EXISTING TREES

WETLAND BOUNDARY

EXISTING STORMWATER PIPE & STRUCTURE

THE CONTRACTOR SHALL NOTIFY 'DIGSAFE' PRIOR TO ANY EXCAVATION

FINISH GRADE CONTOUR

EXISTING GROUND CONTOUR

WETLAND BUFFER

CONSEVATION BOUNDARY

PROPERTY BOUNDARY

LINES.

INTERSTATE ?

TAFT FARM

LAND

PROJECT SIT LOTS A & B

POND #1

ALLEN BROOK DEVELOPMENT, INC.

POND #1

ALLEN BROOK LANE KAROUN HOLDINGS, LLC

MBF PROPERTIES, LLC

PROJECT AND ABUTTING PARCELS

NOT TO SCALE

MORRIS SWITZER PROPERTIES, , LLC

W. SPENCER & NANCY J. BAKER

 \bigcirc

MORRIS SWITZER PROPERTIES, LLC

N/F

STERN CENTER

M & E BOUDAH

75 TALCOTT ROAD ALBEM, LLP

NOTES:

2014.

Date

Sketch/Concept

Preliminary

Final

TALCOTT TWENTY, LLC

JACOB H PROPERTIES, LLC

75 TALCOTI ROAD

37 TALCOTT ROAD, LLC

ALLEN BROOK VICINITY MAP

NOT TO SCALE

TAFT FARM

TOWNHOUSE

TOWN OF WILLISTON

By

Project No.

14129

Design

Drawn

Checked

DG

Date 06-30-16

Scale

1" = 10'

Sheet number

1 of 3

US ROUTE 2

ALLEN BROOK DEVELOPMENT, INC.

CONDOMINIUM

3. EXISTING CONDITIONS SHOWN HEREON ARE BASED UPON A

4. THE WETLAND DELINEATION WAS PERFORMED BY L&D IN NOVEMBER

2. BOUNDARY INFORMATION SHOWN IS BASED UPON TAX MAP PARCEL

TOPOGRAPHIC SURVEY PERFORMED BY L&D IN SEPTEMBER 2014.

5. THE SPECIAL FLOOD HAZARD ZONE IS BASED UPON THE FLOOD

These plans shall only be used for the purpose shown below:

INSURANCE RATE MAP FOR CHITTENDEN COUNTY, PANEL 278 OF 500,

MAP NUMBER 50007C0278D, WITH AN EFFECTIVE DATE OF JULY 18, 2011.

Taft Farm Lots A & B

U.S. Route 2 & Talcott Road Williston, VT

POND #1 SITE PLAN

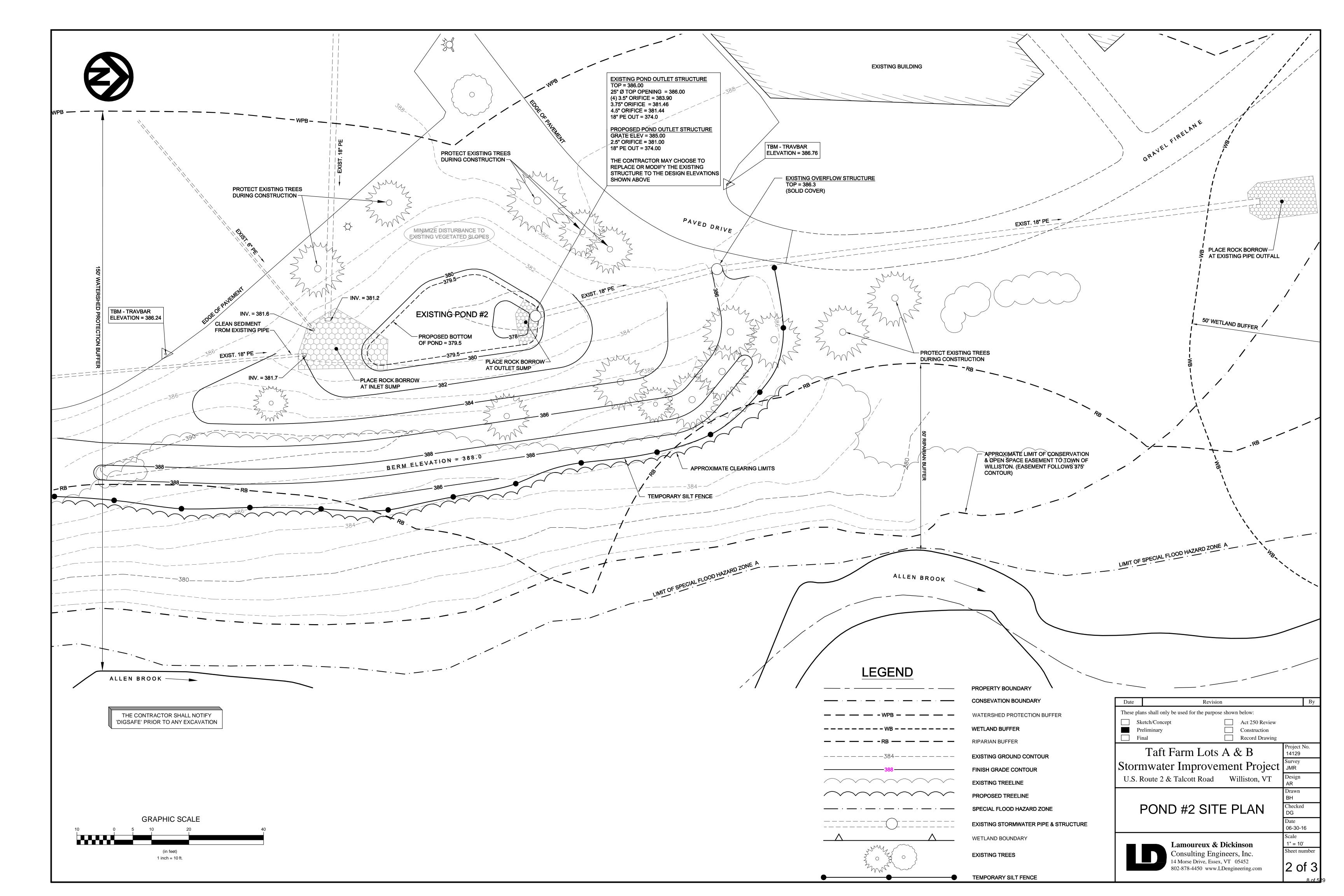
Lamoureux & Dickinson

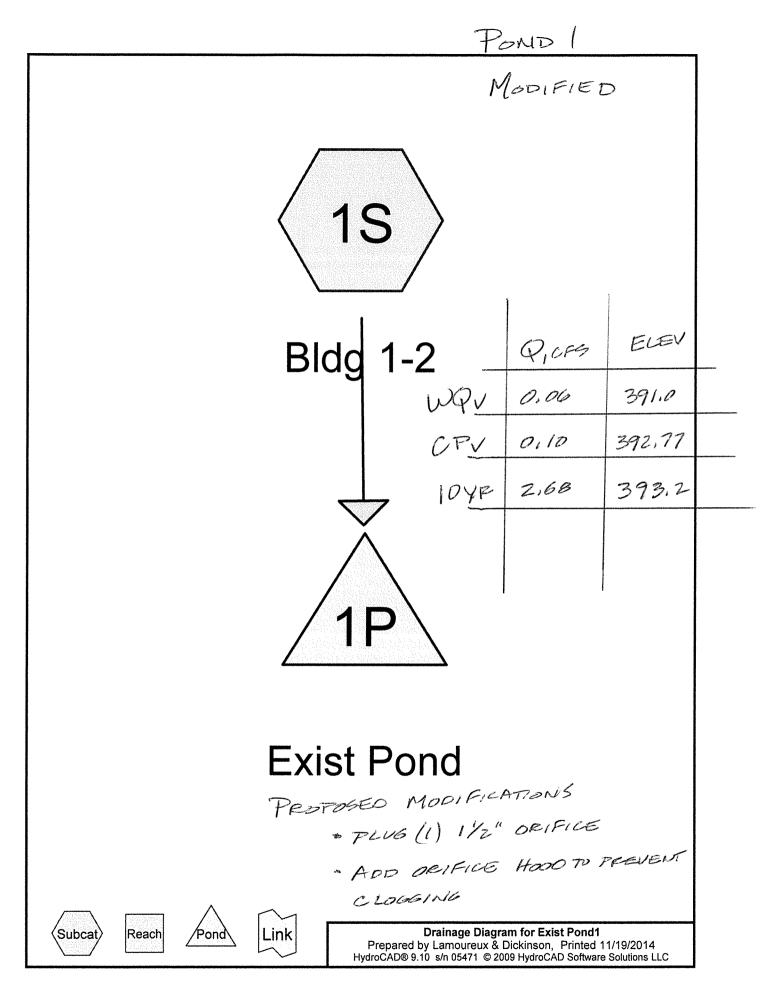
802-878-4450 www.LDengineering.com

Consulting Engineers, Inc.

14 Morse Drive, Essex, VT 05452

Stormwater Improvement Project


Revision


Act 250 Review

Record Drawing

Construction

1. THE PURPOSE OF THIS PLAN IS TO PRESENT THE PROPOSED IMPROVEMENTS TO THE EXISTING STORM POND. SEE OTHER PLANS FOR ADDITIONAL DESIGN INFORMATION AND CONSTRUCTION DETAILS.

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.810	80	>75% Grass cover, Good, HSG D (1S)
0.340	98	Rt 2, Talcott, path (1S)
0.560	98	pavement & sidewalk (1S)
0.700	98	rooftop (1S)

Summary for Subcatchment 1S: Bldg 1-2

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.63 cfs @ 11.99 hrs, Volume= 0.096 af, Depth= 0.48"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 1.00-42.00 hrs, dt= 0.10 hrs Type II 24-hr WQv Rainfall=0.90"

	Area (a	c) Cl	N Desc	cription							
	* 0.34	40 9	8 Rt 2,	Talcott, pa	ath						· · · · · · · · · · · · · · · · · · ·
	* 0.56	30 9		ment & sid							
	* 0.70		8 rooft	ор							
	0.8	<u>10 8</u>	0 >75%	6 Grass co	ver, Good,	HSG D					
	2.4			phted Avera							
	0.81			1% Perviou							
	1.60	00 9	8 66.3	9% Imperv	ious Area						
	T - 1	a in aithe	0	\/_!!t!t	0						
		ength	Slope	Velocity	Capacity	Descriptio	n				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	5.7	70	0.1500	0.21			w, Overlan				
	2.9	300	0.0130	1.71			ense n= 0.2 Concentrate				
	2.9	300	0.0150	1.71			Vaterway				
	8.6	370	Total				valerway	1	0.0 103		
	0.0	570	Totai								
				Sum	many for	Pond 1D	: Exist Po	hnd			
				Oun	iniary ioi			mu			
	Inflow Area	a ==	2 4 10 =	ac 66.39%	Imperviou	is Inflow [Depth = 0.4	18"	for WQv e	vent	
	Inflow	=		a @ 11.99			0.096 af	10		vent	
	Outflow	=	0.06 cfs		hrs, Volu			Atter	n= 96%, La	aα= 112.	4 min
>	Primary		0.06 cfs		hrs, Volu		0.095 af	,	,	-9	
-	Secondary	=	0.00 cfs		hrs, Volu		0.000 af				
				•							
						2.00 hrs, dt					
						orage= 708					
\geq	Peak Elev	= 390.99	9' @ 13.8	6 hrs Sur	f.Area= 2,8	588 sf Sto	rage= 3,191	Icf (2,483 cf at	pove sta	rt)
		datantia	n timor (260 0 min /		far 0 070 af	(000/ af inf	5		102	CE
	Center-of-I						* (82% of inf	now)	/		CF 1ANENT
	Center-or-i	viass ut	et. ume- 4	4/4.1 11111	1,272.0-	191.9)					
	Volume	Inve	ert Av	ail.Storage	Storage	Descriptio	n		Ĵ	POOL	
	#1	389.0		14,864 c			ta (Irregula	r) List	ed below (I	Recalc)	
		000.0		,	- Cuoton	l olugo Du	u (in oguiu	.,	00 00.011 (.	100010)	
	Elevation		Surf.Area	a Perim	ı. I	nc.Store	Cum.S	tore	Wet	t.Area	
	(feet)		(sq-ft) (feet	t) (cu	ibic-feet)	(cubic-f	eet)		(sq-ft)	
	389.00		487			0		0		487	
	390.00		1,753			1,055	1.	055		1,900	
	392.00		3,607			5,250		304		6,613	
	394.00		4,990			8,560		864		8,908	

Exist Pond1

Type II 24-hr WQv Rainfall=0.90" Printed 11/19/2014 Page 12

Prepared by Lamoureux & Dickinson HydroCAD® 9.10 s/n 05471 © 2009 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices				
#1	Primary	389.78'	1.5" Vert. Orifice1 C= 0.600				
#2	Primary	392.95'	25.0'' Horiz. Top opening C= 0.600 Limited to weir flow at low heads				
#3	Secondary	393.30'					
Primary	Primary OutFlow Max=0.06 cfs @ 13.86 hrs HW=390.99' (Free Discharge)						

1=Orifice1 (Orifice Controls 0.06 cfs @ 5.16 fps) **2=Top opening** (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=389.78' (Free Discharge) —3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Subcatchment 1S: Bldg 1-2

[49] Hint: Tc<2dt may require smaller dt

Runoff = 4.85 cfs @ 11.99 hrs, Volume= 0.292 af, Depth= 1.45"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 1.00-42.00 hrs, dt= 0.10 hrs Type II 24-hr 1 year Rainfall=2.10"

	Area	(ac) C	N Des	cription					
				Talcott, p	ath			*****	
			98 pave	ement & si					
			98 rooft						
					over, Good	<u>, HSG D</u>			
				ghted Aver					
				1% Pervio					
	1	.600 9	98 66.3	9% imperv	vious Area				
	Тс	Length	Slope	Velocity	Capacity	Descriptior	1		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Decemption	1		
	5.7	70	0.1500	0.21		Sheet Flow	v, Overland lawn		
							nse n= 0.240 P2	= 2.30"	
	2.9	300	0.0130	1.71			oncentrated Flow,		
	G========					Grassed W	/aterway Kv= 15.0) fps	
	8.6	370	Total						
				-	-				
				Sun	nmary for	r Pond 1P:	Exist Pond		
	1		0.440	~~ ~~					
	Inflow Ai	rea = =						1 year event	
	Outflow				9 hrs, Volu 1 hrs, Volu		0.292 af	98%, Lag= 247.2 m	in
>	Primary				i hrs, Volu		0.237 af, Atten- 3	50%, Lay- 247.2 m	111
	Seconda		0.00 cfs	<u> </u>) hrs, Volu		0.000 af		
				•	·				CPV
						2.00 hrs, dt=			
•						orage= 708 d		- k	
7	Peak Ele	ev= 392.7	7'@16.1	1 hrs Su	rt.Area= 4,	114 sf Stora	age= 9,280 cf (8,5	572 cf above start)	
	Plug-Flo	w detenti	on time= !	850 0 min	calculated	for 0.220 of	(75% of inflow)		
	Center-c	of-Mass d	et time=`	700 8 min	(1,480.3 -	7796)			
						7 HRS	DETENTION	1.	
	Volume	Inv	ert Av	ail.Storage		Description			
	#1	389.					a (Irregular) Listed	below (Recalc)	
	Elevatio		Surf.Area			nc.Store	Cum.Store	Wet.Area	
	(fee		(sq-ft			ubic-feet)	(cubic-feet)	(sq-ft)	
	389.0		487			0	0	487	
	390.0 392.0		1,753			1,055	1,055	1,900	
	392.0 394.0		3,607 4,990			5,250 8,560	6,304 14,864	6,613	
	004.0		-+,350	5 557.	U I	0,000	14,004	8,908	

Exist Pond1

Type II 24-hr 1 year Rainfall=2.10" Printed 11/19/2014 Page 4

Prepared by Lamoureux & Dickinson	
HydroCAD® 9.10 s/n 05471 © 2009 HydroCAD Software Solutions LLC)

Device	Routing	Invert	Outlet Devices				
#1	Primary	389.78'	1.5" Vert. Orifice1 C= 0.600				
#2	Primary	392.95'	25.0" Horiz. Top opening C= 0.600 Limited to weir flow at low heads				
#3	Secondary	393.30'	10.0' long x 12.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64				
Primary OutFlow Max=0.10 cfs @ 16.11 hrs HW=392.77' (Free Discharge)							

1=Orifice1 (Orifice Controls 0.10 cfs @ 8.24 fps) **2=Top opening** (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=389.78' (Free Discharge) —3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Subcatchment 1S: Bldg 1-2

[49] Hint: Tc<2dt may require smaller dt

Runoff = 7.80 cfs @ 11.99 hrs, Volume= 0.472 af, Depth= 2.35"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 1.00-42.00 hrs, dt= 0.10 hrs Type II 24-hr 10 year Rainfall=3.10"

_	Area	(ac)	CN	Desc	ription		
*	0.	340	98	Rt 2,	Talcott, p	ath	
*	0.	560	98	pave	ment & sid	dewalk	
*	0.	700	98	rooft	ор		
-	0.	810	80	>75%	6 Grass co	over, Good,	HSG D
	2.	410	92	Weig	hted Aver	age	
	0.	810	80	33.6	1% Pervio	us Area	
	1.	600	98	66.39	9% Imperv	ious Area	
	Тс	Length	n S	lope	Velocity	Capacity	Description
	(min)	(feet)) (<u>(ft/ft)</u>	(ft/sec)	(cfs)	
	5.7	70) 0.1	1500	0.21		Sheet Flow, Overland lawn
							Grass: Dense n= 0.240 P2= 2.30"
	2.9	300	0.0	0130	1.71		Shallow Concentrated Flow, Swale
		_					Grassed Waterway Kv= 15.0 fps

8.6 370 Total

Summary for Pond 1P: Exist Pond

	Inflow Area	=	2.410 ac, 6	6.39% Impe	ervious, Inflow	Depth = 2.3	35" for 10 year event	
	Inflow	=	7.80 cfs @	11.99 hrs,	Volume=	0.472 af		
	Outflow	=	2.68 cfs @	12.21 hrs,	Volume=	0.396 af,	Atten= 66%, Lag= 13.1 min	
\rightarrow	Primary	=	2.68 cfs @	12.21 hrs,	Volume=	0.396 af		
	Secondary	=	0.00 cfs @	1.00 hrs,	Volume=	0.000 af		

Routing by Stor-Ind method, Time Span= 1.00-42.00 hrs, dt= 0.10 hrs Starting Elev= 389.78' Surf.Area= 1,407 sf Storage= 708 cf → Peak Elev= 393.19' @ 12.21 hrs Surf.Area= 4,405 sf Storage= 11,078 cf (10,371 cf above start)

Plug-Flow detention time= 575.7 min calculated for 0.379 af (80% of inflow) Center-of-Mass det. time= 462.4 min (1,234.7 - 772.3)

Volume	Invert	Avail	.Storage	Storage Description	ſ	
#1	389.00'	1	4,864 cf	Custom Stage Dat	a (Irregular) Listed	d below (Recalc)
Elevation (feet)		.Area sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
389.00		487	96.0	0	0	487
390.00		1,753	164.0	1,055	1,055	1,900
392.00	:	3,607	293.0	5,250	6,304	6,613
394.00	4	4,990	337.0	8,560	14,864	8,908

Exist Pond1 Prepared by Lamoureux & Dickinson HydroCAD® 9.10 s/n 05471 © 2009 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices				
#1	Primary	389.78'	1.5" Vert. Orifice1 C= 0.600				
#2	Primary	392.95'	25.0'' Horiz. Top opening C= 0.600 Limited to weir flow at low heads				
#3	Secondary	393.30'	10.0' long x 12.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64				
Primary OutFlow Max=2.58 cfs @ 12.21 hrs HW=393.19' (Free Discharge)							

-1=Orifice1 (Orifice Controls 0.11 cfs @ 8.81 fps)

-2=Top opening (Weir Controls 2.48 cfs @ 1.59 fps)

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=389.78' (Free Discharge) -3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Subcatchment 1S: Bldg 1-2

[49] Hint: Tc<2dt may require smaller dt

Runoff = 9.61 cfs @ 11.99 hrs, Volume= 0.583 af, Depth> 2.90"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 1.00-42.00 hrs, dt= 0.10 hrs Type II 24-hr 25 year Rainfall=3.70"

	Area	(ac)	CN D)esc	ription		
*	0.	340	98 F	Rt 2,	Talcott, p	ath	
*	0.	560	98 p	ave	ment & sid	dewalk	
*	0.	700	98 r	oofto	р		
	0.	810	80 >	75%	6 Grass co	over, Good,	HSG D
	2.	410	92 V	Veig	hted Aver	age	
	0.	810	80 3	3.61	1% Pervio	us Area	
	1.	600	98 6	6.39	% Imperv	ious Area	
	Тс	Length		•	Velocity	Capacity	Description
	(min)	(feet)	(ft/	′ft)	(ft/sec)	(cfs)	
	5.7	70	0.15	00	0.21		Sheet Flow, Overland lawn
							Grass: Dense n= 0.240 P2= 2.30"
	2.9	300	0.01	30	1.71		Shallow Concentrated Flow, Swale
							Grassed Waterway Kv= 15.0 fps

8.6 370 Total

Summary for Pond 1P: Exist Pond

Inflow Area =	2.410 ac, 66.39% Impervious, Inflow De	epth > 2.90" for 25 year event
Inflow =	9.61 cfs @ 11.99 hrs, Volume=	0.583 af
Outflow =	6.85 cfs @ 12.12 hrs, Volume=	0.503 af, Atten= 29%, Lag= 7.5 min
Primary =	6.26 cfs @ 12.12 hrs, Volume=	0.498 af
Secondary =	0.60 cfs @ 12.10 hrs, Volume=	0.005 af

Routing by Stor-Ind method, Time Span= 1.00-42.00 hrs, dt= 0.10 hrs Starting Elev= 389.78' Surf.Area= 1,407 sf Storage= 708 cf Peak Elev= 393.39' @ 12.12 hrs Surf.Area= 4,543 sf Storage= 11,949 cf (11.241 cf above start)

Plug-Flow detention time= 466.7 min calculated for 0.486 af (83% of inflow) Center-of-Mass det. time= 370.6 min (1,139.7 - 769.1)

Volume	Invert	Avai	I.Storage	Storage Description	n	
#1	389.00'	9.00' 14,864 cf		Custom Stage Data (Irregular) Listed below (Recalc)		
Elevation (feet)	+	Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
389.00		487	96.0	0	0	487
390.00		1,753	164.0	1,055	1,055	1,900
392.00		3,607	293.0	5,250	6,304	6,613
394.00	•	4,990	337.0	8,560	14,864	8,908

Exist Pond1 Prepared by Lamoureux & Dickinson

Type II 24-hr 25 year Rainfall=3.70" Printed 11/19/2014 HydroCAD® 9.10 s/n 05471 © 2009 HydroCAD Software Solutions LLC Page 8

Device	Routing	Invert	Outlet Devices				
#1	Primary	389.78'	1.5" Vert. Orifice1 C= 0.600				
#2	Primary	392.95'	25.0" Horiz. Top opening C= 0.600				
			Limited to weir flow at low heads				
#3	Secondary	393.30'	10.0' long x 12.0' breadth Broad-Crested Rectangular Weir				
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60				
			Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64				
Primary OutFlow Max=5.71 cfs @ 12.12 hrs HW=393.36' (Free Discharge)							

-1=Orifice1 (Orifice Controls 0.11 cfs @ 9.03 fps)

-2=Top opening (Weir Controls 5.60 cfs @ 2.09 fps)

Secondary OutFlow Max=0.58 cfs @ 12.10 hrs HW=393.38' (Free Discharge) -3=Broad-Crested Rectangular Weir (Weir Controls 0.58 cfs @ 0.73 fps)

Summary for Subcatchment 1S: Bldg 1-2

[49] Hint: Tc<2dt may require smaller dt

Runoff = 11.44 cfs @ 11.99 hrs, Volume= 0.697 af, Depth> 3.47"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 1.00-42.00 hrs, dt= 0.10 hrs Type II 24-hr 100 year Rainfall=4.30"

	Area	(ac)	CN	Desc	ription			
*	0.	340	98	Rt 2,	Talcott, p	ath		
*	0.	560	98	pave	ment & sid	dewalk		
*	0.	700	98	rooft	ор			
-	0.	810	80	>75%	6 Grass co	over, Good,	, HSG D	
	2.	410	92	Weig	hted Aver	age		
	0.	810	80	33.6	1% Pervio	us Area		
	1.600 98 66.39% Impervious Area							
	Tc (min)	Length (feet)		ope ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	5.7	70	0.1	500	0.21		Sheet Flow, Overland lawn	
	2.9	300	0.0	130	1.71		Grass: Dense n= 0.240 P2= 2.30" Shallow Concentrated Flow, Swale	

8.6 370 Total

Summary for Pond 1P: Exist Pond

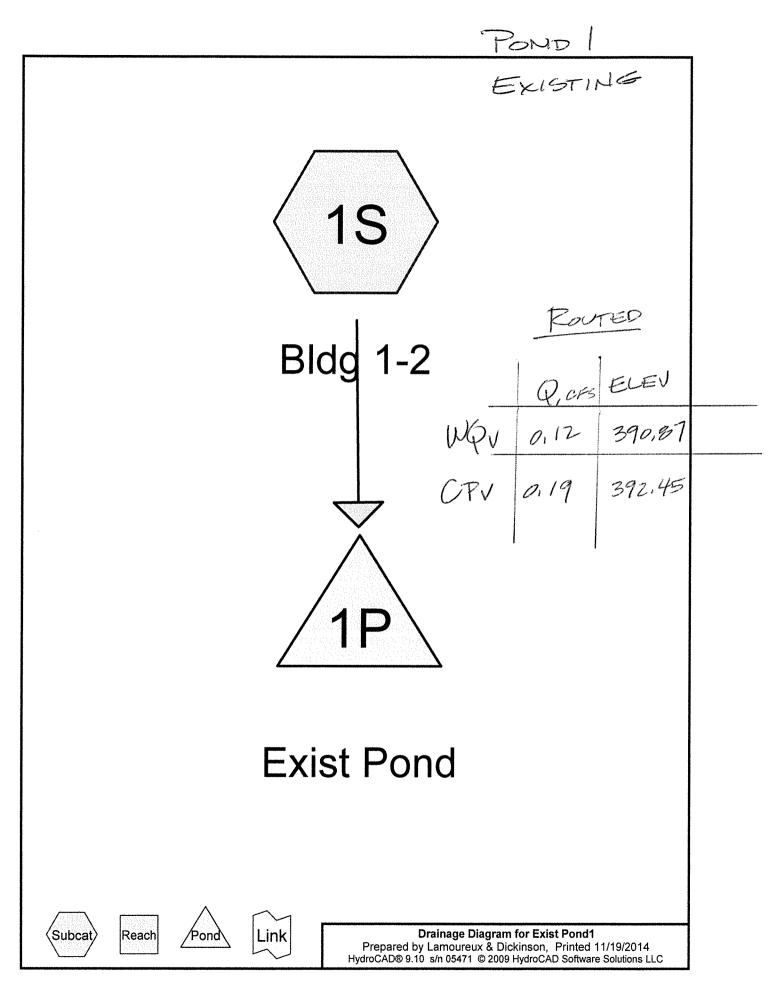
Grassed Waterway Kv= 15.0 fps

Inflow Area =	2.410 ac, 66.39% Impervious, Inflow De	epth > 3.47" for 100 year event
Inflow =	11.44 cfs @ 11.99 hrs, Volume=	0.697 af
Outflow =	9.38 cfs @ 12.08 hrs, Volume=	0.615 af, Atten= 18%, Lag= 5.6 min
Primary =	7.83 cfs @ 12.08 hrs, Volume=	0.598 af
Secondary =	1.55 cfs @ 12.09 hrs, Volume=	0.018 af

Routing by Stor-Ind method, Time Span= 1.00-42.00 hrs, dt= 0.10 hrs Starting Elev= 389.78' Surf.Area= 1,407 sf Storage= 708 cf Peak Elev= 393.46' @ 12.08 hrs Surf.Area= 4,593 sf Storage= 12,266 cf (11,558 cf above start)

Plug-Flow detention time= 395.8 min calculated for 0.599 af (86% of inflow) Center-of-Mass det. time= 309.9 min (1,076.4 - 766.5)

Volume	Invert	Avai	l.Storage	Storage Description	ſ	
#1	389.00' 14,864 cf		Custom Stage Data (Irregular) Listed below (Recalc)			
Elevation (feet)		.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
389.00		487	96.0	0	0	487
390.00		1,753	164.0	1,055	1,055	1,900
392.00	:	3,607	293.0	5,250	6,304	6,613
394.00	4	4,990	337.0	8,560	14,864	8,908


Exist Pond1

Prepared by Lamoureux & Dickinson HydroCAD® 9.10 s/n 05471 © 2009 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	389.78'	1.5" Vert. Orifice1 C= 0.600
#2	Primary	392.95'	25.0" Horiz. Top opening C= 0.600
			Limited to weir flow at low heads
#3	Secondary	393.30'	10.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64

Primary OutFlow Max=7.42 cfs @ 12.08 hrs HW=393.44' (Free Discharge) -1=Orifice1 (Orifice Controls 0.11 cfs @ 9.13 fps) -2=Top opening (Weir Controls 7.31 cfs @ 2.29 fps)

Secondary OutFlow Max=1.40 cfs @ 12.09 hrs HW=393.44' (Free Discharge) -3=Broad-Crested Rectangular Weir (Weir Controls 1.40 cfs @ 0.97 fps)

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
0.810	80	>75% Grass cover, Good, HSG D (1S)
0.340	98	Rt 2, Talcott, path (1S)
0.560	98	pavement & sidewalk (1S)
0.700	98	rooftop (1S)

Summary for Subcatchment 1S: Bldg 1-2

[49] Hint: Tc<2dt may require smaller dt

394.00

4,990

337.0

Runoff = 1.63 cfs @ 11.99 hrs, Volume= 0.096 af, Depth= 0.48"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 1.00-42.00 hrs, dt= 0.10 hrs Type II 24-hr WQv Rainfall=0.90"

			ription	*1	
			Talcott, p		
		98 pave 98 roofte	ment & si	uewaik	
				over, Good	HSG D
			hted Aver		, 100 0
			1% Pervio		
				vious Area	
			·		
	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.7	70	0.1500	0.21		Sheet Flow, Overland lawn Grass: Dense n= 0.240 P2= 2.30"
2.9	300	0.0130	1.71		Shallow Concentrated Flow, Swale
2.0	000	0.0100	1.7 1		Grassed Waterway Kv= 15.0 fps
8.6	370	Total			
			Sun	nmary foi	r Pond 1P: Exist Pond
Inflow Ar					us, Inflow Depth = 0.48" for WQv event
Inflow Outflow	=			9 hrs, Volu	
Primary	=			3 hrs, Volu 3 hrs, Volu	
i ianca y		0.12 010		5 m0, voiu	
					2.00 hrs, dt= 0.10 hrs
					orage= 708 cf
Peak Ele	v= 390.8	7' @ 12.7	8 hrs Su	rf.Area= 2,4	474 sf Storage= 2,875 cf (2,167 cf above start)
	N detentiv	on time= 1	873 0 min	calculated	for 0.079 af (82% of inflow)
Plilid_FIO/	accontra				
	f-Mass de	et. time= 2	231.9 min	(1.029.8 -	797.9)
	f-Mass de	et. time= 2	231.9 min	(1,029.8 -	797.9)
	f-Mass de Inve		231.9 min ail.Storag	,	797.9) e Description
Center-of		ert Av		e Storage	<i>.</i>
Center-of Volume #1	Inve 389.0	ert Av)0'	ail.Storago 14,864 c	e Storage of Custon	e Description n Stage Data (Irregular) Listed below (Recalc)
Center-of <u>Volume</u> #1 Elevation	Inve 389.0	ert Av)0' Surf.Area	ail.Storago 14,864 c a Perir	e Storage f Custon n. I	e Description n Stage Data (Irregular) Listed below (Recalc) Inc.Store Cum.Store Wet.Area
Center-of <u>Volume</u> #1 Elevation (feet	Inve 389.0 n	ert Av 00' Surf.Area (sq-ft)	ail.Storago 14,864 c a Perir) (fee	e Storage f Custon n. l t) (cu	e Description n Stage Data (Irregular) Listed below (Recalc) Inc.Store Cum.Store Wet.Area ubic-feet) (cubic-feet) (sq-ft)
Center-of Volume #1 Elevation (feet 389.00	Inve 389.0 n t) 0	ert Av)0' Surf.Area (sq-ft) 487	ail.Storag 14,864 c Perir) (fee 7 96	e Storage of Custon n. I vt) (cu	e Description n Stage Data (Irregular) Listed below (Recalc) Inc.Store Cum.Store Wet.Area ubic-feet) (cubic-feet) (sq-ft) 0 0 487
Center-of <u>Volume</u> #1 Elevation (feet	Inve 389.0 n t) 0 0	ert Av 00' Surf.Area (sq-ft)	ail.Storag 14,864 c Perir) (fee 7 96 3 164	e Storage of Custon n. I ot) (cu .0	e Description n Stage Data (Irregular) Listed below (Recalc) Inc.Store Cum.Store Wet.Area ubic-feet) (cubic-feet) (sq-ft)

8,560

14,864

8,908

Prepared by Lamoureux & Dickinson HydroCAD® 9.10 s/n 05471 © 2009 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices					
#1	Primary	389.78'	1.5" Vert. Orifice1 C= 0.600					
#2	Primary	389.87'	1.5" Vert. Orifice2 C= 0.600					
#3	Primary	392.95'	25.0" Horiz. Top opening C= 0.600					
			Limited to weir flow at low heads					
	Primary OutFlow Max=0.12 cfs @ 12.78 hrs HW=390.87' (Free Discharge)							

-2=Orifice2 (Orifice Controls 0.06 cfs @ 4.65 fps) -3=Top opening (Controls 0.00 cfs)

Summary for Subcatchment 1S: Bldg 1-2

[49] Hint: Tc<2dt may require smaller dt

Runoff = 4.85 cfs @ 11.99 hrs, Volume= 0.292 af, Depth= 1.45"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 1.00-42.00 hrs, dt= 0.10 hrs Type II 24-hr 1 year Rainfall=2.10"

	Area	(ac) C	N Desc	cription					
				, Talcott, p					
				ement & sid	dewalk				
			98 rooft 30 >75%		over, Good,				
				ghted Aver		, 1100 D			
				1% Pervio					
				9% Imperv					
					.				
	Tc (min)	Length	Slope	Velocity	Capacity	Descriptior	1		
	<u>(min)</u> 5.7	<u>(feet)</u> 70	(ft/ft) 0.1500	(ft/sec) 0.21	(cfs)	Cheet Elev			
	5.7	70	0.1500	0.21			v, Overland lawn nse n= 0.240 P2	= 2 30"	
	2.9	300	0.0130	1.71			oncentrated Flow		
							vaterway Kv= 15.		
	8.6	370	Total						
				_	_				
				Sun	nmary for	Pond 1P:	Exist Pond		
	Inflow Ar		0.440	00.000					
			2.410 c	ac, 00.397 ac, 11.00	brs Volu	IS, INTIOW D	epth = 1.45" for	i year event	
	Inflow	=	4.85 cfs	s@ 11.99	hrs, Volu	me=	0.292 af		
1		=	4.85 cfs	s @ 11.99 s @ 13.77	6 Imperviou 9 hrs, Volu 7 hrs, Volu 7 hrs, Volu	me= me=	0.292 af	96%, Lag= 106.8 min	
>	Inflow Outflow Primary	=	4.85 cfs 0.19 cfs 0.19 cfs	s@ 11.99 s@ 13.77 s@ 13.77	9 hrs, Volu 7 hrs, Volu 7 hrs, Volu	me= me= me=	0.292 af 0.291 af, Atten= 0.291 af		
7	Inflow Outflow Primary Routing I	= = = by Stor-Ir	4.85 cfs 0.19 cfs 0.19 cfs nd methoo	s @ 11.99 s @ 13.77 s @ 13.77	9 hrs, Volu 7 hrs, Volu 7 hrs, Volu an= 1.00-42	me= me= me= 2.00 hrs, dt=	0.292 af 0.291 af, Atten= 0.291 af = 0.10 hrs		
>	Inflow Outflow Primary Routing I Starting I	= = = by Stor-Ir Elev= 385	4.85 cfs 0.19 cfs 0.19 cfs nd methoo 9.78' Sui	s @ 11.99 s @ 13.77 s @ 13.77 d, Time Sp rf.Area= 1,	9 hrs, Volu 7 hrs, Volu 7 hrs, Volu 7 hrs, Volu an= 1.00-42 407 sf Sto	me= me= me= 2.00 hrs, dt= prage= 708 d	0.292 af 0.291 af, Atten= 0.291 af = 0.10 hrs cf	96%, Lag= 106.8 min	
>	Inflow Outflow Primary Routing I Starting I	= = = by Stor-Ir Elev= 385	4.85 cfs 0.19 cfs 0.19 cfs nd methoo 9.78' Sui	s @ 11.99 s @ 13.77 s @ 13.77 d, Time Sp rf.Area= 1,	9 hrs, Volu 7 hrs, Volu 7 hrs, Volu 7 hrs, Volu an= 1.00-42 407 sf Sto	me= me= me= 2.00 hrs, dt= prage= 708 d	0.292 af 0.291 af, Atten= 0.291 af = 0.10 hrs cf		
~	Inflow Outflow Primary Routing I Starting I Peak Ele Plug-Flov	= = by Stor-Ir Elev= 389 ev= 392.4 w detentio	4.85 cfs 0.19 cfs 0.19 cfs nd method 9.78' Sur 5' @ 13.7 on time= \$	s @ 11.99 s @ 13.77 s @ 13.77 d, Time Sp rf.Area= 1, 77 hrs Su 521.2 min	9 hrs, Volu 7 hrs, Volu 7 hrs, Volu an= 1.00-42 407 sf Sto f.Area= 3,9 calculated f	me= me= 2.00 hrs, dt= prage= 708 d 900 sf Stora for 0.275 af	0.292 af 0.291 af, Atten= 0.291 af = 0.10 hrs cf	96%, Lag= 106.8 min	
~	Inflow Outflow Primary Routing I Starting I Peak Ele Plug-Flov	= = by Stor-Ir Elev= 389 ev= 392.4 w detentio	4.85 cfs 0.19 cfs 0.19 cfs nd method 9.78' Sur 5' @ 13.7 on time= \$	s @ 11.99 s @ 13.77 s @ 13.77 d, Time Sp rf.Area= 1, 77 hrs Su 521.2 min	9 hrs, Volu 7 hrs, Volu 7 hrs, Volu an= 1.00-42 407 sf Sto f.Area= 3,9 calculated f (1,223.2 -	me= me= 2.00 hrs, dt= prage= 708 d 900 sf Stora for 0.275 af 779.6)	0.292 af 0.291 af, Atten= 0.291 af = 0.10 hrs cf age= 8,003 cf (7,2 (94% of inflow)	96%, Lag= 106.8 min	
7	Inflow Outflow Primary Routing I Starting I Peak Ele Plug-Flov Center-o	= = Elev= 389 v= 392.4 w detention f-Mass do	4.85 cfs 0.19 cfs 0.19 cfs nd method 9.78' Sun 5' @ 13.7 on time= 5 et. time= 6	s @ 11.99 s @ 13.77 s @ 13.77 d, Time Sp rf.Area= 1, 7 hrs Su 521.2 min 443.6 min	9 hrs, Volu 7 hrs, Volu 7 hrs, Volu an= 1.00-42 407 sf Sto f.Area= 3,9 calculated f (1,223.2 -	me= me= 2.00 hrs, dt= orage= 708 o 900 sf Stora for 0.275 af 779.6) 2 <i>0</i> MIN	0.292 af 0.291 af, Atten= 0.291 af = 0.10 hrs cf age= 8,003 cf (7,3 (94% of inflow) DEGIZED	96%, Lag= 106.8 min	
7	Inflow Outflow Primary Routing I Starting I Peak Ele Plug-Flov Center-o Volume	= = Elev= 389 ev= 392.4 w detention f-Mass detention	4.85 cfs 0.19 cfs 0.19 cfs nd method 9.78' Sun 5' @ 13.7 on time= 4 et. time= 4	s @ 11.99 s @ 13.77 s @ 13.77 d, Time Sp rf.Area= 1, 77 hrs Su 521.2 min 443.6 min <u>vail.Storage</u>	9 hrs, Volu 7 hrs, Volu 7 hrs, Volu 7 hrs, Volu an= 1.00-4 407 sf Sto f.Area= 3,9 calculated f (1,223.2 - 2 7 2 s Storage	me= me= 2.00 hrs, dt= orage= 708 (200 sf Stora for 0.275 af 779.6) この M i い Description	0.292 af 0.291 af, Atten= 0.291 af = 0.10 hrs of age= 8,003 cf (7,2 (94% of inflow) DESIZED	96%, Lag= 106.8 min 295 cf above start)	
7	Inflow Outflow Primary Routing I Starting I Peak Ele Plug-Flov Center-o	= = Elev= 389 v= 392.4 w detention f-Mass do	4.85 cfs 0.19 cfs 0.19 cfs nd method 9.78' Sun 5' @ 13.7 on time= 4 et. time= 4	s @ 11.99 s @ 13.77 s @ 13.77 d, Time Sp rf.Area= 1, 77 hrs Su 521.2 min 443.6 min <u>vail.Storage</u>	9 hrs, Volu 7 hrs, Volu 7 hrs, Volu 7 hrs, Volu an= 1.00-4 407 sf Sto f.Area= 3,9 calculated f (1,223.2 - 2 7 2 s Storage	me= me= 2.00 hrs, dt= orage= 708 (200 sf Stora for 0.275 af 779.6) この M i い Description	0.292 af 0.291 af, Atten= 0.291 af = 0.10 hrs cf age= 8,003 cf (7,3 (94% of inflow) DEGIZED	96%, Lag= 106.8 min 295 cf above start)	
7	Inflow Outflow Primary Routing I Starting I Peak Ele Plug-Flov Center-o Volume	= = by Stor-Ir Elev= 389 ev= 392.4 w detention f-Mass do Inve 389.0	4.85 cfs 0.19 cfs 0.19 cfs nd method 9.78' Sun 5' @ 13.7 on time= 4 et. time= 4	s @ 11.99 s @ 13.77 s @ 13.77 d, Time Sp rf.Area= 1, 7 hrs Su 521.2 min 443.6 min <u>443.6 min</u> 14,864 c	9 hrs, Volu 7 hrs, Volu 7 hrs, Volu an= 1.00-42 407 sf Sto ff.Area= 3,9 calculated f (1,223.2 - calculated f (1,233.2 -	me= me= 2.00 hrs, dt= orage= 708 (200 sf Stora for 0.275 af 779.6) この M i い Description	0.292 af 0.291 af, Atten= 0.291 af = 0.10 hrs of age= 8,003 cf (7,2 (94% of inflow) DESIZED	96%, Lag= 106.8 min 295 cf above start)	
7	Inflow Outflow Primary Routing I Starting I Peak Ele Plug-Flov Center-o Volume #1	= = by Stor-Ir Elev= 389 ev= 392.4 w detention f-Mass do <u>Invo</u> 389.0	4.85 cfs 0.19 cfs 0.19 cfs nd method 9.78' Sun 5'@ 13.7 on time= 4 et. time= 4 et. time= 4 on'	s @ 11.99 s @ 13.77 s @ 13.77 d, Time Sp rf.Area= 1, 77 hrs Su 521.2 min 443.6 min <u>vail.Storage</u> 14,864 c a Perin	9 hrs, Volu 7 hrs, Volu 7 hrs, Volu an= 1.00-42 407 sf Store 407 sf Store calculated f (1,223.2 - 2 2 5 Storage f Custom n.	me= me= 2.00 hrs, dt= orage= 708 d 000 sf Stor for 0.275 af 779.6) 2 0 M M Description of Stage Data	0.292 af 0.291 af, Atten= 0.291 af = 0.10 hrs cf age= 8,003 cf (7,2 (94% of inflow) DEGIZED a (Irregular) Listed	96%, Lag= 106.8 min 295 cf above start) below (Recalc)	
7	Inflow Outflow Primary Routing I Starting I Peak Ele Plug-Flov Center-o Volume #1 Elevatio (feet 389.0	= = by Stor-Ir Elev= 389 ev= 392.4 w detention f-Mass do <u>Invo</u> 389.0 n t) 0	4.85 cfs 0.19 cfs 0.19 cfs od method 9.78' Sun 5' @ 13.7 on time= 4 et. time= 4 ert Av 00' Surf.Area (sq-ft 48)	s @ 11.99 s @ 13.77 s @ 13.77 d, Time Sp rf.Area= 1, 77 hrs Su 521.2 min 443.6 min <u>241.Storage</u> 14,864 c a Perin) (fee 7 96.	9 hrs, Volu 7 hrs, Volu 7 hrs, Volu 7 hrs, Volu 7 hrs, Volu 8 an= 1.00-42 407 sf Store 407 sf Store 6 calculated f (1,223.2 - 7 f 2 Storage f Custom n. I t) (cu	me= me= 2.00 hrs, dt= orage= 708 o 200 sf Stora for 0.275 af 779.6) 2 0 M M Description o Stage Data nc.Store	0.292 af 0.291 af, Atten= 0.291 af = 0.10 hrs of age= 8,003 cf (7,2 (94% of inflow) DESIZED a (Irregular) Listed Cum.Store	96%, Lag= 106.8 min 295 cf above start) below (Recalc) Wet.Area	
7	Inflow Outflow Primary Routing I Starting I Peak Ele Plug-Flov Center-o Volume #1 Elevatio (fee 389.0 390.0	= = by Stor-Ir Elev= 389 ev= 392.4 w detention f-Mass do Invo 389.0 n t) 0 0	4.85 cfs 0.19 cfs 0.19 cfs nd method 9.78' Sun 5'@ 13.7 on time= 4 et. time= 4 et. time= 4 et. surf.Area (sq-ft 487 1,753	s @ 11.99 s @ 13.77 s @ 13.77 d, Time Sp rf.Area= 1, 7 hrs Su 521.2 min 443.6 min <u>/ail.Storage</u> 14,864 c a Perin <u>) (fee</u> 7 96. 3 164.	9 hrs, Volui 7 hrs, Volui 7 hrs, Volui 7 hrs, Volui an= 1.00-42 407 sf Stor 407 sf Stor f. Area= 3,8 calculated fl (1,223.2 - 7 e Storage f Custom n. t) (cu 0 0 0	me= me= 2.00 hrs, dt= orage= 708 d 000 sf Stora for 0.275 af 779.6) 2 0 M I M Description of Stage Data nc.Store bic-feet) 0 1,055	0.292 af 0.291 af, Atten= 0.291 af = 0.10 hrs of age= 8,003 cf (7,2 (94% of inflow) DESTED a (Irregular) Listed Cum.Store (cubic-feet) 0 1,055	96%, Lag= 106.8 min 295 cf above start) below (Recalc) Wet.Area (sq-ft) 487 1,900	
7	Inflow Outflow Primary Routing I Starting I Peak Ele Plug-Flov Center-o Volume #1 Elevatio (feet 389.0	= = by Stor-Ir Elev= 389 ev= 392.4 w detention f-Mass do <u>Inve</u> 389.0 n t) 0 0	4.85 cfs 0.19 cfs 0.19 cfs od method 9.78' Sun 5' @ 13.7 on time= 4 et. time= 4 ert Av 00' Surf.Area (sq-ft 48)	s @ 11.99 s @ 13.77 s @ 13.77 d, Time Sp ff.Area= 1, 7 hrs Su 521.2 min 443.6 min <u>vail.Storage</u> 14,864 c a Perin) (fee 7 96. 3 164. 7 293.	9 hrs, Volu 7 hrs, Volu 7 hrs, Volu an= 1.00-42 407 sf Store 407 sf Store calculated from the store f Custom n. t) (cu 0 0 0 0 0 0	me= me= 2.00 hrs, dt= orage= 708 o 200 sf Stora for 0.275 af 779.6) 2 O MIN Description o Stage Data nc.Store ubic-feet) 0	0.292 af 0.291 af, Atten= 0.291 af = 0.10 hrs of age= 8,003 cf (7,2) (94% of inflow) DESTRED a (Irregular) Listed Cum.Store (cubic-feet) 0	96%, Lag= 106.8 min 295 cf above start) below (Recalc) Wet.Area (sq-ft) 487	

Device	Routing	Invert	Outlet Devices				
#1	Primary	389.78'	1.5" Vert. Orifice1 C= 0.600				
#2	Primary	389.87'	1.5" Vert. Orifice2 C= 0.600				
#3	Primary	392.95'	25.0" Horiz. Top opening C= 0.600				
			Limited to weir flow at low heads				
Primary OutFlow Max=0.19 cfs @ 13.77 hrs HW=392.45' (Free Discharge)							

-2=Orifice2 (Orifice Controls 0.09 cfs @ 7.64 fps) -3=Top opening (Controls 0.00 cfs)

Summary for Subcatchment 1S: Bldg 1-2

[49] Hint: Tc<2dt may require smaller dt

Runoff = 7.80 cfs @ 11.99 hrs, Volume= 0.472 af, Depth= 2.35"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 1.00-42.00 hrs, dt= 0.10 hrs Type II 24-hr 10 year Rainfall=3.10"

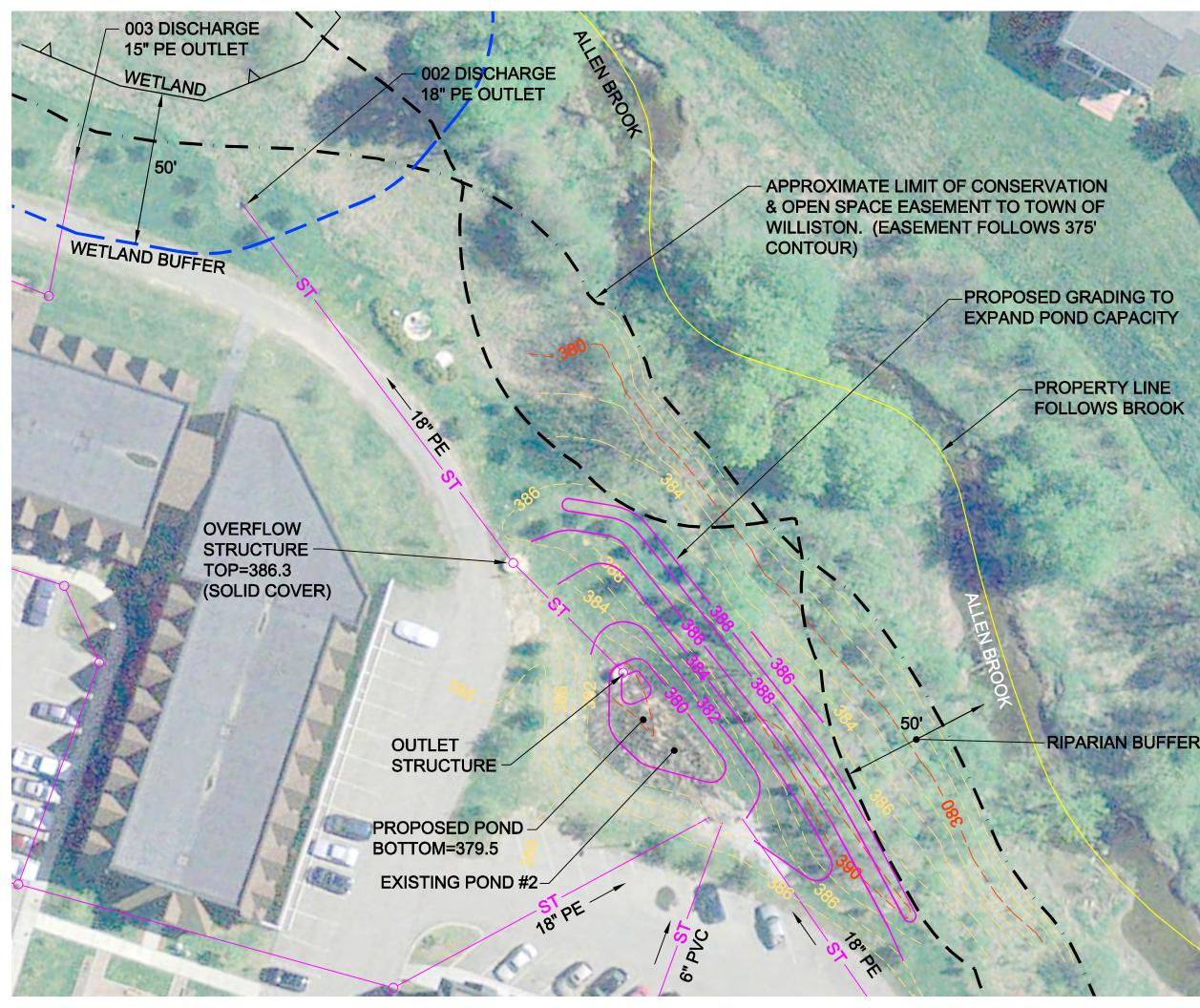
	Area	(ac)	CN	Desc	cription		
*	0.	340	98	Rt 2,	Talcott, p	ath	
*	0.	560	98		ement & sid		
*	0.	700	98	rooft			
	0.	810	80	>75%	Grass co	over, Good	, HSG D
	2.	410	92	Weid	phted Aver	ade	
	0.	810	80		1% Pervio		
	1.	600	98	66.3	9% Imperv	vious Area	
					•		
	Tc	Length	n S	lope	Velocity	Capacity	Description
	(min)	(feet) ((ft/ft)	(ft/sec)	(cfs)	· · · · · · · · · · · · · · · · · · ·
	5.7	70) 0.1	1500	0.21		Sheet Flow, Overland lawn
							Grass: Dense n= 0.240 P2= 2.30"
	2.9	300	0.0	0130	1.71		Shallow Concentrated Flow, Swale
							Grassed Waterway Kv= 15.0 fps

8.6 370 Total

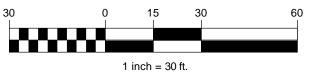
Summary for Pond 1P: Exist Pond

Inflow Area =	2.410 ac, 66.39% Impervious,	Inflow Depth = 2.35" for 10 year event
Inflow =	7.80 cfs @ 11.99 hrs, Volume	= 0.472 af
Outflow =	2.13 cfs @ 12.23 hrs, Volume	= 0.469 af, Atten= 73%, Lag= 14.4 min
Primary =	2.13 cfs @ 12.23 hrs, Volume=	= 0.469 af

Routing by Stor-Ind method, Time Span= 1.00-42.00 hrs, dt= 0.10 hrs Starting Elev= 389.78' Surf.Area= 1,407 sf Storage= 708 cf Peak Elev= 393.15' @ 12.24 hrs Surf.Area= 4,378 sf Storage= 10,905 cf (10,197 cf above start)


Plug-Flow detention time= 487.9 min calculated for 0.452 af (96% of inflow) Center-of-Mass det. time= 436.0 min (1,208.3 - 772.3)

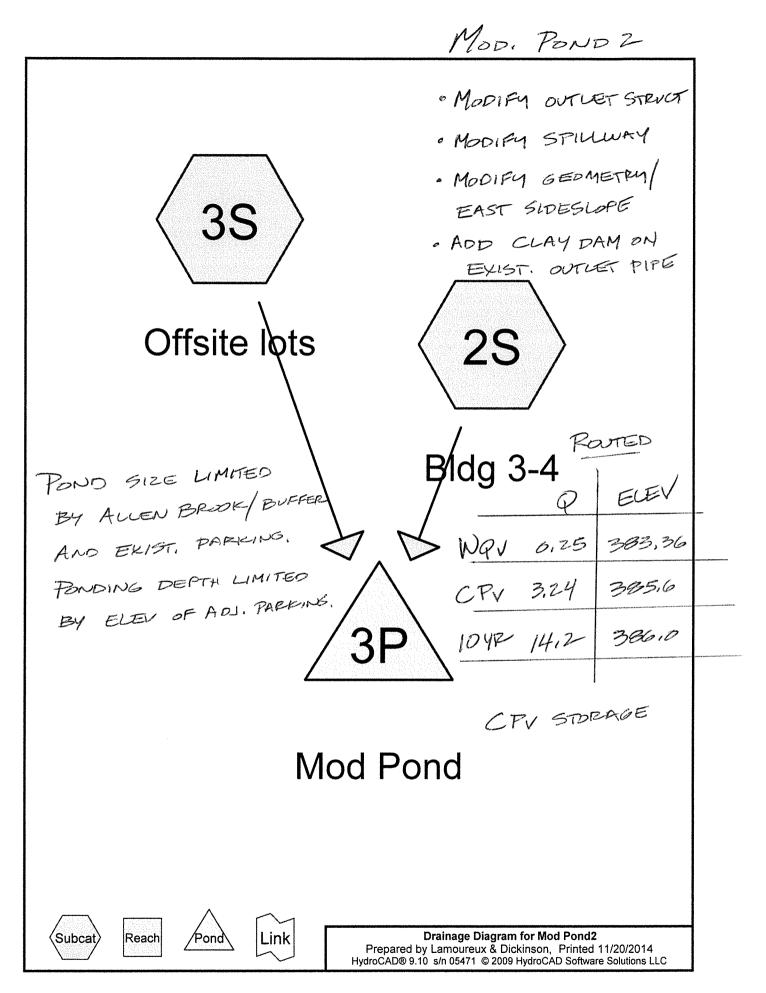
Volume Invert Avail.Sto		il.Storage	Storage Descriptio	n		
#1	389.00'		14,864 cf	Custom Stage Dat	ta (Irregular) Liste	ed below (Recalc)
Elevation (feet)	Surf. (s	Area sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>
389.00		487	96.0	0	0	487
390.00	1	,753	164.0	1,055	1,055	1,900
392.00	3	8,607	293.0	5,250	6,304	6,613
394.00	4	1,990	337.0	8,560	14,864	8,908


Device	Routing	Invert	Outlet Devices						
#1	Primary	389.78'	1.5" Vert. Orifice1 C= 0.600						
#2	Primary	389.87'	1.5" Vert. Orifice2 C= 0.600						
#3	Primary	392.95'	25.0" Horiz. Top opening C= 0.600						
			Limited to weir flow at low heads						
	Primary OutFlow Max=1.90 cfs @ 12.23 hrs HW=393.13' (Free Discharge)								
1=Or	T-1=Orifice1 (Orifice Controls 0.11 cfs @ 8.74 fps)								
<u></u> —2=Or	ifice2 (Orifi	ce Controls 0.	11 cfs @ 8.61 fps)						
-3=To	n onening	(Meir Controls	$= 1.68 \text{ cfs} \oplus 1.40 \text{ frs}$						

-3=Top opening (Weir Controls 1.68 cfs @ 1.40 fps)

Attachment 6 Pond 1 Conceptual Design & HydroCad data

TAFT FARM LOTS A & B **DISCHARGE 002** POND #2 CONCEPTUAL DESIGN 30 of 529 NOVEMBER 2014


MODIFY OUTLET STRUCTURE -AS NOTED ABOVE **REGRADE BOTTOM OF POND** TO PROVIDE 18" DEEP PERMANENT POOL. ADD STONE FILL AS **REQUIRED TO STABILIZE INLETS** CONSTRUCT NEW STONE SPILLWAY

NEW OUTLET STRUCTURE GRATE = 385.00 2.5" ORIFICE = 381.00 SPILLWAY = 385.40

POND 2 RECOMMENDATIONS

EXIST POND OUTLET STRUCTURE TOP = 386.0025" Ø TOP OPENING = 386.00 (4) 3.5" ORIFICE = 383.90 (2) 4.5" ORIFICE = 381.50 3.75" ORIFICE = 381.46 4.5" ORIFICE = 381.44

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
2.200	80	>75% Grass cover, Good, HSG D (2S, 3S)
3.150	98	Pavement & walks (2S, 3S)
0.680	98	Rooftop (2S, 3S)
0.190	98	Talcott & path (2S)

Summary for Subcatchment 2S: Bldg 3-4

Runoff = 3.08 cfs @ 12.03 hrs, Volume= 0.194 af, Depth= 0.49"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Type II 24-hr WQv Rainfall=0.90"

	Area	(ac)	CN	Desc	ription		
*	0.	190	98	Talco	ott & path		
*	0.	530	98	Roof	top		
*	2.	510	98	Pave	ment & wa	alks	
	1.	490	80	>75%	6 Grass co	over, Good,	HSG D
	4.	720	92	Weig	hted Aver	age	
		490	80	31.57	7% Pervio	us Area	
	3.	230	98	68.43	3% Imperv	vious Area	
			_				
	Tc	Lengtl		lope	Velocity	Capacity	Description
******	<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.7	90	0.0	0500	0.14		Sheet Flow, Overland lawn
							Grass: Dense n= 0.240 P2= 2.30"
	1.0	51() 0.0	0200	8.41	14.86	Pipe Channel, Pipe (avg)
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
				·····			n= 0.013 Corrugated PE, smooth interior
	11.7	600) To	otal			

Summary for Subcatchment 3S: Offsite lots

Runoff = 0.81 cfs @ 12.01 hrs, Volume= 0.049 af, Depth= 0.39"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Type II 24-hr WQv Rainfall=0.90"

	Area	(ac)	CN	Desc	cription		
*	0.	150	98	Roof	top		
*	0.	640	98	Pave	ement & w	alks	
	0.	710	80	>75%	6 Grass c	over, Good,	HSG D
	1.	500	89	Weid	ted Aver	age	
		710	80		3% Pervio	Ŷ	
	0.790 98 52.67% Impervious Area						
					ł.		
	Tc	Length	n S	lope	Velocity	Capacity	Description
	(min)	(feet)) ((ft/ft)	(ft/sec)	(cfs)	·
	8.5	100) 0.1	1100	0.20		Sheet Flow, Overland lawn
							Grass: Dense n= 0.240 P2= 2.30"
	1.2	730	0.0	0300	10.30	18.19	Pipe Channel, Pipe (avg)
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
							n= 0.013 Corrugated PE, smooth interior
	9.7	830) To	tal			

ñ

Summary for Pond 3P: Mod Pond

	Inflow A Inflow Outflow Primary Seconda	= 3 = 0 = 0	5.220 ac, 64. .86 cfs @ 1 .25 cfs @ 1 .25 cfs @ 1 .00 cfs @	2.03 hrs, 3.07 hrs, 3.07 hrs,	Volume= Volume= Volume=	epth = 0.47" for 0.243 af 0.259 af, Atten= 9 0.259 af 0.000 af	WQv event 94%, Lag= 62.8 min			
7	Routing by Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Starting Elev= 381.44' Surf.Area= 1,720 sf Storage= 2,200 cf Peak Elev= 383.36' @ 13.07 hrs Surf.Area= 3,367 sf Storage= 6,959 cf (4,760 cf above start)									
	Center-o	of-Mass det.	time= 200.8 r	nin (1,00		86% of inflow)				
	Volume	Invert	Avail.Sto	rage Sto	orage Description					
	#1	379.50'	19,94	19 cf Cu	istom Stage Data	(Irregular) Listed I	oelow (Recalc)			
	Elevatio			erim.	Inc.Store	Cum.Store	Wet.Area			
	(fee			(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)			
	379.5			103.0	0	0	549			
	380.0			122.0	356	356	894			
	382.0		•	191.0	2,916	3,272	2,641			
	384.0			299.0	6,072	9,344	6,880			
	386.0	00	6,651	430.0	10,605	19,949	14,515			
	Device	Routing	Invert	Outlet D						
	#1	Primary	381.00'		t. Orifice C= 0.6					
	#2	Secondary	385.40'		g x 4.0' breadth S					
							0 1.40 1.60 1.80 2.0)0		
					00 3.50 4.00 4.5		0.07.0.05.0.00.0.00			
							2.67 2.65 2.66 2.66			
	#3	Primary	385.00'			9 2.88 3.07 3.32 6.00 columns X	6 rows C= 0 600			
	#3	Fillindiy	365.00		to weir flow at low		010WS C= 0.000			
	Primary OutFlow Max=0.25 cfs @ 13.07 hrs HW=383.36' (Free Discharge) -1=Orifice (Orifice Controls 0.25 cfs @ 7.23 fps) -3=Grate (Controls 0.00 cfs)									

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=381.44' (Free Discharge)

Summary for Subcatchment 2S: Bldg 3-4

Runoff = 9.05 cfs @ 12.03 hrs, Volume= 0.582 af, Depth= 1.48"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Type II 24-hr 1 year Rainfall=2.10"

	Area	(ac)	CN	Desc	ription		
*	0.	190	98	Talco	ott & path		
*	0.	530	98	Roof	top		
*	2.	510	98	Pave	ment & w	alks	
	1.	490	80	>75%	6 Grass co	over, Good,	HSG D
	4.	720	92	Weig	hted Aver	age	
	1.	490	80		% Pervio		
	3.	230	98	68.43	3% Imperv	vious Area	
					·		
	Tc	Lengt	h (Slope	Velocity	Capacity	Description
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	·
	10.7	9	0 0.	.0500	0.14		Sheet Flow, Overland lawn
							Grass: Dense n= 0.240 P2= 2.30"
	1.0	51	0 0.	.0200	8.41	14.86	Pipe Channel, Pipe (avg)
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
							n= 0.013 Corrugated PE, smooth interior
	117	60	0 T	otal			

11.7 600 lotal

Summary for Subcatchment 3S: Offsite lots

Runoff = 2.67 cfs @ 12.01 hrs, Volume= 0.160 af, Depth= 1.28"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Type II 24-hr 1 year Rainfall=2.10"

	Area	(ac)	CN	Desc	cription		
*	0.	150	98	Roof	top		
*	0.	640	98	Pave	ment & w	alks	
	0.	710	80	>75%	6 Grass co	over, Good,	HSG D
	1.	500	89	Weig	hted Aver	age	
	0.710 80 47.33% Pervious Area						
	0.790 98 52.67% Impervious Area						
•							
	Tc	Length	ı S	lope	Velocity	Capacity	Description
	(min)	(feet)) ((ft/ft)	(ft/sec)	(cfs)	
	8.5	100	0.1	1100	0.20		Sheet Flow, Overland lawn
							Grass: Dense n= 0.240 P2= 2.30"
	1.2	730	0.0	0300	10.30	18.19	Pipe Channel, Pipe (avg)
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
							n= 0.013 Corrugated PE, smooth interior
	9.7	830) To	tal			

Summary for Pond 3P: Mod Pond

7	Inflow A Inflow Outflow Primary Seconda	= 11 = 3 = 3	.66 cfs @ 1 .24 cfs @ 1 .24 cfs @ 1	2.03 h 2.25 h 2.25 h	mpervious, Inflow E nrs, Volume= nrs, Volume= nrs, Volume= nrs, Volume=	Depth = 1.43" for 0.742 af 0.758 af, Atten= 7 0.758 af 0.000 af	1 year event ′2%, Lag= 13.4 min
A	Starting	Elev= 381.44	4' Surf.Area	ı= 1,72	= 1.00-80.00 hrs, dt 20 sf Storage= 2,20 Area= 5,757 sf Sto		3,804 cf above start)
	Plug-Flow detention time= 412.9 r Center-of-Mass det. time= 330.5 r L					es detenti	oul
	#1					ta (Irregular) Listed	below (Recalc)
	Elevatio (fee			Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
	379.5			103.0	0	0	549
	380.0	00	887	122.0	356	356	894
	382.0			191.0	2,916	3,272	2,641
	384.0			299.0	6,072	9,344	6,880
	386.0	00	6,651	430.0	10,605	19,949	14,515
	Device	Routing	Invert	Outl	et Devices		
	#1	Primary	381.00'	2.5"	Vert. Orifice C= C	0.600	
	#2	Secondary	385.40'		long x 4.0' breadth		
		-					0 1.40 1.60 1.80 2.00
					3.00 3.50 4.00 4.		
							2.67 2.65 2.66 2.66
	#3	Drimon	205 001		2.72 2.73 2.76 2.		
	#3	Primary	385.00'		ted to weir flow at lo	X 6.00 columns X w heads	010W5 C- 0.000
				han 1 1 1 1 1			
					25 hrs HW=385.36'	(Free Discharge)	
	<u></u>	ifice (Orifice	Controls 0.3		@ 9.94 fps)		

-3=Grate (Orifice Controls 2.90 cfs @ 2.90 fps)

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=381.44' (Free Discharge)

Summary for Subcatchment 2S: Bldg 3-4

Runoff = 14.47 cfs @ 12.03 hrs, Volume= 0.937 af, Depth= 2.38"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Type II 24-hr 10 year Rainfall=3.10"

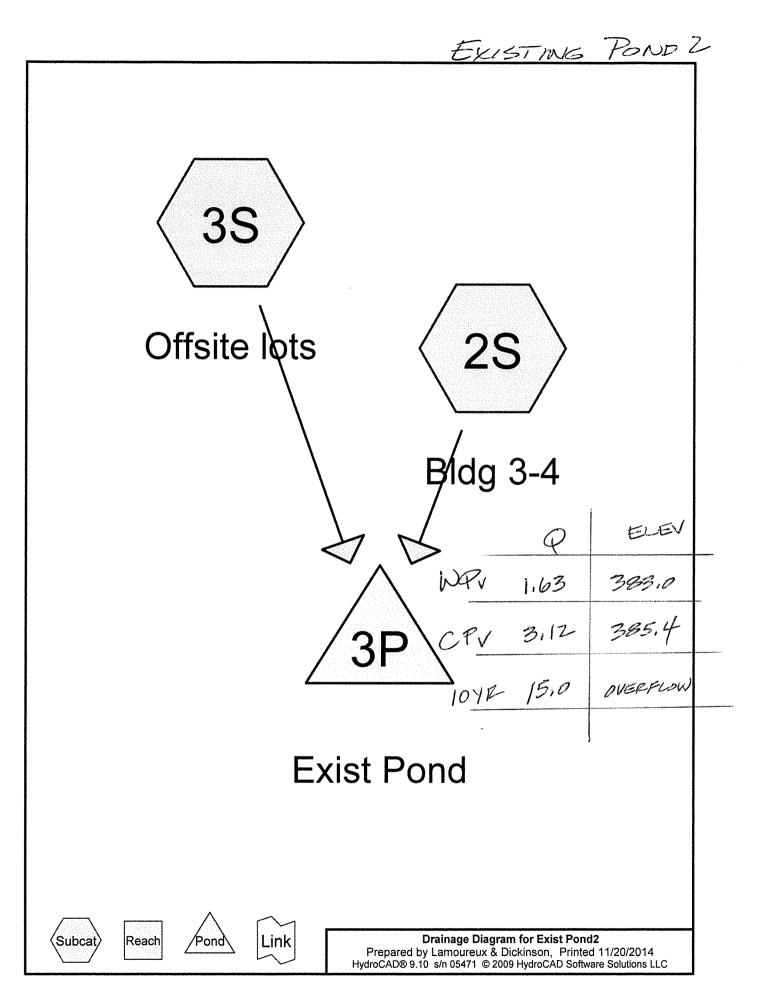
	Area	(ac)	CN	Desc	ription		
*	0.	190	98	Talco	ott & path		
*	0.	530	98	Roof	top		
*	2.	510	98	Pave	ment & w	alks	
	1.	490	80	>75%	6 Grass co	over, Good,	, HSG D
	4.	720	92	Weig	hted Aver	age	
	1.	490	80	31.5	7% Pervio	us Area	
	3.	230	98	68.43	3% Imper	ious Area	
	Tc	Lengt		Slope	Velocity	Capacity	Description
	<u>(min)</u>	(fee	<u>t)</u>	(ft/ft)	(ft/sec)	(cfs)	
	10.7	9	0 0	.0500	0.14		Sheet Flow, Overland lawn
							Grass: Dense n= 0.240 P2= 2.30"
	1.0	51	0 0	.0200	8.41	14.86	Pipe Channel, Pipe (avg)
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
							n= 0.013 Corrugated PE, smooth interior
	117	60	0 T	otal			

11.7 600 Total

Summary for Subcatchment 3S: Offsite lots

Runoff = 4.47 cfs @ 12.01 hrs, Volume= 0.267 af, Depth= 2.14"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Type II 24-hr 10 year Rainfall=3.10"


	Area	(ac)	CN D	escript	ion		
*	0.	150	98 R	ooftop			
*	0.	640	98 P	aveme	nt & w	alks	
	0.	710	80 >	75% G	rass c	over, Good,	HSG D
	1.	500	89 V	Veighte	d Ave	ade	
		710				us Area	
	0.790 98 52.67% Impervious Area						
	Tc	Length	Sloj	be Ve	locity	Capacity	Description
	(min)	(feet			/sec)	(cfs)	
	8.5	100	0.110	00	0.20		Sheet Flow, Overland lawn
							Grass: Dense n= 0.240 P2= 2.30"
	1.2	730	0.03	. oc	10.30	18.19	Pipe Channel, Pipe (avg)
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
							n= 0.013 Corrugated PE, smooth interior
	9.7	830	Total				

Summary for Pond 3P: Mod Pond

7	Inflow A Inflow Outflow Primary Seconda	= 18 = 14 = 5	.80 cfs @ 1	2.02 hrs 2.11 hrs 2.11 hrs	s, Volume= s, Volume=	1.204 af	or 10 year event = 25%, Lag= 5.3 min	
7	Starting Peak Ele	Elev= 381.44 ev= 385.97' (4' Surf.Area ⊉ 12.11 hrs	= 1,720 Surf.Aı		cf ge= 19,726 cf	(17,526 cf above start)	
					ulated for 1.169 af (9 027.6 - 775.8)	97% of Inflow)		
				•	,			
	Volume				Storage Description		· · · · · · · · · · · · · · · · · · ·	
	#1	379.50'	19,94	49 cf	Custom Stage Data	(Irregular) Liste	d below (Recalc)	
	Elevatio	on Su	rf.Area P	erim.	Inc.Store	Cum.Store	Wet.Area	
	(fee			(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
	379.5			103.0	0	0	549	
	380.0	00	887	122.0	356	356	894	
	382.0	00	2,117	191.0	2,916	3,272	2,641	
	384.0	00	4,060	299.0	6,072	9,344	6,880	
	386.0	00	6,651	430.0	10,605	19,949	14,515	
	Device	Routing	Invert	Outlet	Devices			
	#1	Primary	381.00'		ert. Orifice C= 0.6	00		
	#2	Secondary	385.40'		ng x 4.0' breadth S			
		· · · · · · · · · · · · · · · · · · ·					.20 1.40 1.60 1.80 2.00	
					3.00 3.50 4.00 4.50			
				Coef.	(English) 2.38 2.54	2.69 2.68 2.6	7 2.67 2.65 2.66 2.66	
					2.72 2.73 2.76 2.79			
	#3	Primary	385.00'		2.0" Horiz. Grate X d to weir flow at low		X 6 rows C= 0.600	
				LITTILE	u to well how at low	licdus		
	Primary	OutFlow M	ax=5.06 cfs (@ 12.11	hrs HW=385.95' (Free Discharge)	
		ifice (Orifice					/	

1=Orifice (Orifice Controls 0.36 cfs @ 10.60 fps) **3=Grate** (Orifice Controls 4.70 cfs @ 4.70 fps)

Secondary OutFlow Max=8.76 cfs @ 12.11 hrs HW=385.95' (Free Discharge) -2=Spillway (Weir Controls 8.76 cfs @ 1.98 fps)

Area Listing (all nodes)

 Area (acres)	CN	Description (subcatchment-numbers)
2.200	80	>75% Grass cover, Good, HSG D (2S, 3S)
3.150	98	Pavement & walks (2S, 3S)
0.680	98	Rooftop (2S, 3S)
0.190	98	Talcott & path (2S)

Summary for Subcatchment 2S: Bldg 3-4

[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.93 cfs @ 12.02 hrs, Volume= 0.194 af, Depth= 0.49"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 1.00-42.00 hrs, dt= 0.10 hrs Type II 24-hr WQv Rainfall=0.90"

	Area	(ac) (CN D	escript	tion								
*	0.	190	98 T	alcott &	& path								
*	0.	530	98 R	ooftop	poftop								
*	2.	510	98 P	aveme	nt & w	alks							
	1.	490	80 >	75% G	rass co	over, Good	HSG D						
	4.	720	92 V	/eighte	d Aver	age							
	1.	490	80 3	1.57%	Pervio	us Area							
3.230 98 68.43% Impervious Area					Imperv	ious Area							
	Тс	Length	Slop		locity	Capacity	Description						
	(min)	(feet)			t/sec)	(cfs)							
	10.7	90	0.050	00	0.14		Sheet Flow, Overland lawn						
							Grass: Dense n= 0.240 P2= 2.30"						
	1.0	510	0.020	00	8.41	14.86	Pipe Channel, Pipe (avg)						
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'						
							n= 0.013 Corrugated PE, smooth interior						
	11.7	600	Total										

Summary for Subcatchment 3S: Offsite lots

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.78 cfs @ 12.00 hrs, Volume= 0.049 af, Depth= 0.39"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 1.00-42.00 hrs, dt= 0.10 hrs Type II 24-hr WQv Rainfall=0.90"

	Area (ac)	CN	Description
*	0.150	98	Rooftop
*	0.640	98	Pavement & walks
	0.710	80	>75% Grass cover, Good, HSG D
	1.500	89	Weighted Average
	0.710	80	47.33% Pervious Area
	0.790	98	52.67% Impervious Area

Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs) 0.1100 0.20 Sheet Flow, Overland lawn Grass: Dense n= 0.240 P2= 2.30" 0.0300 10.30 Pipe Channel, Pipe (avg) 18.19 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' n= 0.013 Corrugated PE, smooth interior Total Summary for Pond 3P: Exist Pond 6.220 ac, 64.63% Impervious, Inflow Depth = 0.47" for WQv event 3.70 cfs @ 12.02 hrs, Volume= 0.243 af 1.63 cfs @ 12.21 hrs, Volume= 0.243 af, Atten= 56%, Lag= 11.4 min 1.63 cfs @ 12.21 hrs, Volume= 0.243 af Routing by Stor-Ind method, Time Span= 1.00-42.00 hrs, dt= 0.10 hrs Starting Elev= 381.44' Surf.Area= 1,029 sf Storage= 824 cf Peak Elev= 382.96' @ 12.21 hrs Surf.Area= 2,048 sf Storage= 3,264 cf (2,440 cf above start) 824CF PERMANENT Plug-Flow detention time= 87.5 min calculated for 0.223 af (92% of inflow) Center-of-Mass det. time= 23.6 min (824.5 - 801.0) LO MINIMAL DETENTION POOL Invert Avail.Storage Storage Description 379.40' 12,925 cf Custom Stage Data (Irregular) Listed below (Recalc) Surf.Area Perim. Inc.Store Cum.Store Wet.Area (sq-ft) (feet) (cubic-feet) (cubic-feet) (sq-ft) 20 16.0 0 0 20 168 59.0 49 49 278 1.562 175.0 1.495 1.544 2,450 2.655 243.0 4.169 5,713 4,751 4.649 435.0 7,212 12,925 15,132 Invert Outlet Devices 383.90' 3.5" Vert. Orifice 3.5"x4 C= 0.600 381.50' 4.5" Vert. Orifice 4.5"x2 C= 0.600 381.46' 3.7" Vert. Orifice 3.75" C= 0.600 381.44' 4.5" Vert. Orifice 4.5" C= 0.600 385.80' 4.0' long x 6.0' breadth Grass overflow Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.37 2.51 2.70 2.68 2.68 2.67 2.65 2.65 2.65 2.65 2.66 2.66 2.67 2.69 2.72 2.76 2.83 Primary OutFlow Max=1.62 cfs @ 12.21 hrs HW=382.95' (Free Discharge)

-1=Orifice 3.5"x4 (Controls 0.00 cfs)

-2=Orifice 4.5"x2 (Orifice Controls 0.60 cfs @ 5.41 fps)

-3=Orifice 3.75" (Orifice Controls 0.42 cfs @ 5.56 fps)

-4=Orifice 4.5" (Orifice Controls 0.61 cfs @ 5.53 fps)

-5=Grass overflow (Controls 0.00 cfs)

Exist Pond2

(min)

8.5

1.2

9.7

Inflow Area =

Inflow

>>> Primary

Outflow

Volume

#1

Elevation

(feet)

379.40

380.00

382.00

384.00

386.00

Routing

Primary

Primary

Primarv

Primary

Primarv

Device

#1

#2

#3

#4

#5

Tc Length

(feet)

100

730

830

=

=

Prepared by Lamoureux & Dickinson HydroCAD® 9.10 s/n 05471 © 2009 HydroCAD Software Solutions LLC

Type II 24-hr WQv Rainfall=0.90" Printed 11/20/2014

Page 9

Summary for Subcatchment 2S: Bldg 3-4

[49] Hint: Tc<2dt may require smaller dt

Runoff = 8.62 cfs @ 12.02 hrs, Volume= 0.582 af, Depth= 1.48"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 1.00-42.00 hrs, dt= 0.10 hrs Type II 24-hr 1 year Rainfall=2.10"

	Area	(ac)	CN	Desc	ription		
*	0.	190	98	Talco	ott & path		
*	0.	530	98	Roof	top		
*	2.	510	98	Pave	ment & w	alks	
-	1.	490	80	>75%	6 Grass co	over, Good,	HSG D
	4.	720	92	Weig	hted Aver	age	
	1.	490	80	31.5	7% Pervio	us Area	
3.230 98 68.43% Impervious Area					3% Imperv	vious Area	
			_				
	Tc	Length		Slope	Velocity	Capacity	Description
	(min)	(feet) ((ft/ft)	(ft/sec)	(cfs)	
	10.7	90	0.0	0500	0.14		Sheet Flow, Overland lawn
							Grass: Dense n= 0.240 P2= 2.30"
	1.0	510) 0.0	0200	8.41	14.86	Pipe Channel, Pipe (avg)
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
							n= 0.013 Corrugated PE, smooth interior
	11.7	600) To	otal			

Summary for Subcatchment 3S: Offsite lots

[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.58 cfs @ 12.00 hrs, Volume= 0.160 af, Depth= 1.28"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 1.00-42.00 hrs, dt= 0.10 hrs Type II 24-hr 1 year Rainfall=2.10"

	Area (ac)	CN	Description
*	0.150	98	Rooftop
*	0.640	98	Pavement & walks
	0.710	80	>75% Grass cover, Good, HSG D
	1.500	89	Weighted Average
	0.710	80	47.33% Pervious Area
	0.790	98	52.67% Impervious Area

Slope V (ft/ft) 0.1100 0.20 Sheet Flow, Overland lawn Grass: Dense n= 0.240 P2= 2.30" 0.0300 10.30 18.19 Pipe Channel, Pipe (avg) 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' n= 0.013 Corrugated PE, smooth interior Total Summary for Pond 3P: Exist Pond 6.220 ac, 64.63% Impervious, Inflow Depth = 1.43" for 1 year event 11.17 cfs @ 12.02 hrs, Volume= 0.742 af 3.12 cfs @ 12.27 hrs, Volume= 0.742 af, Atten= 72%, Lag= 15.2 min 3.12 cfs @ 12.27 hrs. Volume= 0.742 af Routing by Stor-Ind method, Time Span= 1.00-42.00 hrs, dt= 0.10 hrs Starting Elev= 381.44' Surf.Area= 1,029 sf Storage= 824 cf Peak Elev= 385.38' @ 12.27 hrs Surf.Area= 3,973 sf Storage= 10,262 cf (9,438 cf above start) Plug-Flow detention time= 57.8 min calculated for 0.721 af (97% of inflow) Center-of-Mass det. time= 29.4 min (812.5 - 783.0) > MINIMAL DEFENTION Avail.Storage Storage Description 12.925 cf Custom Stage Data (Irregular) Listed below (Recalc) Surf.Area Perim. Inc.Store Cum.Store Wet.Area (sq-ft) (feet) (cubic-feet) (cubic-feet) (sq-ft) 20 16.0 0 0 20 168 59.0 49 49 278 1,562 175.0 1.495 1.544 2.450 2.655 243.0 4,169 5,713 4,751 4,649 435.0 7,212 12.925 15,132 Invert Outlet Devices 383.90' 3.5" Vert. Orifice 3.5"x4 C= 0.600 381.50' 4.5" Vert. Orifice 4.5"x2 C= 0.600 3.7" Vert. Orifice 3.75" C= 0.600 381.46' 381.44' **4.5" Vert. Orifice 4.5"** C= 0.600 385.80' 4.0' long x 6.0' breadth Grass overflow Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.37 2.51 2.70 2.68 2.68 2.67 2.65 2.65 2.65

2.65 2.66 2.66 2.67 2.69 2.72 2.76 2.83

Primary OutFlow Max=3.12 cfs @ 12.27 hrs HW=385.37' (Free Discharge)

-1=Orifice 3.5"x4 (Orifice Controls 0.37 cfs @ 5.54 fps)

-2=Orifice 4.5"x2 (Orifice Controls 1.02 cfs @ 9.24 fps)

-3=Orifice 3.75" (Orifice Controls 0.70 cfs @ 9.33 fps)

-4=Orifice 4.5" (Orifice Controls 1.03 cfs @ 9.31 fps)

-5=Grass overflow (Controls 0.00 cfs)

Exist Pond2

Lenath

(feet)

100

730

830

-

=

=

Invert

379.40'

Tc

(min)

8.5

1.2

9.7

Inflow Area =

Inflow

-----Primarv

Outflow

Volume

#1

Elevation

(feet)

379.40

380.00

382.00

384.00

386.00

Routina

Primary

Primary

Primary

Primary

Primary

Device

#1

#2

#3

#4

#5

Prepared by HydroCAD® 9

CDICKIIISUII		Ffilleu	11/20/2014
© 2009 HydroCAD S	oftware Solutions LLC		Page 4
Velocity Capacity (ff/sec) (cfs)	Description		

,	La	moureux	&	Dicki	nson
i	.10	s/n 05471	C	2009	HydroC

Printed 11/20/2014

Type II 24-hr 1 year Rainfall=2.10"

Summary for Subcatchment 2S: Bldg 3-4

[49] Hint: Tc<2dt may require smaller dt

Runoff = 13.80 cfs @ 12.02 hrs, Volume= 0.937 af, Depth= 2.38"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 1.00-42.00 hrs, dt= 0.10 hrs Type II 24-hr 10 year Rainfall=3.10"

	Area	(ac)	CN	Desc	cription		
*	0.	190	98	Talco	ott & path		
*	0.	530	98	Roof	top		
*	2.	510	98	Pave	ement & w	alks	
	1.	490	80	>75%	6 Grass c	over, Good	, HSG D
	4.	720	92	Weig	phted Aver	age	
	1.	490	80	31.5	7% Pervio	us Area	
	3.	230	98	68.4	3% Imper	vious Area	
	Tc	Length	I SI	lope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.7	90	0.0	500	0.14		Sheet Flow, Overland lawn
							Grass: Dense n= 0.240 P2= 2.30"
	1.0	510	0.0	200	8.41	14.86	Pipe Channel, Pipe (avg)
							18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
_							n= 0.013 Corrugated PE, smooth interior
	11.7	600	Tot	tal			

Summary for Subcatchment 3S: Offsite lots

[49] Hint: Tc<2dt may require smaller dt

Runoff = 4.31 cfs @ 12.00 hrs, Volume= 0.267 af, Depth= 2.14"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 1.00-42.00 hrs, dt= 0.10 hrs Type II 24-hr 10 year Rainfall=3.10"

	Area (ac)	CN	Description
*	0.150	98	Rooftop
*	0.640	98	Pavement & walks
	0.710	80	>75% Grass cover, Good, HSG D
	1.500	89	Weighted Average
	0.710	80	47.33% Pervious Area
	0.790	98	52.67% Impervious Area

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
8.5	100	0.1100	0.20		Sheet Flow, Overland lawn
					Grass: Dense n= 0.240 P2= 2.30"
1.2	730	0.0300	10.30	18.19	Pipe Channel, Pipe (avg)
					18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
					n= 0.013 Corrugated PE, smooth interior
9.7	830	Total			

Summary for Pond 3P: Exist Pond

[93] Warning: Storage range exceeded by 0.87'

6.220 ac, 64.63% Impervious, Inflow Depth = 2.32" for 10 year event Inflow Area = Inflow = 18.07 cfs @ 12.02 hrs. Volume= 1.204 af 15.00 cfs @ 12.11 hrs, Volume= Outflow 1.204 af, Atten= 17%, Lag= 5.6 min = Primary 15.00 cfs @ 12.11 hrs, Volume= = 1.204 af

Routing by Stor-Ind method, Time Span= 1.00-42.00 hrs, dt= 0.10 hrs Starting Elev= 381.44' Surf.Area= 1,029 sf Storage= 824 cf rPeak Elev= 386.87' @ 12.12 hrs Surf.Area= 4,649 sf Storage= 12,925 cf (12,101 cf above start) EIK-ELY OVERFLOW & PONDING IN PARKING LOTE

Plug-Flow detention time= 47.2 min calculated for 1.182 af (98% of inflow) Center-of-Mass det. time= 28.2 min (804.0 - 775.8)

Volume	Inv	ert Avail	.Storage	Storage Description		PARKING LOT	0
#1	379.4	40' 1	12,925 cf	Custom Stage Data	a (Irregular) Listed	below (Recalc)	
Elevatio (fee	t)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
379.4 380.0 382.0	0 0	20 168 1,562	16.0 59.0 175.0	0 49 1,495	0 49 1,544	20 278 2,450	
384.0 386.0		2,655 4,649	243.0 435.0	4,169 7,212	5,713 12,925	4,751 15,132	
Device #1 #2 #3 #4 #5	Routing Primary Primary Primary Primary Primary	Inv 383. 381. 381. 381. 385.	90' 3.5'' 50' 4.5'' 46' 3.7'' 44' 4.5'' 80' 4.0' Head 2.50 Coef	3.00 3.50 4.00 4.5	C= 0.600 C= 0.600 C= 0.600 Grass overflow .60 0.80 1.00 1.2 50 5.00 5.50 1 2.70 2.68 2.68	20 1.40 1.60 1.80 2.00 2.67 2.65 2.65 2.65	

Exist Pond2	
Prepared by Lamoureux & D	ickinson

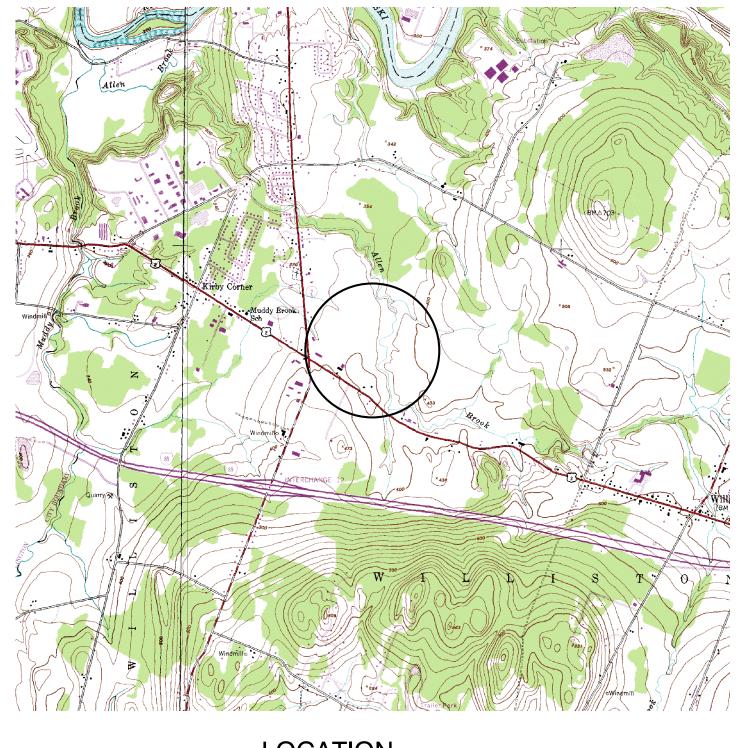
Primary OutFlow Max=14.16 cfs @ 12.11 hrs HW=386.78' (Free Discharge)

-1=Orifice 3.5"x4 (Orifice Controls 0.53 cfs @ 7.96 fps)

-2=Orifice 4.5"x2 (Orifice Controls 1.20 cfs @ 10.87 fps) -3=Orifice 3.75" (Orifice Controls 0.82 cfs @ 10.94 fps)

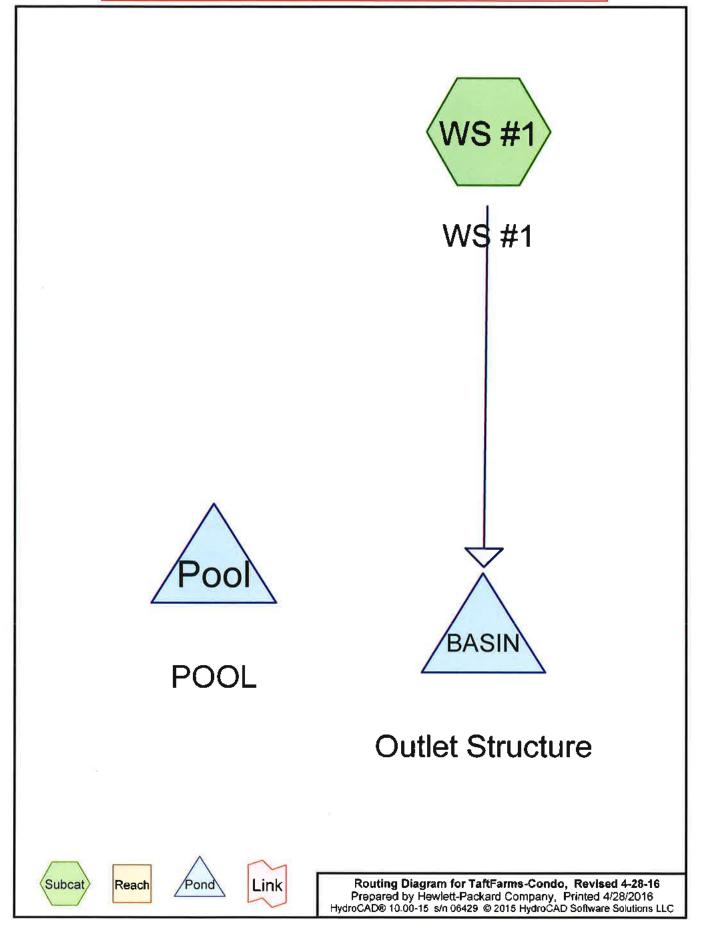
-4=Orifice 4.5" (Orifice Controls 1.21 cfs @ 10.93 fps)

-5=Grass overflow (Weir Controls 10.40 cfs @ 2.65 fps)



TAFTS FARM COMMERCIAL: PERMIT 1-0513

Back to Index



LOCATION

NTS

		50' 300'	60	00'	90	0'
		Bar Scale	1" = 150'			
ate revised		Description			Checked	Date
esign .	WHN		Overall	Site Plan		
rawn .	SLM					
hecked .	WHN		TAFT	FARMS		
cale .	1" = 150'				_	
ate	4/26/16		Condo	miniums	6	
roject _	14257.5	Route 2			Wi	lliston, Vermont
		SING Consulting	- /	-	File nome 14257.5 condo overall site plan ov-1	

Project Notes

Taft Farms - Condominiums Hydrologic Calculations

TaftFarms-Condo

Area Listing (all nodes)

(im)	Area	CN	Description
	(acres)		(subcatchment-numbers)
	2.886	80	>75% Grass cover, Good, HSG D (WS #1)
	0.891	98	Impervious - Roofs (WS #1)
	0.880	98	Impervious-Pavement (WS #1)
	4.657	87	TOTAL AREA

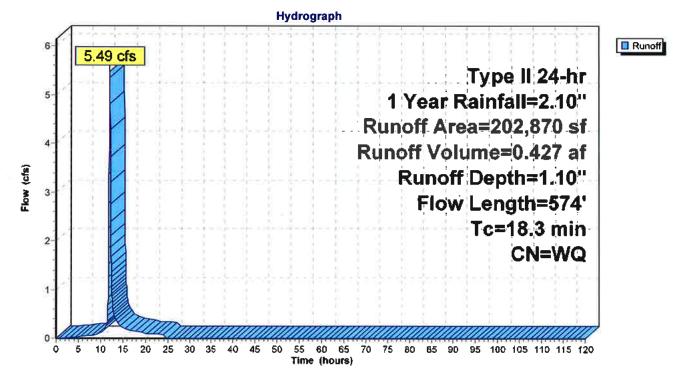
TaftFarms-Condo	Type II 24-hr 1 Year Rainfall=2.10"
Prepared by Hewlett-Packard Company	Revised 4-28-16 Printed 4/28/2016
HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solution	ns LLC Page 4

Time span=0.00-120.00 hrs, dt=0.03 hrs, 4001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentWS #1: WS #1	Runoff Area=202,870 sf 38.03% Impervious Runoff Depth=1.10" Flow Length=574' Tc=18.3 min CN=WQ Runoff=5.49 cfs 0.427 af
Pond BASIN: Outlet Structure	Peak Elev=375.98' Storage=11,518 cf Inflow=5.49 cfs 0.427 af Outflow=0.20 cfs 0.427 af
Pond Pool: POOL	Peak Elev=0.00' Storage=0 cf

Total Runoff Area = 4.657 ac Runoff Volume = 0.427 af Average Runoff Depth = 1.10" 61.97% Pervious = 2.886 ac 38.03% Impervious = 1.771 ac

Type II 24-hr 1 Year Rainfall=2.10" Revised 4-28-16 Printed 4/28/2016 LLC Page 5


Summary for Subcatchment WS #1: WS #1

Runoff = 5.49 cfs @ 12.11 hrs, Volume= 0.427 af, Depth= 1.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.03 hrs Type II 24-hr 1 Year Rainfall=2.10"

-	A	rea (sf)	CN D	escription			
*		38,340	98 Ir	npervious-	Pavement		
*	* 38,820 9		98 Ir	Impervious - Roofs			
_	125,710 8		80 >	>75% Grass cover, Good, HSG D			
	202,870		V	Weighted Average			
	125,710		6	61.97% Pervious Area			
	77,160		38.03% Impervious Area				
	Тс	Length	Slope	Velocity	Capacity	Description	
-	<u>(min)</u>	(feet)	<u>(ft/ft)</u>	(ft/sec)	(cfs)		
	15.7	94	0.0210	0.10		Sheet Flow, Sheet Grass	
						Grass: Dense n= 0.240 P2= 2.30"	
	2.6	480	0.0410	3.04		Shallow Concentrated Flow, SC Lawn	
-						Grassed Waterway Kv= 15.0 fps	
	18.3	574	Total				

Subcatchment WS #1: WS #1

Type II 24-hr 1 Year Rainfall=2.10" Revised 4-28-16 Printed 4/28/2016

 TaftFarms-Condo
 Typ

 Prepared by Hewlett-Packard Company
 Re

 HydroCAD® 10.00-15
 s/n 06429
 © 2015 HydroCAD Software Solutions LLC

Page 6

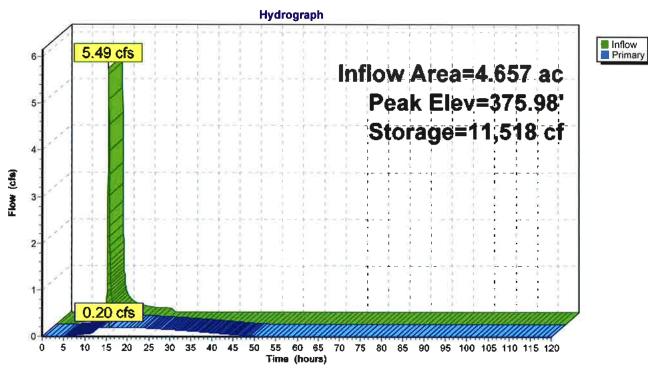
Summary for Pond BASIN: Outlet Structure

Inflow Area =	4.657 ac, 38.03% Impervious, Inflow D	epth = 1.10" for 1 Year event
Inflow =	5.49 cfs @ 12.11 hrs, Volume=	0.427 af
Outflow =	0.20 cfs @ 15.66 hrs, Volume=	0.427 af, Atten= 96%, Lag= 212.9 min
Primary =	0.20 cfs @ 15.66 hrs, Volume=	0.427 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.03 hrs Peak Elev= 375.98' @ 15.66 hrs Surf.Area= 5,151 sf Storage= 11,518 cf

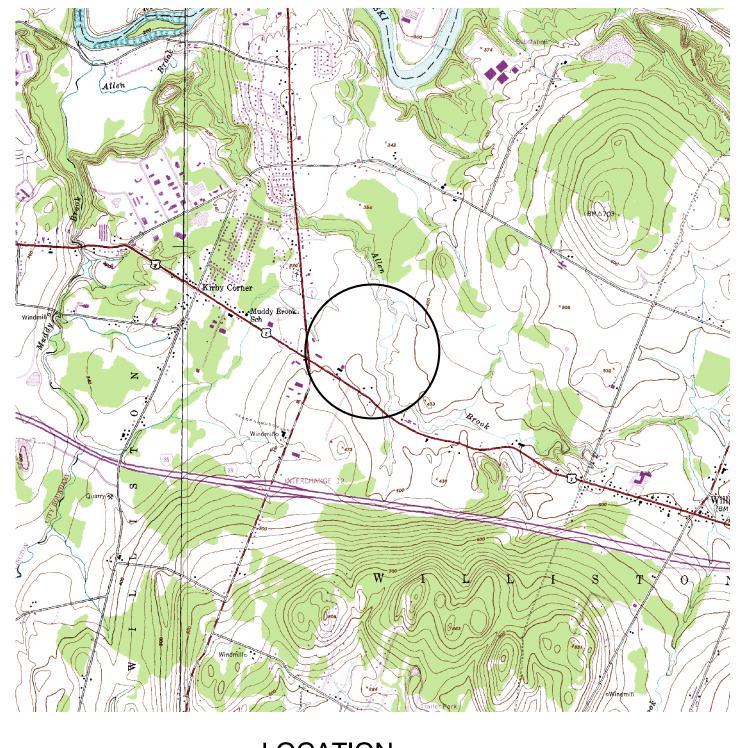
Plug-Flow detention time= 712.1 min calculated for 0.427 af (100% of inflow) Center-of-Mass det. time= 712.9 min (1,522.5 - 809.6) 11.9 hours

Volume	Inv	ert Avail.Sto	rage Storage	Description	
#1	373.	00' 23,9	60 cf Custom	n Stage Data (Pr	rismatic)Listed below (Recalc)
Elevati	DN	Surf.Area	Inc.Store	Cum.Store	
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)	
373.0	00	2,710	0	0	
374.0	00	3,420	3,065	3,065	
375.0	00	4,240	3,830	6,895	
376.0	-	5,165	4,703	11,598	
377.0		6,160	5,663	17,260	
378.0	00	7,240	6,700	23,960	2.1" Low Flow Orifice
Dovico	Pouting	Invert	Outlet Device	0	2.1 LOW Flow Office
Device	Routing		-		
#1	Primary	373.00'	1/2/1-22/2 1/742/L	ifice/Grate C=	
#2	Primary				ce/Grate C= 0.600
#3	Primary	376.75'			ad-Crested Rectangular Weir
			· · ·		0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.	50 4.00 4.50 5	.00 5.50
			Coef. (Englisi	n) 2.43 2.54 2.1	70 2.69 2.68 2.68 2.66 2.64 2.64
				65 2.66 2.66 2	


Primary OutFlow Max=0.20 cfs @ 15.66 hrs HW=375.98' (Free Discharge)

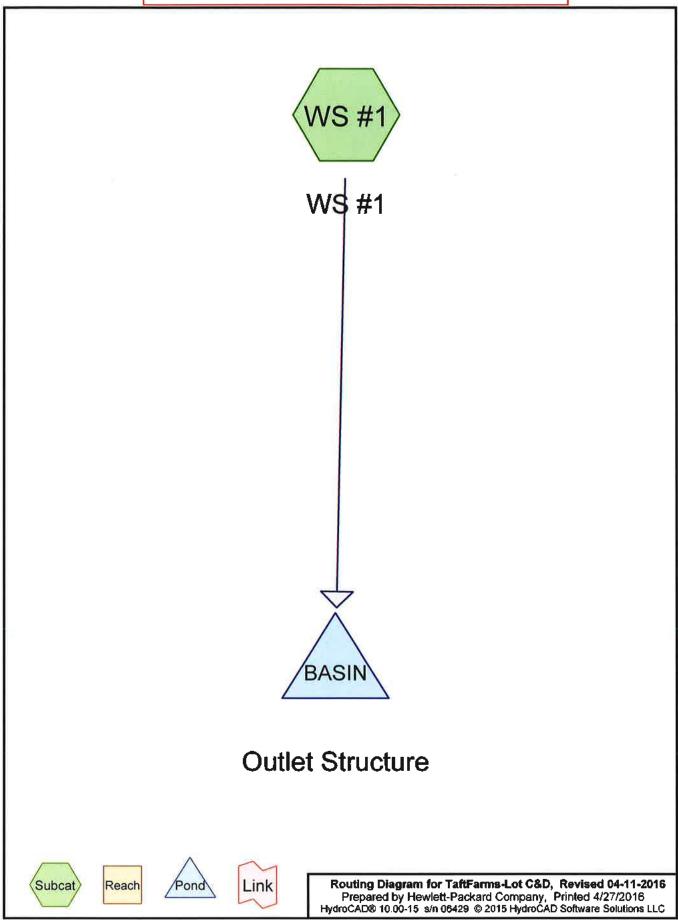
-1=Orifice/Grate (Orifice Controls 0.20 cfs @ 8.20 fps)

-2=Orifice/Grate (Controls 0.00 cfs)


-3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Page 7

Pond BASIN: Outlet Structure



LOCATION

NTS

		50' 300'	600'	90	70'
		Bar Scale	1" = 150'		
ate revised		Description		Checked	Date
esign	WHN		Overall Site P	lan	
rawn	SLM				
hecked	WHN		TAFT FARM	IS	
cale	1" = 150'				
ate	4/26/16		Lots "C" & "	D	
roject	14257.2	Route 2		W	illiston, Vermont
KREB		SING Consulting pet, Colchester, V	•		- OV-1

TaftFarms-Lot C&D

 Prepared by Hewlett-Packard Company
 Revised
 04-11-2016
 Printed
 4/27/2016

 HydroCAD® 10.00-15
 s/n
 06429
 © 2015
 HydroCAD
 Software Solutions LLC
 Page 2

Project Notes

Taft Farms Lot "C" and "D"

TaftFarms-Lot C&D

Prepared by Hewlett-Packard Company	Revised 04-11-2016 Pri	nted 4/27/2016
HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solution	ons LLC	Page 3

Area Listing (selected nodes)

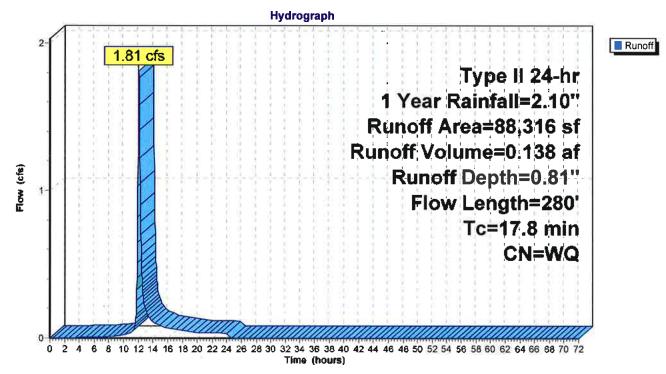
Area	CN	Description
(acres)		(subcatchment-numbers)
1.719	80	>75% Grass cover, Good, HSG D (WS #1)
0.129	98	Impervious - Roofs (WS #1)
0.180	98	Impervious-Pavement (WS #1)
2.027	83	TOTAL AREA

TaftFarms-Lot C&D	Type II 24-hr 1 Year Rainfall=2.10"
Prepared by Hewlett-Packard Company	Revised 04-11-2016 Printed 4/27/2016
HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solu	utions LLC Page 4

Time span=0.00-72.00 hrs, dt=0.03 hrs, 2401 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Stor-Ind+Trans method – Pond routing by Stor-Ind method

SubcatchmentWS #1: WS #1	Runoff Area=88,316 sf 15.24% Impervious Runoff Depth=0.81" Flow Length=280' Tc=17.8 min CN=WQ Runoff=1.81 cfs 0.138 af
Pond BASIN: Outlet Structure	Peak Elev=396.17' Storage=3,585 cf Inflow=1.81 cfs 0.138 af Outflow=0.06 cfs 0.138 af

Total Runoff Area = 2.027 ac Runoff Volume = 0.138 af Average Runoff Depth = 0.81" 84.76% Pervious = 1.719 ac 15.24% Impervious = 0.309 ac


Summary for Subcatchment WS #1: WS #1

Runoff = 1.81 cfs @ 12.11 hrs, Volume= 0.138 af, Depth= 0.81	Runoff	= 1.81 cfs @	12.11 hrs, Volume=	0.138 af, Depth= 0.81"
--	--------	--------------	--------------------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.03 hrs Type II 24-hr 1 Year Rainfall=2.10"

	A	rea (sf)	CN I	Description					
*		7,840	98 I	mpervious-	Pavement				
*		5,616	98 I	mpervious	- Roofs				
		74,860	80 >	80 >75% Grass cover, Good, HSG D					
	88,316 Weighted Average								
	74,860 84.76% Pervious Area								
		13,456	6 15.24% Impervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description			
-	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	16.8	100	0.0200	0.10		Sheet Flow, Sheet Grass			
						Grass: Dense n= 0.240 P2= 2.30"			
	1.0	180	0.0330	2.92		Shallow Concentrated Flow, SC Lawn			
-						Unpaved Kv= 16.1 fps			
	17.8	280	Total						

Subcatchment WS #1: WS #1

Page 6

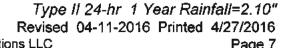
Summary for Pond BASIN: Outlet Structure

Inflow Area =	2.027 ac, 15.24% Impervious, Inflow Depth = 0.81" for 1 Year event
Inflow =	1.81 cfs @ 12.11 hrs, Volume= 0.138 af
Outflow =	0.06 cfs @ 16.73 hrs, Volume= 0.138 af, Atten= 97%, Lag= 277.3 min
Primary =	0.06 cfs @ 16.73 hrs, Volume= 0.138 af

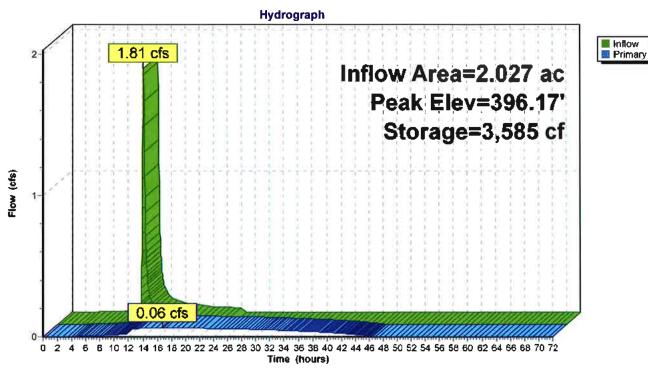
Routing by Stor Ind, method, Time Span= 0.00-72.00 hrs, dt= 0.03 hrs Peak Elev= 396.17' @ 16.73 hrs Surf.Area= 2,180 sf Storage= 3,585 cf

Plug-Elow detention time= 682.5 min calculated for 0.138 af (100% of inflow) Center-of-Mass det. time= 682.9 min (1,522.3 - 839.4) 11.4 hours

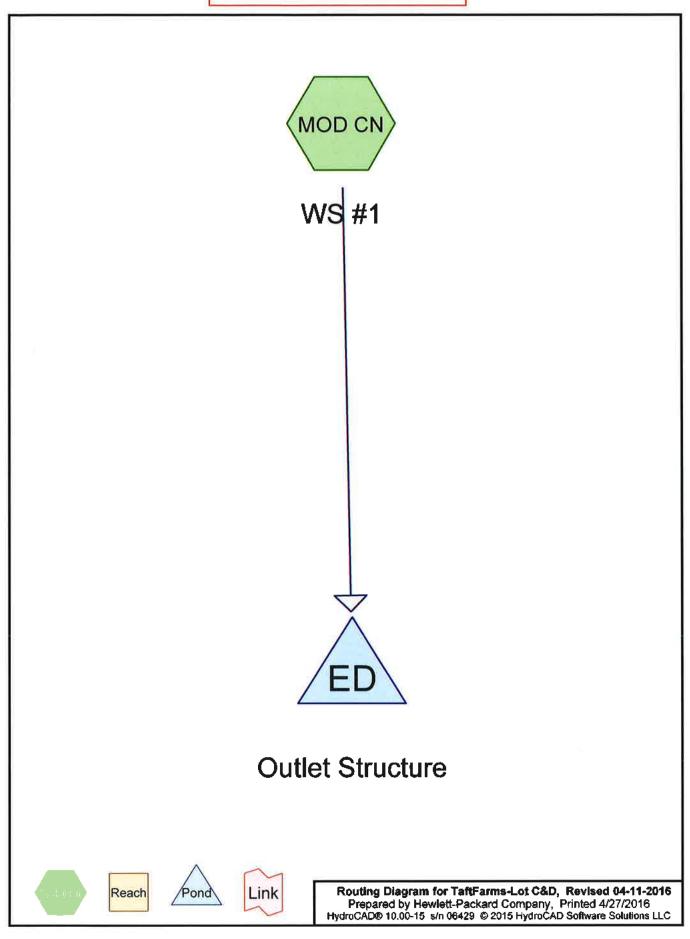
-						
	Volume	Inv	ert Avail.Sto	rage Storage De	escription	
	#1	392.	50' 4,52	27 cf Custom S	tage Data (Pr	ismatic)Listed below (Recalc)
	-		~		• •	
	Elevatio	n	Surf.Area	Inc.Store	Cum.Store	
	(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
	392.5	50	275	0	0	
	393.0)0	430	176	176	
	394.0)0	810	620	796	
	395.0)0	1,130	970	1,766	
	396.0)0	1,820	1,475	3,241	
	396.3	10	2,450	641	3,882	1.1" Low Flow Orifico
	396.5	50 ÷	4,000	645	4,527	1.1" Low Flow Orifice
	Device	Routing	Invert	Outlet Devices		
	#1	Primary	392.50	1.1" Vert. Orific	e/Grate C=	0.600
	#2	Primary	396.20'	24.0" Horiz. Ori	fice/Grate C	= 0.600
				Limited to weir fi	low at low hea	ds
	#3	Primary	396.30'	6.0' long x 20.0)' breadth Bro	ad-Crested Rectangular Weir
		•				0.80 1.00 1.20 1.40 1.60
						70 2.64 2.63 2.64 2.64 2.63
				()		


Primary OutFlow Max=0.06 cfs @ 16.73 hrs HW=396.17' (Free Discharge)

-1=Orifice/Grate (Orifice Controls 0.06 cfs @ 9.17 fps)


-2=Orifice/Grate (Controls 0.00 cfs)

-3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)


TaftFarms-Lot C&D Prepared by Hewlett-Packard Company Revise HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solutions LLC

Page 7

Pond BASIN: Outlet Structure

TaftFarms-Lot C&D

 Prepared by Hewlett-Packard Company
 Revised 04-11-2016
 Printed 4/27/2016

 HydroCAD® 10.00-15
 s/n 06429
 © 2015
 HydroCAD Software Solutions LLC
 Page 2

Project Notes

Taft Farms Lot "C" and "D"

TaftFarms-Lot C&D

Prepared by Hewlett-Packard Company	Revised	04-11-2016	Printed	4/27/2016
HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solution	ons LLC			Page 3

Area Listing (selected nodes)

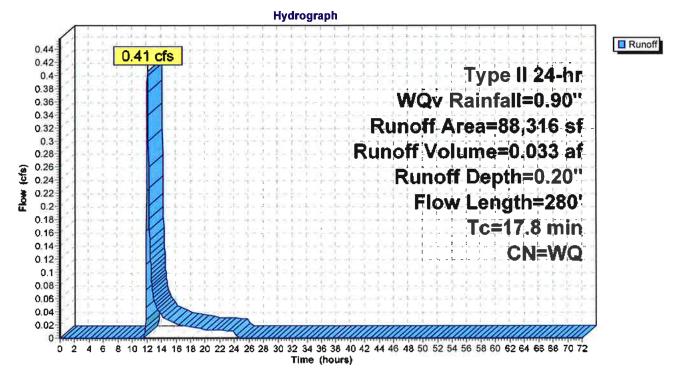
Area	a CN	Description
(acres)	(subcatchment-numbers)
1.71	9 88	>75% Grass cover, Good, HSG D (MOD CN)
0.12	9 88	Impervious - Roofs (MOD CN)
0.18	0 88	Impervious-Pavement (MOD CN)
2.02	7 88	TOTAL AREA

TaftFarms-Lot C&D	Type II 24-hr WQv Rainfall=0.90"
Prepared by Hewlett-Packard Company	Revised 04-11-2016 Printed 4/27/2016
HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Sol	utions LLC Page 4

Time span=0.00-72.00 hrs, dt=0.03 hrs, 2401 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment MOD CN: WS #1	Runoff Area=88,316 sf 0.00% Impervious Runoff Depth=0.20" Flow Length=280' Tc=17.8 min CN=WQ Runoff=0.41 cfs 0.033 af
Pond ED: Outlet Structure	Peak Elev=393.75' Storage=603 cf Inflow=0.41 cfs 0.033 af Outflow=0.03 cfs 0.033 af

Total Runoff Area = 2.027 acRunoff Volume = 0.033 afAverage Runoff Depth = 0.20"100.00% Pervious = 2.027 ac0.00% Impervious = 0.000 ac


Type II 24-hr WQv Rainfall=0.90" Revised 04-11-2016 Printed 4/27/2016 HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solutions LLC

Page 5

Summary for Subcatchment MOD CN: WS #1

Runoff	=	0.41 cfs	s@ 12.1;	3 <mark>hrs</mark> , Volu	ime= 0.033 af, Depth= 0.20"				
	Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.03 hrs Type II 24-hr WQv Rainfall=0.90" Modified Curve Number								
A	vrea (sf)	CN D	escription	1999 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 -					
*	7,840	88 🛵	npervious-	Pavement					
*	5,616	88 In	npervious	- Roofs					
*	74,860	88 >	75% Gras	s cover, Go	ood, HSG D				
	88,316 88,316		leighted A 00.00% P€	verage ervious Are	a				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•				
16.8	100	0.0200	0.10		Sheet Flow, Sheet Grass				
					Grass: Dense n= 0.240 P2= 2.30"				
1.0	180	0.0330	2.92		Shallow Concentrated Flow, SC Lawn				
					Unpaved Kv= 16.1 fps				
17.8	280	Total							

Subcatchment MOD CN: WS #1

TaftFarms-Lot C&D

Prepared by Hewlett-Packard Company Revise HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solutions LLC

 Type II 24-hr
 WQv Rainfall=0.90"

 Revised
 04-11-2016
 Printed
 4/27/2016

 ns LLC
 Page 6

Hydrograph for Subcatchment MOD CN: WS #1

Time	Precip.	Excess	Runoff	
(hours)	(inches)	(inches)	(cfs)	
0.00	0.00	0.00	0.00	
1.50	0.01	0.00	0.00	
3.00	0.03	0.00	0.00	
4.50	0.05	0.00	0.00	
6.00	0.07	0.00	0.00	
7.50	0.10	0.00	0.00	-Start time
9.00	0.13	0.00	0.00	Otart time
10.50	0.18	0.00	0.00	
12.00	0.60	0.06	0.22	
13.50	0.72	0.00	0.04	
15.00	0.77	0.13	0.03	
16.50	0.80	0.15	0.02	12 hr Extended Detention with 1.1" orifice
18.00	0.83	0.16	0.02	
19.50	0.85	0.17	0.01	
21.00	0.87	0.18	0.01	
22.50	0.88	0.10	0.01	
24.00	0.00	0.19	0.01	
25.50	0.90	0.20	0.00	The difference of the second s
27.00	0.90	0.20	0.00	End time
28.50	0.90	0.20	0.00	
30.00	0.90	0.20	0.00	
30.00	0.90	0.20	0.00	
33.00	0.90	0.20	0.00	
34.50	0.90	0.20	0.00	
34.50	0.90	0.20	0.00	
37.50	0.90	0.20	0.00	
39.00	0.90	0.20	0.00	
40.50	0.90	0.20	0.00	
40.00	0.90	0.20	0.00	
43.50	0.90	0.20	0.00	
45.00	0.90	0.20	0.00	
46.50	0.90	0.20	0.00	
	0.90		0.00	
48.00 49.50	0.90	0.20 0.20	0.00	
49.50	0.90	0.20	0.00	
51.00	0.90	0.20	0.00	
52.50 54.00	0.90	0.20	0.00	
54.00	0.90	0.20	0.00	
55.50	0.90	0.20	0.00	
58.50	0.90	0.20	0.00	
60.00	0.90	0.20	0.00	
61.50	0.90	0.20	0.00	
63.00	0.90	0.20	0.00	
64.50	0.90	0.20	0.00	
66.00	0.90	0.20	0.00	
67.50	0.90	0.20	0.00	
69.00	0.90	0.20	0.00	
70.50	0.90	0.20	0.00	
72.00	0.90	0.20	0.00	
12.00	0.90	0.20	0.00	

Page 7

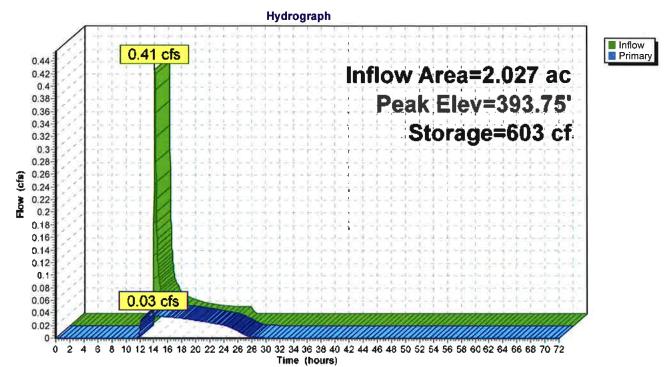
Summary for Pond ED: Outlet Structure

Inflow Area =	2.027 ac,	0.00% Impervious, Inflow De	epth = 0.20" for WQv event
Inflow =	0.41 cfs @	12.13 hrs, Volume=	0.033 af
Outflow =	0.03 cfs @	13.96 hrs, Volume=	0.033 af, Atten= 91%, Lag= 110.2 min
Primary =	0.03 cfs @	13.96 hrs, Volume=	0.033 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.03 hrs Peak Elev= 393.75' @ 13.96 hrs Surf.Area= 714 sf Storage= 603 cf

Plug-Flow detention time= 216.1 min calculated for 0.033 af (100% of inflow) Center-of-Mass det. time= 216.3 min (1,110.1 - 893.8)

Volume	Inv	ert Avail.Sto	orage Storage	Description	
#1	392.	50' 4,5	27 cf Custom	n Stage Data (Pr	rismatic)Listed below (Recalc)
Elevatio	on	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	4.
392.5	50	275	0	0	
393.0	00	430	176	176	
394.0	00	810	620	796	
395.0	00	1,130	970	1,766	
396.0	00	1,820	1,475	3,241	
396.3	30	2,450	641	3,882	
396.5	50	4,000	645	4,527	
Device	Routing	Invert	Outlet Device	e	
-				ifice/Grate C=	0.600
#1	Primary				
#2	Primary	396.20'		Orifice/Grate (
#3	Drimon	206 201		ir flow at low hea	
#-0	Primary	396.30'			oad-Crested Rectangular Weir
					0.80 1.00 1.20 1.40 1.60
			Coer. (Englisi	1) 2.00 2.70 2.	70 2.64 2.63 2.64 2.64 2.63

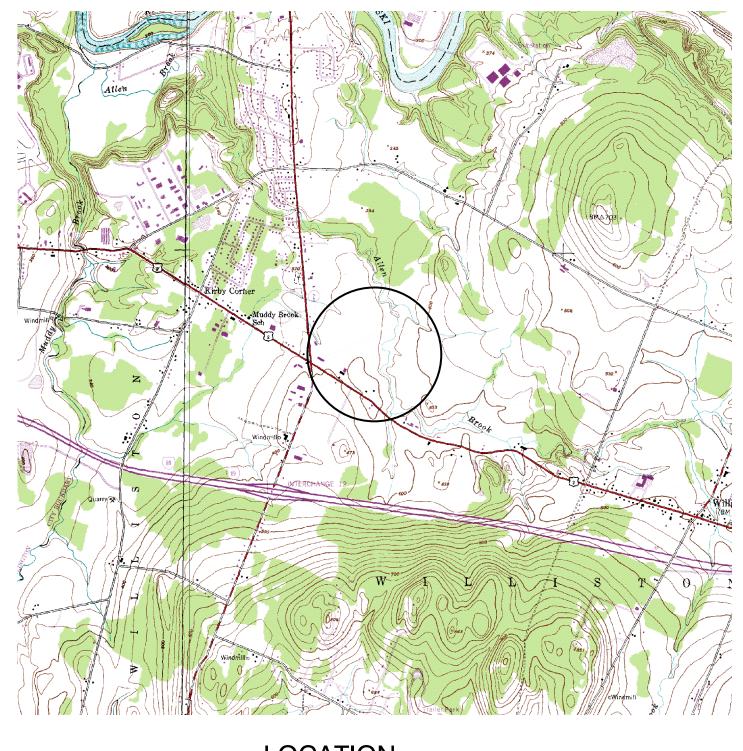

Primary OutFlow Max=0.03 cfs @ 13.96 hrs HW=393.75' (Free Discharge)

-1=Orifice/Grate (Orifice Controls 0.03 cfs @ 5.28 fps)

-2=Orifice/Grate (Controls 0.00 cfs)

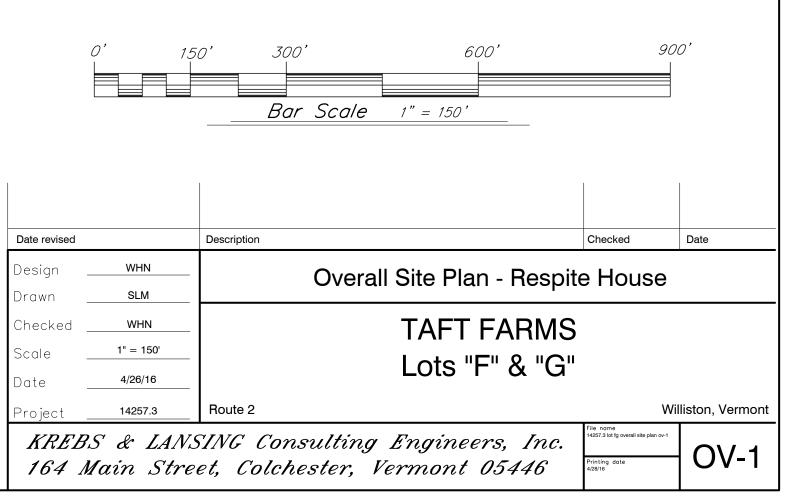
-3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

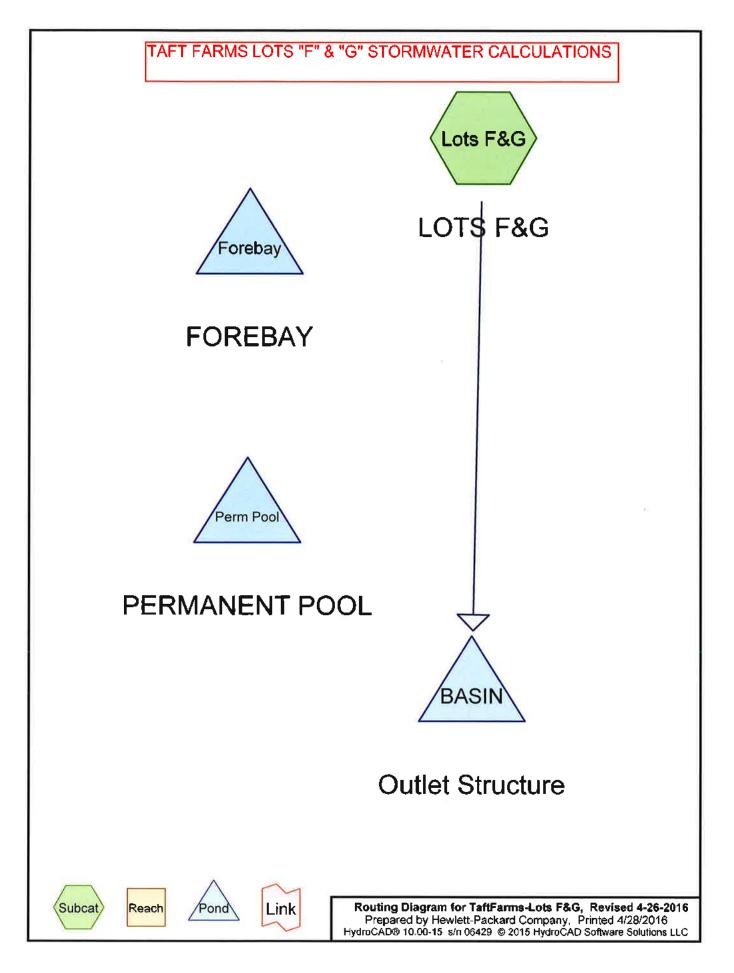
Pond ED: Outlet Structure


TaftFarms-Lot C&D

Prepared by Hewlett-Packard Company Revise HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solutions LLC

Hydrograph for Pond ED: Outlet Structure


Time	Inflow	Storage	Elevation	Primary
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)
0.00	0.00	0	392.50	0.00
1.50	0.00	0	392.50	0.00
3.00	0.00	0	392.50	0.00
4.50	0.00	0	392.50	0.00
6.00	0.00	0	392.50	0.00
7.50	0.00	0	392.50	0.00
9.00	0.00	0	392.50	0.00
10.50	0.00	0	392.50	0.00
12.00	0.22	58	392.69	0.01
13.50	0.04	597	393.74	0.03
15.00	0.03	585	393.72	0.03
1 6 .50	0.02	527	393.64	0.03
18.00	0.02	452	393.52	0.03
19.50	0.01	371	393.39	0.03
21.00	0.01	289	393.24	0.03
22.50	0.01	217	393.09	0.02
24.00	0.01	159	392.96	0.02
25.50	0.00	75	392.74	0.01
27.00	0.00	22	392.58	0.01
28.50	0.00	8	392.53	0.00
30.00	0.00		392.51	0.00
31.50	0.00	3 1	392.50	0.00
33.00	0.00	1	392.50	0.00
34.50	0.00	0	392.50	0.00
36.00	0.00	0	392.50	0.00
37.50	0.00	0	392.50	0.00
39.00	0.00	0	392.50	0.00
40.50	0.00	0	392.50	0.00
42.00	0.00	0	392.50	0.00
43.50	0.00	0	392.50	0.00
45.00	0.00	0	392.50	0.00
46.50	0.00	0	392.50	0.00
48.00	0.00	0	392.50	0.00
49.50	0.00	0	392.50	0.00
51.00	0.00	0	392.50	0.00
52.50	0.00	0	392.50	0.00
54.00	0.00	0	392.50	0.00
55.50	0.00	0	392.50	0.00
57.00	0.00	0	392.50	0.00
58.50	0.00	0	392.50	0.00
60.00	0.00	0	392.50	0.00
61.50	0.00	0	392.50	0.00
63.00	0.00	0	392.50	0.00
64.50	0.00	0	392.50	0.00
66.00	0.00	0	392.50	0.00
67.50	0.00	Ō	392.50	0.00
69.00	0.00	Ō	392.50	0.00
70.50	0.00	Ó	392.50	0.00
72.00	0.00	0	392.50	0.00



LOCATION

NTS

TaftFarms-Lots F&G

Prepared by Hewlett-Packard CompanyRevised4-26-2016Printed4/28/2016HydroCAD® 10.00-15s/n 06429© 2015HydroCAD Software SolutionsLLCPage 2

Project Notes

Taft Farms Lots F & G Hydrologic Model

TaftFarms-Lots F&G Prepared by Hewlett-Pa

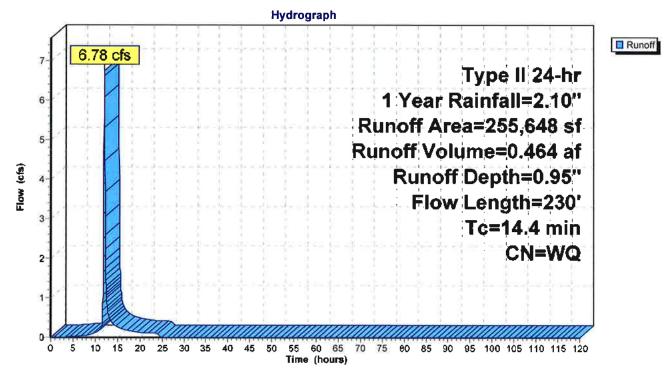
Prepared by Hewlett-Packard Company	Revised 4-26-2016	Printed 4/28/2016
HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solu	utions LLC	Page 3

Area Listing (all nodes)

Ar	ea C	N	Description	
(acre	es)		(subcatchment-numbers)	
4.3	47 8	30	>75% Grass cover, Good, HSG D (Lots F&G)	
0.4	77 9	8	Impervious - Roofs (Lots F&G)	
1.0	45 S	8	Impervious-Pavement (Lots F&G)	
5.8	69 8	35	TOTAL AREA	

Runoff by SCS	
SubcatchmentLots F&G: LOTS F&G	Runoff Area=255,648 sf 25.93% Impervious Runoff Depth=0.95" Flow Length=230' Tc=14.4 min CN=WQ Runoff=6.78 cfs 0.464 af
Pond BASIN: Outlet Structure	Peak Elev=378.19' Storage=12,442 cf Inflow=6.78 cfs 0.464 af Outflow=0.22 cfs 0.464 af
Pond Forebay: FOREBAY	Peak Elev=0.00' Storage=0 cf
Pond Perm Pool: PERMANENT POOL	Peak Elev=0.00' Storage=0 cf
Total Runoff Area = 5.86	69 ac Runoff Volume = 0.464 af Average Runoff Depth = 0.95" 74.07% Pervious = 4.347 ac 25.93% Impervious = 1.522 ac

Summary for Subcatchment Lots F&G: LOTS F&G


Runoff	=	6.78 cfs @	12.07 hrs.	Volume=	0.464 af. I	Depth= 0.95"
			the of they	T WINITIN		20ptil 0.00

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.03 hrs Type II 24-hr 1 Year Rainfall=2.10"

	A	rea (sf)	CN [Description		
*		45,500	98 I	mpervious-	Pavement	
*		20,790		mpervious		
	1	89,358	80 >	75% Gras	s cover, Go	bod, HSG D
	2	255,648	1	Neighted A	verage	
	1	89,358			rvious Area	l
		66,290	2	25.93% Imp	pervious Ar	ea
		Length	Slope		Capacity	Description
-	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	13.3	55	0.0110	0.07		Sheet Flow, Sheet Grass
						Grass: Dense n= 0.240 P2= 2.30"
	1.1	175	0.0280	2.69		Shallow Concentrated Flow, SC Lawn
						Unpaved Kv= 16.1 fps
	14.4	220	Total			

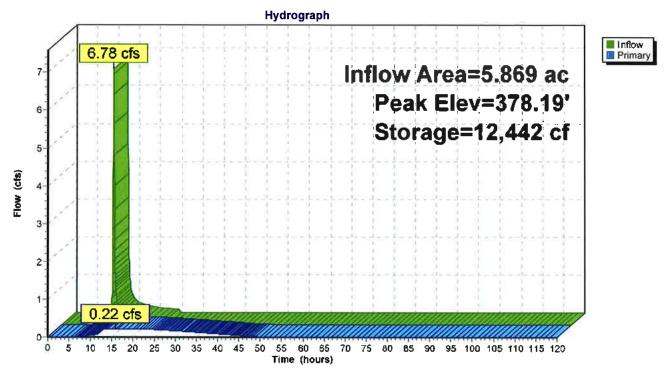
14.4 230 Total

Subcatchment Lots F&G: LOTS F&G

Summary for Pond BASIN: Outlet Structure

Inflow Area =	5.869 ac, 25.93% Impervious, Inflow Depth = 0.95" for 1 Year event	
Inflow =	6.78 cfs @ 12.07 hrs, Volume= 0.464 af	
Outflow =	0.22 cfs @ 15.81 hrs, Volume= 0.464 af, Atten= 97%, Lag= 224.9 min	n
Primary =	0.22 cfs @ 15.81 hrs, Volume= 0.464 af	

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.03 hrs Peak Elev= 378.19' @ 15.81 hrs Surf.Area= 7,291 sf Storage= 12,442 cf


Plug-Flow detention time= 718.4 min calculated for 0.464 af (100% of inflow) Center-of-Mass det. time= 719.3 min (1,539.2 - 819.8) 11.98 hours

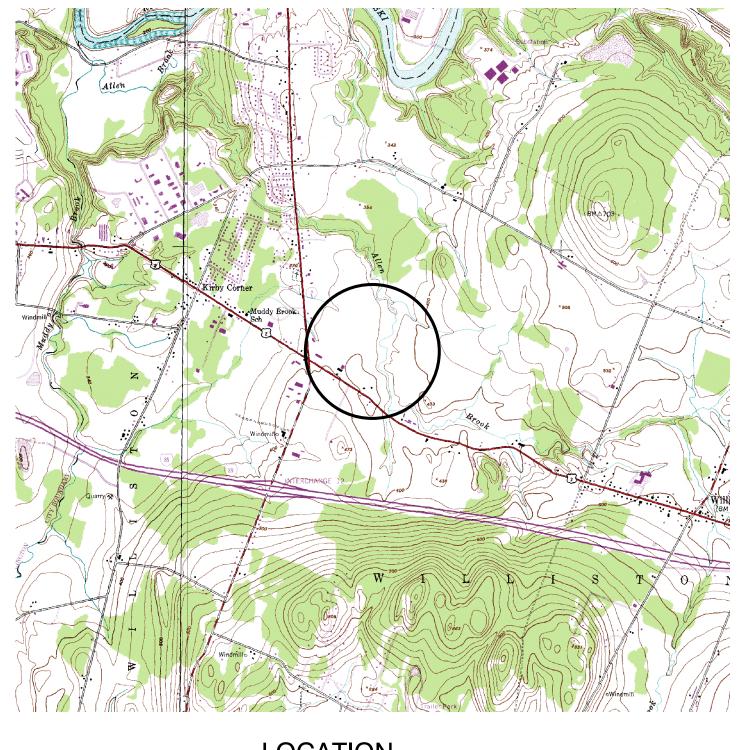
Volume	Inv	ert Avail.Sto	rage Storage	Description	4
#1	376.			rismatic)Listed below	w (Recalc)
Elevatio (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Curn.Store (cubic-feet)	
376.0		4,112	0	0	
377.0	-	5,525	4,819	4,819	
378.0		6,966	6,246	11,064	
379.0)0	8,650	7,808	18,872	
380.0	00	10,844	9,747	28,619	
381.0	0	13,365	12,105	40,724	
381.5	50	15,500	7,216	47,940	2.4" Low Flow Orifice
Device	Routing	Invert	Outlet Devices		
#1	Primary	376.00'	2.4" Vert. Orif	fice/Grate C= 0.600	
#2	Primary	378.30'	36.0" W x 12.	0" H Vert. Orifice/Gr	ate C= 0.600

-1=Orifice/Grate (Orifice Controls 0.22 cfs @ 6.97 fps)

-2=Orifice/Grate (Controls 0.00 cfs)

Pond BASIN: Outlet Structure

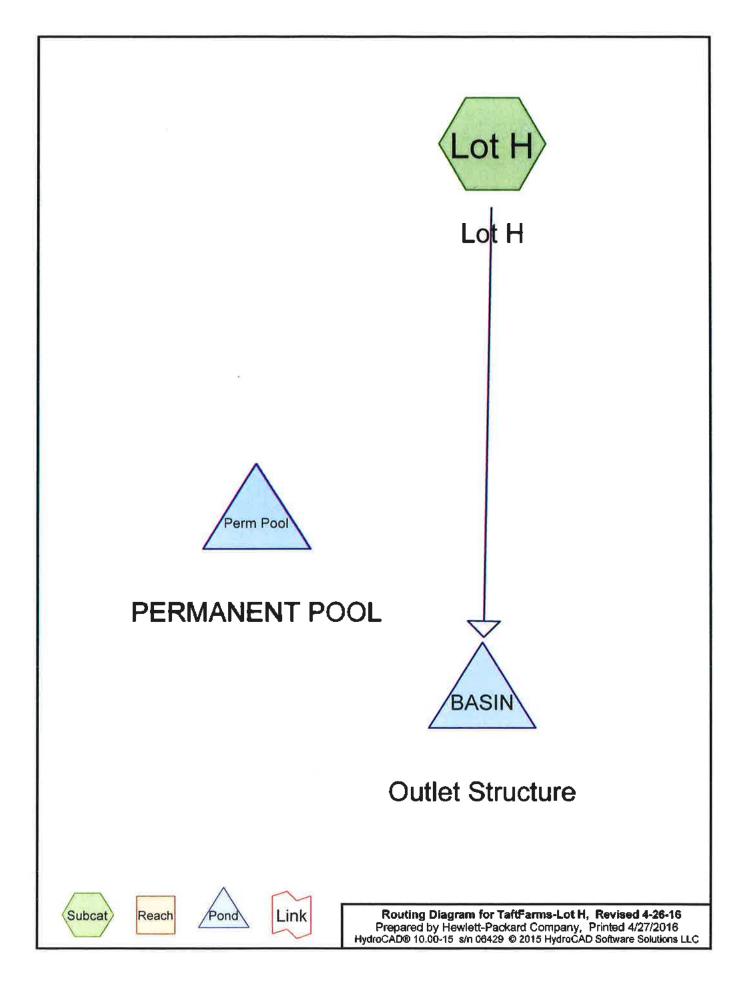
Type II 24-hr 1 Year Rainfall=2.10" Revised 4-26-2016 Printed 4/28/2016 ions LLC Page 8


Summary for Pond Forebay: FOREBAY

Volume	Invert Ava	il.Storage Storag	e Description	
#1	372.00'	3,320 cf Custo	m Stage Data (Prismatic)Listed below (Recalc))
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
372.00	230	0	0	
373.00	460	345	345	
374.00	791	626	971	
375.00	1,168	980	1,950	
376.00	1,572	1,370	3,320	
			Forebay Volume Provided	

Summary for Pond Perm Pool: PERMANENT POOL

Volume	Invert Ava	il.Storage Storag	e Description	
#1	372.00'	9,209 cf Custo	om Stage Data (Prisma	tic)Listed below (Recalc)
#1 Elevation (feet) 372.00 373.00 374.00 375.00 376.00	372.00' Surf.Area (sq-ft) 895 1,469 2,190 3,015 4,175	9,209 cf Custo Inc.Store (cubic-feet) 0 1,182 1,830 2,603 3,595	Cum. Store (cubic-feet) 0 1,182 3,012 5,614 9,209	tic)Listed below (Recalc)
			Dermonont Dool	
			Permanent Pool	
			Volume Provided	



LOCATION

NTS

	0' 15	50' 300'	600'	90	0'
		Bar Scale	1" = 150'		
Date revised		Description		Checked	Data
-		Description		Checked	Date
esign	WHN		Overall Site Pla	เท	
rawn Checked Scale	SLM WHN 1" = 150'		TAFT FARMS	S	
ate	4/26/16		LOU T		
roject	14257.4	Route 2		Wi	liston, Vermont
		SING Consulting et, Colchester,	r Engineers, Inc. Vermont 05446	File name 14257.4 lot hoverall site plan ov-1 Printing date 4/27/16	OV-1

Project Notes

Taft Farms - Lot "H"

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.687	80	>75% Grass cover, Good, HSG D (Lot H)
0.406	98	Impervious - Roofs (Lot H)
1.202	98	Impervious-Pavement (Lot H)
2.295	93	TOTAL AREA

Time span=0.00-72.00 hrs, dt=0.03 hrs, 2401 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentLot H: Lot H	Runoff Area=99,9	988 sf 70.0	8% Impervi	ous Runoff Depth=1.50"
Flow Length=151'	Slope=0.0200 '/' 1	Tc=8.3 min	CN=WQ	Runoff=5.03 cfs 0.287 af

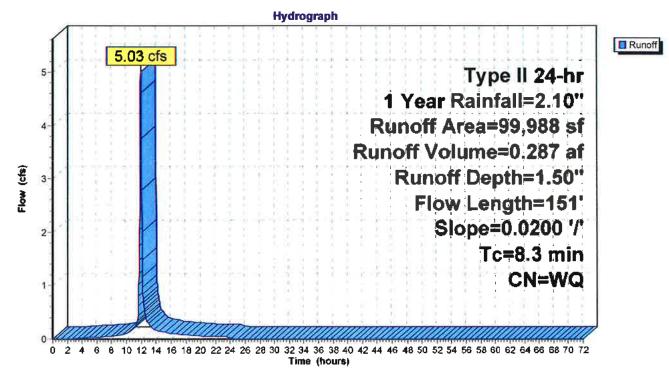
Pond BASIN: Outlet Structure

Peak Elev=370.37' Storage=8,043 cf Inflow=5.03 cfs 0.287 af Outflow=0.13 cfs 0.287 af

Pond Perm Pool: PERMANENT POOL

Peak Elev=0.00' Storage=0 cf

Total Runoff Area = 2.295 ac Runoff Volume = 0.287 af Average Runoff Depth = 1.50" 29.92% Pervious = 0.687 ac 70.08% Impervious = 1.609 ac


Summary for Subcatchment Lot H: Lot H

Runoff = 5.03 cfs @ 11.99 hrs, Volume= 0.287 af, Depth= 1.50"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.03 hrs Type II 24-hr 1 Year Rainfall=2.10"

	A	rea (sf)	CN I	Description		
*		52,380	98 1	mpervious-	Pavement	
*		17,690	98 1	mpervious	- Roofs	
*		29,918	80 >	75% Gras	s cover, Go	ood, HSG D
		99,988	1	Veighted A	verage	
		29,918			vious Area	
		70,070	-	70.08% Imp	pervious An	ea
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	7.6	37	0.0200	0.08		Sheet Flow, Sheet Grass
						Grass: Dense n= 0.240 P2= 2.30"
	0.7	114	0.0200	2.87		Shallow Concentrated Flow, SC - Pavement
						Paved Kv= 20.3 fps
	8.3	151	Total			

Subcatchment Lot H: Lot H

Page 6

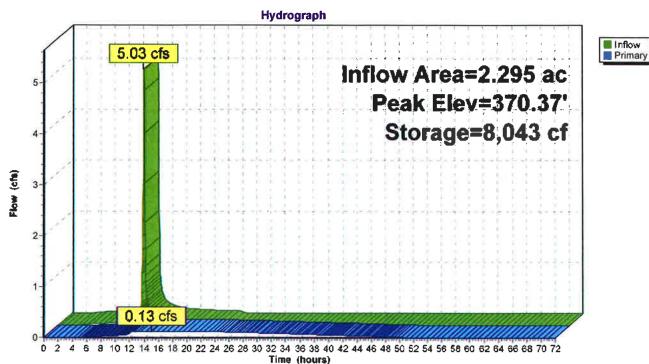
Summary for Pond BASIN: Outlet Structure

Inflow Area =2.295 ac, 70.08% Impervious, Inflow Depth = 1.50° for 1 Year eventInflow =5.03 cfs @11.99 hrs, Volume=0.287 afOutflow =0.13 cfs @15.02 hrs, Volume=0.287 af, Atten= 97%, Lag= 181.5 minPrimary =0.13 cfs @15.02 hrs, Volume=0.287 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.03 hrs Peak Elev= 370.37' @ 15.02 hrs Surf.Area= 4,260 sf Storage= 8,043 cf

Plug-Flow detention time= 756.4 min calculated for 0.287 af (100% of inflow) Center-of-Mass det. time= 755.6 min (1,532.9 - 777.3) 12.6 hrs

Volume	Inv	ert Avail.Ste	orage Storage	Description	
#1	368.	00' 25,5	508 cf Pond (P	rismatic)Listed below	w (Recalc)
Elevatio (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
368.0)0	2,580	0	0	
369.0	00	3,250	2,915	2,915	
370.0	00	3,975	3,613	6,528	
371.0	00	4,750	4,363	10,890	
372.0	00	5,595	5,173	16,063	
373.0)0	6,490	6,043	22,105	
373.5	50	7,120	3,403	25,508	1.8" Low Flow Orifice
_	_	_			
Device	Routing	Invert	Outlet Device:	3	
#1	Primary	368.00'	1.8" Vert. Ori	fice/Grate C= 0.600)
#2	Primary	370.40'	36.0" W x 12.	0" H Vert. Orifice/Gr	ate C≈ 0.600
#3	Primary	372.50'			rested Rectangular Weir
					1.00 1.20 1.40 1.60 1.80 2.00
				50 4.00 4.50 5.00 5	
					.69 2.68 2.68 2.66 2.64 2.64
			2.64 2.65 2.6	35 2.66 2.66 2.68 2	2.70 2.74


Primary OutFlow Max=0.13 cfs @ 15.02 hrs HW=370.37' (Free Discharge)

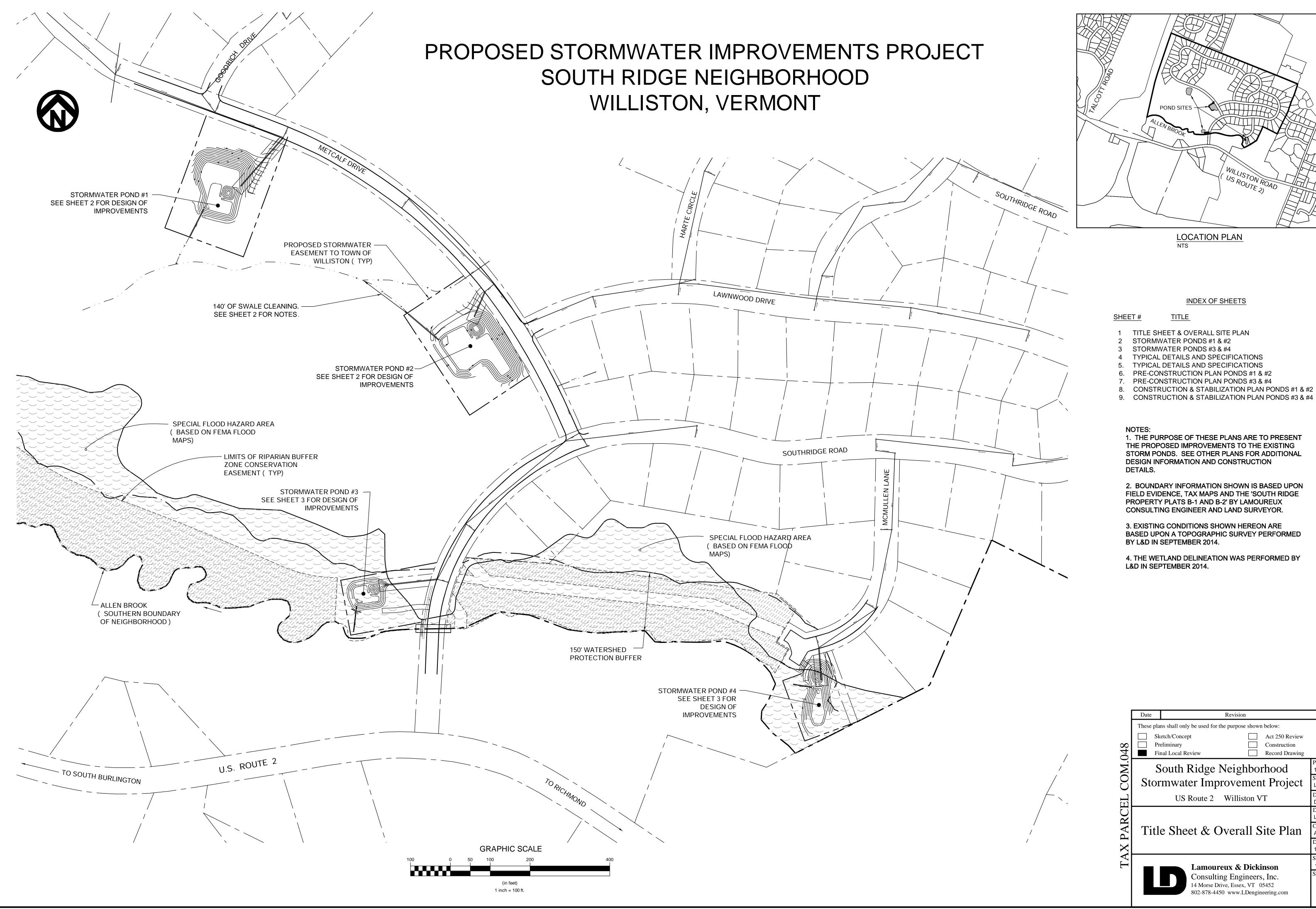
-1=Orifice/Grate (Orifice Controls 0.13 cfs @ 7.29 fps)

-2=Orifice/Grate (Controls 0.00 cfs)

-3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

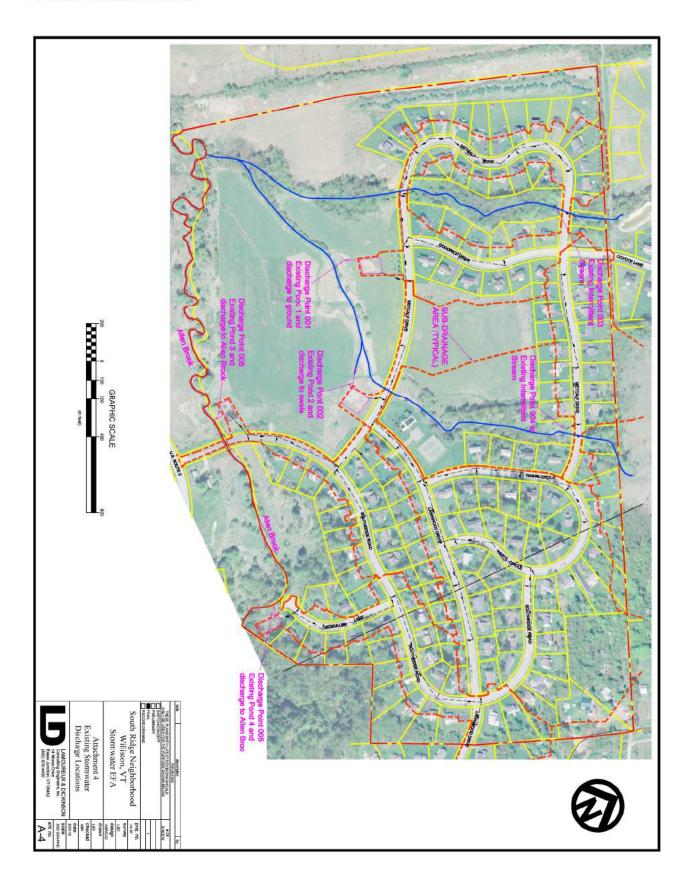
Page 7

Pond BASIN: Outlet Structure

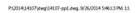

Summary for Pond Perm Pool: PERMANENT POOL

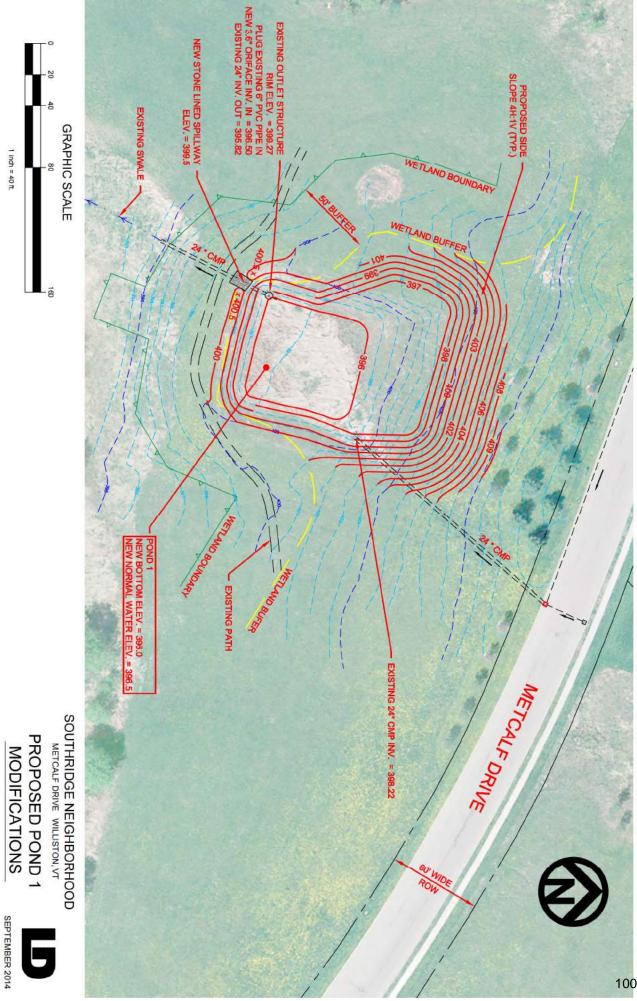
Volume	Invert Ava	il.Storage	Storage	e Description		
#1	363.00'	5,088 cf	Custon	n Stage Data (P	rismatic)Listed below ((Recalc)
Elevation (feet)	Surf Area (sq-ft)		:.Store c-feet)	Cum.Store (cubic-feet)		
363.00	665		0	0		
364.00	935		800	800		
365.00	1,245		1,090	1,890		
366.00	1,590		1,418	3,308		
367.00	1,970		1,780	5,088		
	WQv = 5,110 cu WQv = 5,088 cu		-			
	VQv provided in		nt pool.			

SOUTH RIDGE: PERMIT 1-0664

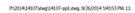


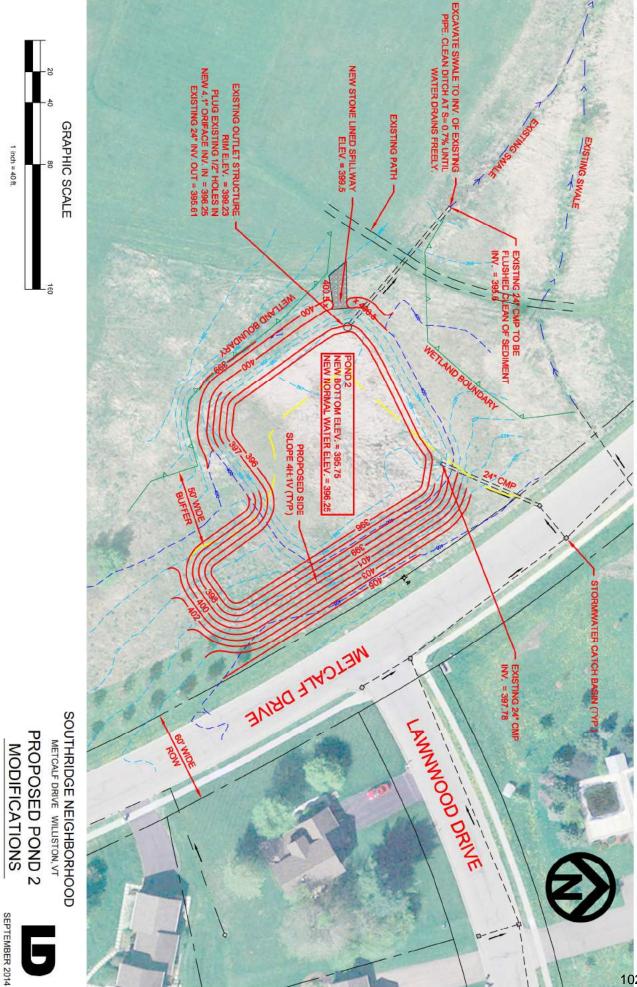
3. EXISTING CONDITIONS SHOWN HEREON ARE BASED UPON A TOPOGRAPHIC SURVEY PERFORMED


4. THE WETLAND DELINEATION WAS PERFORMED BY

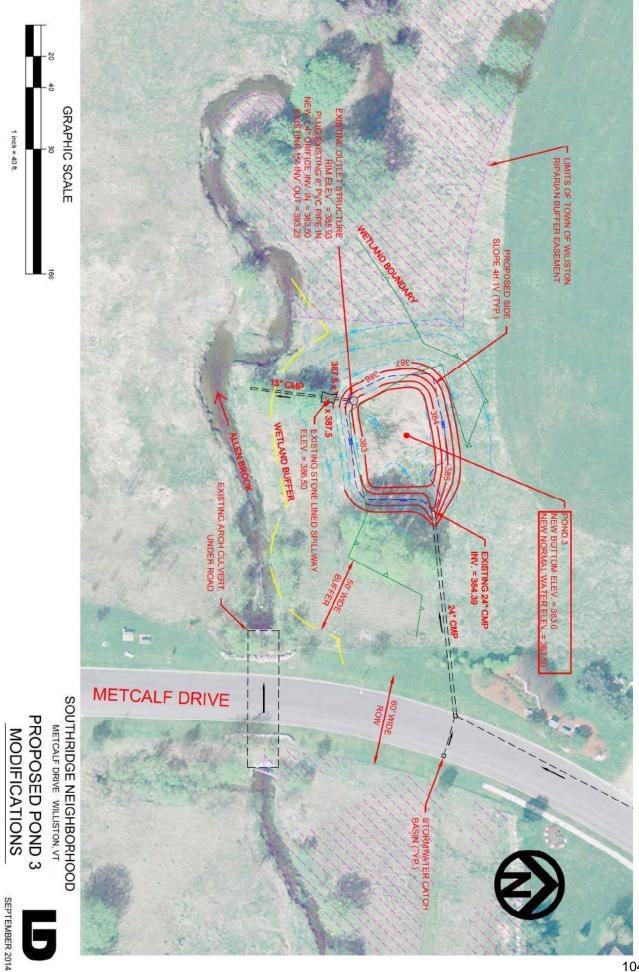

	Date	Revision		By
)48		as shall only be used for the purpose shown below: etch/Concept Act 250 Review eliminary Construction nal Local Review Record Drawing		
L COM.(outh Ridge Neighborhood mwater Improvement Project US Route 2 Williston VT	Project N 14107 Survey L&D Design DG	No.
TAX PARCEL COM.048	Title	e Sheet & Overall Site Plan	Drawn L&D Checked AR Date 10-15-1	
TA		Lamoureux & Dickinson Consulting Engineers, Inc. 14 Morse Drive, Essex, VT 05452 802-878-4450 www.LDengineering.com	Scale 1" = 10 Sheet nu	

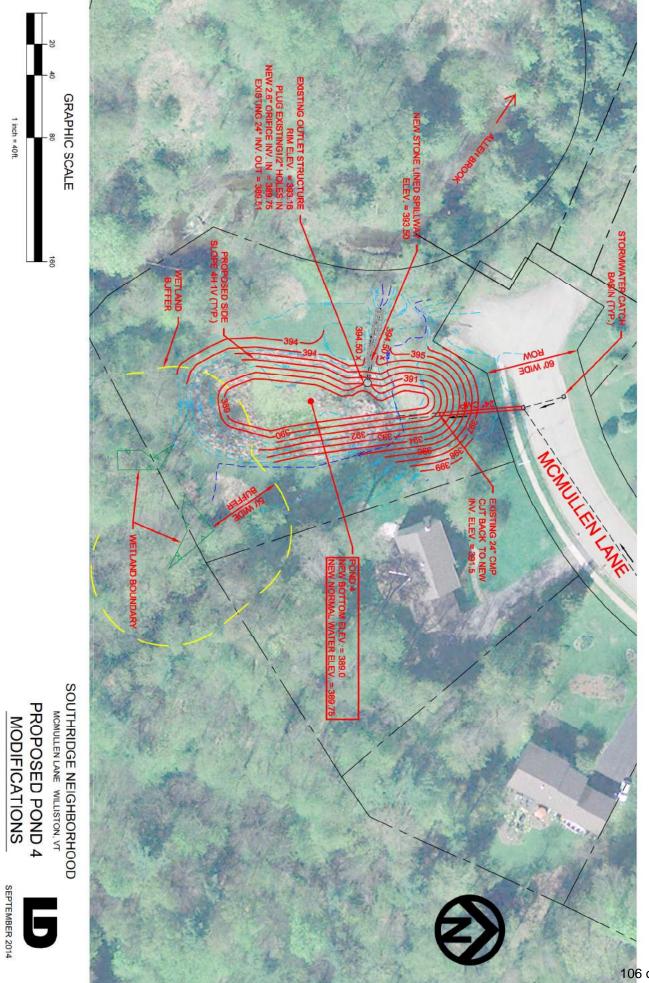
Attachment 4 Existing Stormwater Discharge Locations


Attachment 5 Pond 1 (conceptual pond improvements design)

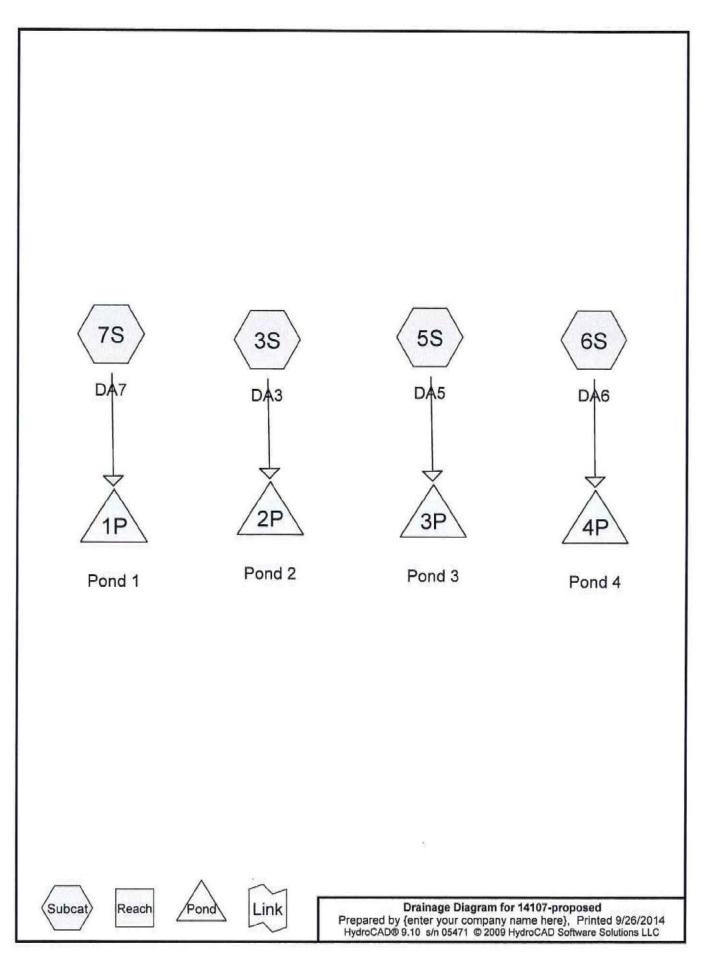


Attachment 6


Pond 2 (conceptual pond improvements design)



102 of 529


Attachment 7 Pond 3 (conceptual pond improvements design)

Attachment 8 Pond 4 (conceptual pond improvements design)

Attachment 9 Hydrologic Calculations

Summary for Subcatchment 3S: DA3

Runoff = 30.63 cfs @ 12.08 hrs, Volume= 2.239 af, Depth= 0.77"

	Area	(ac)	CN	Des	cription		
*	3.	490	98	Roa	d		
*	0.	430	98	Side	walk		
*	1.	770	98	Root	F		
*	1.	160	98	Drive	Э		
	0.	660	70	Woo	ds, Good,	HSG C	
	7.	420	74	>759	% Grass c	over, Good	, HSG C
	4.	578	77		ds, Good,		
	9.	210	78	Mea	dow, non-g	grazed, HS	GD
_	6.	050	80	>759	% Grass c	over, Good	, HSG D
	34.	768	81	Weig	ghted Aver	age	
	27.	918	77	80.3	0% Pervio	us Area	
	6.	850	98	19.7	0% Imperv	ious Area	
	Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	10.8	10	0 0	.0610	0.15		Sheet Flow,
							Grass: Dense n= 0.240 P2= 2.30"
	4.8	50	0 0	.0610	1.73		Shallow Concentrated Flow,
_							Short Grass Pasture Kv= 7.0 fps
	15.6	60	О Т	otal			

Summary for Subcatchment 5S: DA5

Runoff = 11.01 cfs @ 12.04 hrs, Volume= 0.710 af, Depth= 0.70"

	Area	(ac)	CN	Desc	cription		
*	1.	240	98	Road	dway		
*	0.	118	98	Side	walk		
*	0.	550	98	Root			
*	0.	350	98	Drive	9		
	0.	880	39	>75%	% Grass co	over, Good,	, HSG A
	1.	540	74	>75%	% Grass c	over, Good,	, HSG C
-	7.	530	80	>75%	% Grass co	over, Good,	HSG D
	12.	208	80	Weig	ghted Aver	age	
	9.	950	75		0% Pervio		
	2.	258	98	18.5	0% Imperv	ious Area	
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	7.4	1(00	0.0600	0.22		Sheet Flow, Grass: Short n= 0.150 P2= 2.30"
	3.9	40	00	0.0600	1.71		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
	11.3	50	00	Total			

Summary for Subcatchment 6S: DA6

Runoff = 9.82 cfs @ 12.14 hrs, Volume= 0.839 af, Depth= 0.84"

	Area	(ac)	CN	Des	cription		
*	1.	630	98	Roa	dway		
*	0.	197	98		walk		
*	0.	710	98	Root	f		
*	0.	670	98	Drive	es		
	1000	630	61			over, Good,	HSG B
		120	70		ds, Good,		
		940	74			over, Good,	HSG C
		030	80			over, Good,	
100		927	82		ghted Aver	the second s	
		720	76		1% Pervio		
		207	98			ious Area	
	Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	16.9	10	_	.0550	0.10		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.30"
	1.4	10	0 0	.0550	1.17		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
	2.0	20	0 0	.0550	1.64		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
	20.3	40	0 Т	otal			

Summary for Subcatchment 7S: DA7

Runoff = 15.30 cfs @ 12.10 hrs, Volume= 1.159 af, Depth= 1.02"

	Area	(ac) (CN Des	cription		
*	2.	.090	98 Roa	ids		
*	0.	261	98 Side	ewalk		
*	0.	.970	98 Roc	ofs		
*	0.	.970	98 Driv	es		
	9.	.390	80 >75	% Grass c	over, Good	, HSG D
	13.	681	86 Wei	ighted Ave	rage	
	9.	.390	80 68.6	54% Pervio	us Area	
	4.	.291	98 31.3	36% Imper	vious Area	
-	Tc (min)	Length (feet)		Velocity (ft/sec)	Capacity (cfs)	Description
	11.7	100	0.0500	0.14		Sheet Flow,
	5.9	550	0.0500	1.57		Grass: Dense n= 0.240 P2= 2.30" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
	17.6	650	Total			

Summary for Pond 1P: Pond 1

Inflow Are	ea =	13.681 ac, 31.36% Impervious, Inflow Depth = 1.02" for 1 year event
Inflow	=	15.30 cfs @ 12.10 hrs, Volume= 1.159 af
Outflow	=	0.55 cfs @ 15.71 hrs, Volume= 1.157 af, Atten= 96%, Lag= 216.7 min
Primary	=	0.55 cfs @ 15.71 hrs, Volume= 1.157 af

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs / 3 Starting Elev= 396.50' Surf.Area= 7,008 sf Storage= 2,833 cf Peak Elev= 399.24' @ 15.71 hrs Surf.Area= 13,993 sf Storage= 34,072 cf (31,240 cf above start)

Plug-Flow detention time= 805.9 min calculated for 1.092 af (94% of inflow) Center-of-Mass det. time= 718.8 min (1,534.9 - 816.1)

Volume	Inv	ert Avai	.Storage	Storage Description	1	
#1	396.	00' 3	37,795 cf	Custom Stage Data	a (Irregular) Listed	d below (Recalc)
Elevatio (fee	190	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
396.0	00	4,421	256.0	0	Ó	4,421
397.0	00	10,188	397.0	7,107	7,107	11,755
398.0	00	11,829	419.0	10,998	18,105	13,241
399.0	00	13,556	446.0	12,683	30,788	15,149
399.	50	14,480	460.0	7,008	37,795	16,184
Device	Routing	Inv	vert Outle	et Devices		
#1	Primary	399.	27' 2.0"	x 2.0" Horiz. Grate	X 6.00 columns	X 6 rows C= 0 600
#2	Primary	396.		Vert. Orifice C= 0.		
#3	Primary	399.	50' Cust Head	tom Weir/Orifice, Cv d (feet) 0.00 0.50 h (feet) 2.00 4.00		

Primary OutFlow Max=0.55 cfs @ 15.71 hrs HW=399.24' (Free Discharge)

-1=Grate (Controls 0.00 cfs)

-2=Orifice (Orifice Controls 0.55 cfs @ 7.75 fps)

-3=Custom Weir/Orifice (Controls 0.00 cfs)

Summary for Pond 2P: Pond 2

Inflow Are	ea =	34.768 ac, 19.70% Impervious, Inflow Depth = 0.77" for 1 year even	t
Inflow	=	30.63 cfs @ 12.08 hrs, Volume= 2.239 af	
Outflow	=	2.54 cfs @ 13.23 hrs, Volume= 2.232 af, Atten= 92%, Lag= 6	8.8 min
Primary	=	2.54 cfs @ 13.23 hrs, Volume= 2.232 af	

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs / 2 Starting Elev= 396.25' Surf.Area= 13,272 sf Storage= 6,384 cf Peak Elev= 399.37' @ 13.23 hrs Surf.Area= 20,147 sf Storage= 58,219 cf (51,835 cf above start)

Plug-Flow detention time= 823.6 min calculated for 2.085 af (93% of inflow) Center-of-Mass det. time= 725.0 min (1,556.4 - 831.4)

Volume	Inv	ert Avai	.Storage	Storage Description	1	
#1	395.	75' (50,911 cf	Custom Stage Data	a (Irregular) Listed	below (Recalc)
Elevati (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
395.	75	12,266	367.0	0	0	12,266
396.	00	12,769	384.0	3,129	3,129	13,286
397.0	00	14,841	411.0	13,792	16,921	15,040
398.0	00	17,014	438.0	15,915	32,836	16,913
399.0	00	19,287	452.0	18,139	50,975	18,000
399.	50	20,462	466.0	9,936	60,911	19,048
Device	Routing	Inv	vert Outle	et Devices		
#1	Primary	399.	23' 2.0"	x 2.0" Horiz. Grate)	X 6.00 columns X	6 rows C= 0 600
#2	Primary	396.	States States	Vert. Orifice C= 0.		0.000

-1=Grate (Orifice Controls 1.79 cfs @ 1.79 fps)

2=Orifice (Orifice Controls 0.76 cfs @ 8.27 fps)

Summary for Pond 3P: Pond 3

Inflow Are	ea =	12.208 ac, 18.50% Impervious, Inflow Depth = 0.70" for 1 year event	
Inflow	=	11.01 cfs @ 12.04 hrs, Volume= 0.710 af	
Outflow	=	2.98 cfs @ 12.27 hrs, Volume= 0.708 af, Atten= 73%, Lag= 13.7 m	nin
Primary	=	2.98 cfs @ 12.27 hrs, Volume= 0.708 af	

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs / 2 Starting Elev= 383.50' Surf.Area= 3,123 sf Storage= 1,452 cf Peak Elev= 386.29' @ 12.27 hrs Surf.Area= 5,943 sf Storage= 13,965 cf (12,514 cf above start)

Plug-Flow detention time= 807.9 min calculated for 0.675 af (95% of inflow) Center-of-Mass det. time= 734.6 min (1,564.7 - 830.2)

Volume	Inv	ert Avail.	Storage	Storage Description	n	
#1	383.	00' 1	5,224 cf	Custom Stage Dat	a (Irregular) Liste	d below (Recalc)
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
383.0	00	2,689	197.0	0	0	2,689
384.0	00	3,590	239.0	3,129	3,129	4,162
385.0	00	4,568	263.0	4,069	7,198	5,153
386.0	00	5,607	284.0	5,079	12,276	6,108
386.5	50	6,188	292.0	2,948	15,224	6,502
Device	Routing	Inv	ert Outl	et Devices		
#1	Primary	385.		x 2.0" Horiz. Grate		X 6 rows C= 0.600
#2	Primary	386.	50' Cus Hea	tom Weir, Cv= 2.62 d (feet) 0.00 0.50 th (feet) 1.00 3.00		
#3	Primary	383.		Vert. Orifice C= 0.	.600	

Primary OutFlow Max=2.98 cfs @ 12.27 hrs HW=386.29' (Free Discharge)

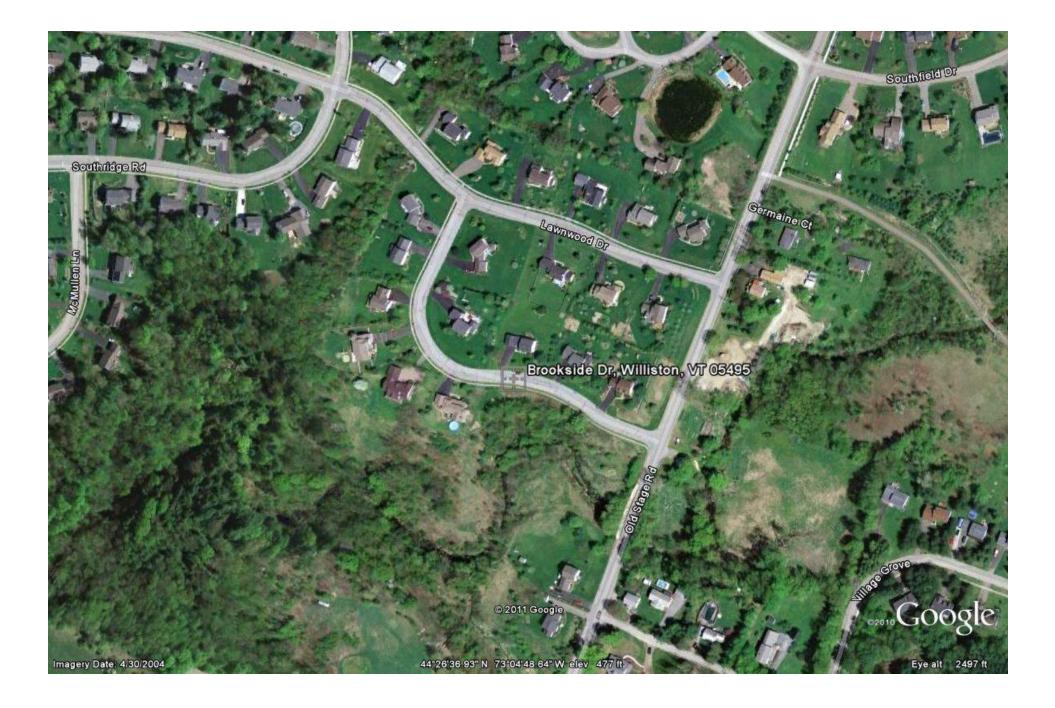
-1=Grate (Orifice Controls 2.90 cfs @ 2.90 fps)

-2=Custom Weir (Controls 0.00 cfs)

-3=Orifice (Orifice Controls 0.09 cfs @ 7.96 fps)

Summary for Pond 4P: Pond 4

Inflow Are	ea =	11.927 ac, 26.89% Impervious, Inflow Depth = 0.84" for 1 year event
Inflow	=	9.82 cfs @ 12.14 hrs, Volume= 0.839 af
Outflow	=	0.79 cfs @ 13.58 hrs, Volume= 0.839 af, Atten= 92%, Lag= 86.5 min
Primary	=	0.79 cfs @ 13.58 hrs, Volume= 0.839 af


Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs / 2 Starting Elev= 389.75' Surf.Area= 3,519 sf Storage= 2,307 cf Peak Elev= 393.19' @ 13.58 hrs Surf.Area= 8,757 sf Storage= 23,008 cf (20,700 cf above start)

Plug-Flow detention time= 816.1 min calculated for 0.786 af (94% of inflow) Center-of-Mass det. time= 717.4 min (1,541.5 - 824.1)

Volume	e Inv	vert Avai	I.Storage	Storage Descr	ription			
#1	389.	.00' 2	25,782 cf	Custom Stage	e Data	(Irregular) Listed	below (Recalc)	
Elevati (fe	10-31-01	Surf.Area (sq-ft)	Perim. (feet)	Inc.Sto (cubic-fee		Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
389.	00	2,654	311.0		0	0	2,654	
390.	00	3,835	302.0	3,22	26	3,226	3,189	
391.	00	5,156	334.0	4,47	79	7,706	4,840	
392.	00	6,883	387.0	5,99	99	13,704	7,902	
393.	00	8,446	403.0	7,65	51	21,356	8,983	
393.	50	9,266	415.0	4,42	26	25,782	9,790	
Device	Routing	Inv	vert Outl	et Devices				
#1	Primary	393		x 2.0" Horiz. G ted to weir flow			6 rows C= 0.600	
#2	Primary	389.	and the second se	.6" Vert. Orifice C= 0.600				

Primary OutFlow Max=0.78 cfs @ 13.58 hrs HW=393.19' (Free Discharge) -1=Grate (Weir Controls 0.45 cfs @ 0.59 fps)

-2=Orifice (Orifice Controls 0.32 cfs @ 8.79 fps)

TURTLE CROSSING: PERMIT 1-0792

Attachment 7 HydroCad Data

Page 1 of 2 Version: 9/06

For the area draining to*: Lawnwood Drive swale

Located in drainage area for S/N:

WQ Volume and Modified Curve Number Calculation for Water Quality Treatment in Flow-Based Practice

Use this worksheet to calculate your WQv if you need to determine the Peak Q for the WQ storm (i.e. designing a grass channel, flow-splitter or other flow based practice) and you are not using any of the site design credits in section 3 of the 2002 VSWMM. See page 2 for "Calculating Peak WQ Discharge Rate (0.9" storm) using the Modified Curve Number." Please note that in the case of grass channels you must include any off-site area draining to the practice as this will affect the peak discharge rate which will ultimately affect the hydraulics, and thus residence time, in your channel.

e		value/calculation	units
Area draining to practice	A=	0.52	acres
Impervious area		0.20	acres
Percent Impervious Area = [(line 2/line 1) * 100] =] =	38.46	% (whole #)
Precipitation	P =	0.9	inches
Runoff coefficient calculation = (0.05 + (0.009*I))	Rv =	0.3%	
WQ Volume (in watershed inches) Calculation =(P	* Rv) =	0.357	Qa (watershed inches, a.k.a. inches of runc
Minimum WQ Volume'		0.2	watershed inches
Enter the greater of line 6 or line 7	WQv =	0.357	watershed inches
WQ Volume Calculation = (line 8 *A)/12 =	WQv =	0.015	ac. ft.
WQ Volume Calculation = (line 9 * 43560) =	WQv =	673	cu. ft.

Notes:

1: Sites with low impervious cover (~19%) but that do not employ a significant use of the stormwater design credits in Section 3 of the VSWMM are required to treat the minimum water quality volume of 0.2 watershed inches. Sites that have a significant portion of their impervious cover addressed via the stormwater credits (section 3 of the VSWMM) will be able to reduce this WQv and will only be required to treat the volume calculated on the "WQ Volume (with credit reduction)" worksheet which will be less than the 0.2 watershed inches.

CALCULATED WAV= 673 CF SEE DRY SWALE (MOD CN) FOR MODEL RESULTS FOR WQV (DRY SWALE STORAGE (EXFILTRATION MEETS WQV)

Page 2 of 2 Version: 9/06

For the area draining to*:	Lawnwood Drive swale
Y pasted in dusing as	anaa fan E@L

Located in drainage area for S/N:

Calculating Peak WQ Peak Discharge Rate (0.9" storm) using the Modified Curve Number

Because NRCS methods underestimate the peak discharge for rainfall events of less than 2", simply plugging in 0.9" of rainfall into your hydrologic model with the standard curve numbers will not produce the correct peak discharge during the WQv storm, nor will it produce a volume of runoff equivalent to that which you have calculated using the WQv formula (WQv = $P^*Rv^*A/12$). In order to calculate the peak discharge for the 0.9" storm, a modified curve number must be calculated. This modified curve number is based on the runoff (in inches) calculated using the short cut method formula (WQv = P^*Rv) that is also the basis of the familiar WQv calculations provided in the 2002 VSWMM (and on the WQv calculation worksheets). Essentially, the curve number that is calculated using the methods below is the curve number that will generate the volume of runoff calculated using the WQv formula.

Above, you should have calculated the WQv in watershed inches draining to the facility/practice for which you need to calculate the WQpeak discharge. As provided in the guidance listed on the grass channel worksheet, please remember that the WQv calculation should include runoff from on-site as well as off-site area draining to the grass channel since this will have an impact on the channel hydraulics and thus the velocity and residence time.

Steps:

1. Transfer information from WQv calculation worksheets.

Enter the Qa (line 8 from WQv sheet) Qa = 0.357 inches Enter the area (site +off-site draining to practice) used in calculating the percent impervious (I) A = 0.5 acres 2. Use the following equation to calculate a corresponding curve number where P = 0.9 inches CN = $1000/(10 + (5^{*}P) + (10^{*}Qa) - (10^{*}(Qa^{2} + (1.25^{*}Qa^{*}P))^{*}0.5))$

3. If you are using hand hydrologic runoff calculations, use the computed CN above along with your calculated time of concentration and the drainage area (A) to calculate the peak discharge (Qwq) for the water quality storm using the TR-55 Graphical Peak Discharge Method.

OR

3. If you are using a computer aided hydrologic model, simply revise the curve number for your subwatershed(s) draining to the practice using the curve number calculated above; the computed curve number should be applied to the total area (A) used in the WQv calculation. As a check, you should note that now when you run the 0.9" storm, your runoff depth should be roughly equal to Qa (WQ runoff in inches) and your total runoff volume roughly equal to your WQv (in ac. ft.). If this is not the case, make sure that the time span for your modelling run is long enough to capture the entire storm. Small variations are likely due to having to round your computed CN to a whole number. Remember that for storms larger than 2", you do not need to use the modified curve number and you should calculate your composite curve number based on the accepted values for different types of land-use (see TR-55).

Brookside Dr swale

Page 1 of 2
Version: 9/06

Located in drainage area for S/N:

WQ Volume and Modified Curve Number Calculation for Water Quality Treatment in Flow-Based Practice

Use this worksheet to calculate your WQv if you need to determine the Peak Q for the WQ storm (i.e. designing a grass channel, flow-splitter or other flow based practice) and you are not using any of the site design credits in section 3 of the 2002 VSWMM. See page 2 for "Calculating Peak WQ Discharge Rate (0.9" storm) using the Modified Curve Number." Please note that in the case of grass channels you must include any off-site area draining to the practice as this will affect the peak discharge rate which will ultimately affect the hydraulics, and thus residence time, in your channel.

ne			value/calculation	u units
: [Area draining to practice	A=	2.03	acres
: [Impervious area		0.39	acres
- F	Percent Impervious Area = [(line 2/line 1) * 100] =	I =	19.21	% (whole #)
⊧ [Precipitation	P =	0,9	inches
; [Runoff coefficient calculation = (0.05 + (0.009*1))	Rv =	0.223	
	WQ Volume (in watershed inches) Calculation =(P *	Rv) =	0.201	Qa (watershed inches, a.k.a. inches of runof
	Minimum WQ Volume		0.2	# watershed inches
Ī	Enter the greater of line 6 or line 7	WQv =	0.201	watershed inches
	WQ Volume Calculation = (line 8 *A)/12 =	WQv =	0.034	ac. ft.
01	WQ Volume Calculation = (line 9 * 43560) =	WQv =	1478	cu. ft.

Notes:

1: Sites with low impervious cover (~19%) but that do not employ a significant use of the stormwater design credits in Section 3 of the VSWMM are required to treat the minimum water quality volume of 0.2 watershed inches. Sites that have a significant portion of their impervious cover addressed via the stormwater credits (section 3 of the VSWMM) will be able to reduce this WQv and will only be required to treat the volume calculated on the "WQ Volume (with credit reduction)" worksheet which will be less than the 0.2 watershed inches.

CALCULATED WOR 1418 CF SEE DRY SWALE (MOD CN) FOR MODEL RESULTS FOR WAY (DRY SWALE STRAGE EXFILTRATION MEETS WAV)

Page 2 of 2
Version: 9/06

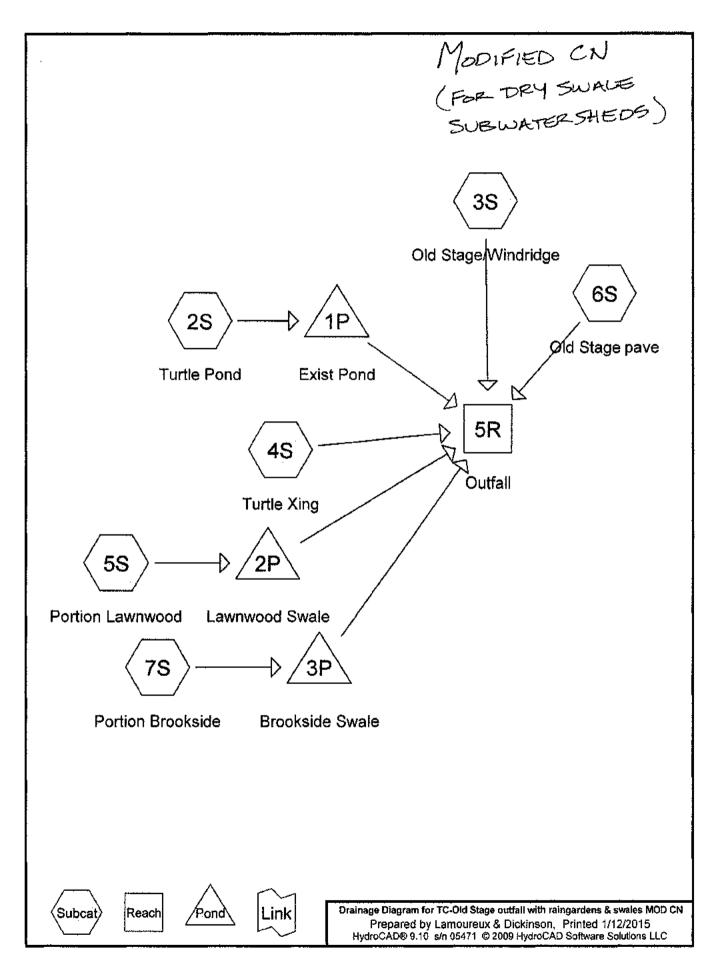
For the area draining to*:	Brookside Dr swale
Located in drainage	area for S/N:

Calculating Peak WQ Peak Discharge Rate (0.9" storm) using the Modified Curve Number

Because NRCS methods underestimate the peak discharge for rainfall events of less than 2", simply plugging in 0.9" of rainfall into your hydrologic model with the standard curve numbers will not produce the correct peak discharge during the WQv storm, nor will it produce a volume of runoff equivalent to that which you have calculated using the WQv formula (WQv = $P^*Rv^*A/12$). In order to calculate the peak discharge for the 0.9" storm, a modified curve number must be calculated. This modified curve number is based on the runoff (in inches) calculated using the short cut method formula (WQv = P^*Rv) that is also the basis of the familiar WQv calculations provided in the 2002 VSWMM (and on the WQv calculation worksheets). Essentially, the curve number that is calculated using the methods below is the curve number that will generate the volume of runoff calculated using the WQv formula.

Above, you should have calculated the WQv in watershed inches draining to the facility/practice for which you need to calculate the WQpeak discharge. As provided in the guidance listed on the grass channel worksheet, please remember that the WQv calculation should include runoff from on-site as well as off-site area draining to the grass channel since this will have an impact on the channel hydraulics and thus the velocity and residence time.

Steps:


1. Transfer information from WQv calculation worksheets.

Enter the Qa (line 8 from WQv sheet) Qa = 0.201 inches Enter the area (site +off-site draining to practice) used in calculating the percent impervious (I) A = 2.0 acres 2. Use the following equation to calculate a corresponding curve number where P = 0.9 inches CN = $1000/(10 + (5*P) + (10*Qa) - (10*(Qa^2 + (1.25*Qa*P))^{0.5}))$

3. If you are using hand hydrologic runoff calculations, use the computed CN above along with your calculated time of concentration and the drainage area (A) to calculate the peak discharge (Qwq) for the water quality storm using the TR-55 Graphical Peak Discharge Method.

OR

3. If you are using a computer aided hydrologic model, simply revise the curve number for your subwatershed(s) draining to the practice using the curve number calculated above; the computed curve number should be applied to the total area (A) used in the WQv calculation. As a check, you should note that now when you run the 0.9" storm, your runoff depth should be roughly equal to Qa (WQ runoff in inches) and your total runoff volume roughly equal to your WQv (in ac. ft.). If this is not the case, make sure that the time span for your modelling run is long enough to capture the entire storm. Small variations are likely due to having to round your computed CN to a whole number. Remember that for storms larger than 2", you do not need to use the modified curve number and you should calculate your composite curve number based on the accepted values for different types of land-use (see TR-55).

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.470	30	Meadow, non-grazed, HSG A (3S)
0.800	39	>75% Grass cover, Good, HSG A (4S)
1.700	61	>75% Grass cover, Good, HSG B (4S)
9.480	71	Meadow, non-grazed, HSG C (3S)
5.499	74	>75% Grass cover, Good, HSG C (2S, 4S)
1.225	77	Woods, Good, HSG D (2S)
12.880	78	Meadow, non-grazed, HSG D (3S)
4.700	80	>75% Grass cover, Good, HSG D (2S)
2.030	88	MOD CN (7S)
0.520	93	MOD CN (5S)
0.500	98	Drives (4S)
0.157	98	Gravel Drives (2S)
0.817	98	Paved Drives (2S)
0.617	98	Paved Road (2S)
0.516	98	Roofs (2S)
0.790	98	Rooftop (3S)
1.490	98	Street & sidewalk (6S)
0.980	98	Street & sidewalks (4S)
1.430	98	Street, drive & sidewalk (3S)

Summary for Subcatchment 2S: Turtle Pond

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 2.93 cfs @ 11.90 hrs, Volume= 0.149 af, Depth= 0.16"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr WQv Rainfall=0.90"

	Area (sf)	CN	Description			
	132,381	74	>75% Grass cover, Good, HSG C			
*	22,465	98	pofs			
*	6,837	98	Gravel Drives			
	204,723	80	>75% Grass cover, Good, HSG D			
*	35,569	98	Paved Drives			
*	26,894	98	Paved Road			
	53,376	77	Woods, Good, HSG D			
	482,245	81	Weighted Average			
	390,480	78	80.97% Pervious Area			
	91,765	98	19.03% Impervious Area			

Summary for Subcatchment 3S: Old Stage/Windridge

Runoff	=	1.11 cfs @	12.34 hrs, Volume=	0.148 af, Depth= 0.07"
--------	---	------------	--------------------	------------------------

	Area	(ac) C	N Dese	cription		
*	0.	790 9	8 Root	ftop		
*	1.	430 9	8 Stree	et, drive &	sidewalk	
	12.	880 7		•	grazed, HS	GD
9.480 71 Meadow, non-grazed, HSG C						
	0.470 30 Meadow, non-grazed, HSG A					
	25.			ghted Aver		
				4% Pervio		
				% Impervi		
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•
_	23.8	150	0.0200	0.11		Sheet Flow, Overland/meadow
						Grass: Dense n= 0.240 P2= 2.20"
	11.9	1,620	0.0230	2.27		Shallow Concentrated Flow, Meadow
						Grassed Waterway Kv= 15.0 fps
	2.0	500	0.0120	4.10	12.89	Pipe Channel, Pipe
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
						n= 0.025 Corrugated metal
	1.0	500	0.0500	8.37	26.30	Pipe Channel, Pipe
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
_						n= 0.025 Corrugated metal
	20 7	0 770	Tatal			

Summary for Subcatchment 4S: Turtle Xing

Runoff = 1.26 cfs @ 12.07 hrs, Volume= 0.086 af, Depth= 0.16"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr WQv_Rainfall=0.90"

	Area	(ac) C	N Des	cription					
*	0.	000	98 Roo	Rooftop to raingardens < PAINCARDENS					
*	0.	500		Drives					
*	0.	980	98 Stre	Street & sidewalks					
	2.	460			over, Good				
	Ο.	800	39 >75°	% Grass c	over, Good	, HSG A			
_	<u> </u>	700	<u>61 >75'</u>	% Grass c	over, Good	, HSG B	<u> </u>		
	6.440 72 Weighted Average								
4.960 64 77.02% Pervious Area									
1.480 98 22.98% Impervious Area									
	Тс	Length	,	Velocity	Capacity	Description			
	<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)		<u> </u>		
	14.6	100	0.0300	0.11		Sheet Flow, Overland/lawn			
						Grass: Dense n= 0.240 P2= 2.20"			
	0.4	80	0.0500	3.35		Shallow Concentrated Flow, Lawn			
						Grassed Waterway Kv= 15.0 fps			
	0.5	125	0.0400	4.06		Shallow Concentrated Flow, Gutter			
_						Paved Kv= 20.3 fps			
	15.5	305	Total						

Summary for Subcatchment 5S: Portion Lawnwood

Runoff	=	0.29 cfs @	12.03 hrs, Volume=	0.016 af, Depth= 0.37"

_	Area	(ac) C	N Des	cription		
*	0.	520 9	93 MOE	D CN		
0.5		.520 9	93 100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)_	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	9.9	50	0.0200	0.08		Sheet Flow, Overland lawn Grass: Dense n= 0.240 P2= 2.20"
	0.2	25	0.0200	2.12		Shallow Concentrated Flow, Overland lawn Grassed Waterway Kv= 15.0 fps
	0.5	100	0.0300	3.52		Shallow Concentrated Flow, Gutter Paved Kv= 20.3 fps
-	10.6	175	Total			

Summary for Subcatchment 6S: Old Stage pave

Runoff = 2.01 cfs @ 11.92 hrs, Volume= 0.086 af, Depth= 0.69"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr WQv Rainfall=0.90"

	Area	(ac) C	N Des	cription		
* 1.490 98 Street & s				et & sidew	alk	
	1.	.490 9	98 100.	00% Impe	rvious Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	0.3	15	0.0250	0.85		Sheet Flow, Street Smooth surfaces n= 0.011 P2= 2.20"
	1.0	200	0.0250	3.21		Shallow Concentrated Flow, To gutter Paved Kv= 20.3 fps
	4.0	24E	Tatal			

1.3 215 Total

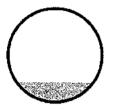
Summary for Subcatchment 7S: Portion Brookside

Runoff = 0.55 cfs @ 12.04 hrs, Volume= 0.033 af, Depth= 0.20"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr WQv_Rainfall=0.90"

	Area	(ac) C	N Des	cription		
*	2	.030 8	38 MOI) CN		
_	2.030 88 100.00% Pervious Area		ous Area			
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	9.9	50	0.0200	0.08		Sheet Flow, Overland lawn Grass: Dense n= 0.240 P2= 2.20"
	0.6	115	0.0430	3.11		Shallow Concentrated Flow, Lawn Grassed Waterway Kv= 15.0 fps
	10 E	105	Total			

10.5 165 Total


Summary for Reach 5R: Outfall

[52] Hint: Inlet/Outlet conditions not evaluated

Inflow Are	a =	46.601 ac, 15.66% Impervious, In	nflow Depth > 0.10" for WQv event	
Inflow	=	2.98 cfs @ 11.92 hrs, Volume=	0.408 af	
Outflow	=	2.96 cfs @ 11.93 hrs, Volume=	0.408 af, Atten= 1%, Lag= 0.4 m	in

Routing by Stor-Ind+Trans method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Max. Velocity= 6.08 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.72 fps, Avg. Travel Time= 0.8 min Peak Storage= 42 cf @ 11.92 hrs Average Depth at Peak Storage= 0.43' Bank-Full Depth= 2.00', Capacity at Bank-Full= 29.92 cfs

24.0" Round Pipe n= 0.025 Corrugated metal Length= 85.0' Siope= 0.0647 '/' Inlet Invert= 450.50', Outlet Invert= 445.00'

Summary for Pond 1P: Exist Pond

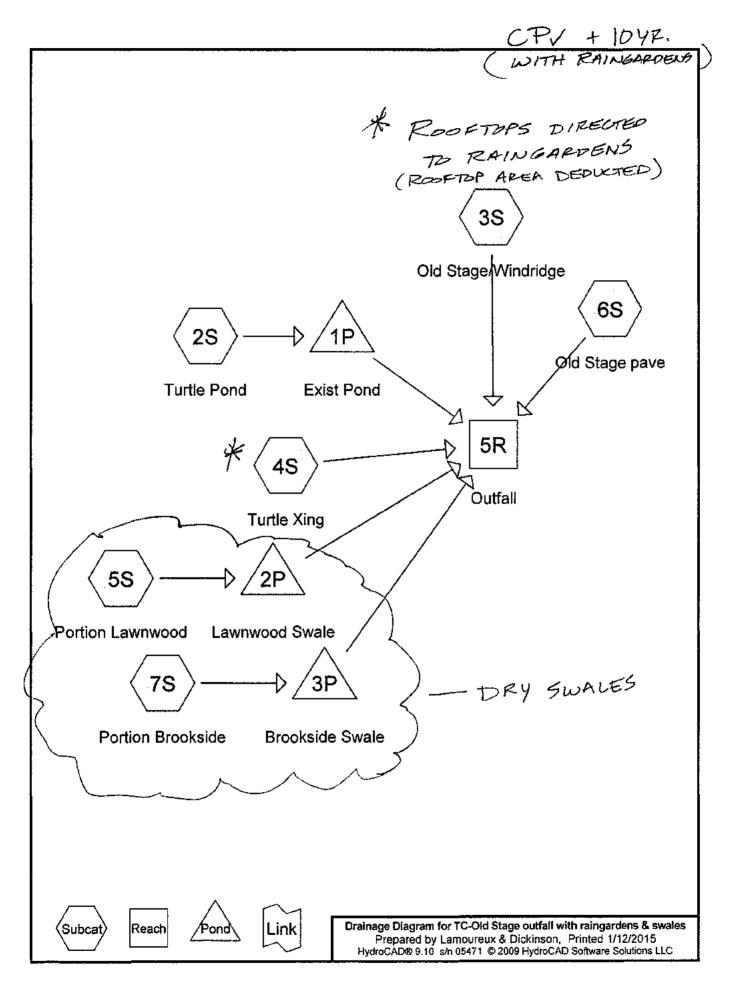
Inflow Area =	11.071 ac, 19.03% Impervious, Inflow D	epth = 0.16" for WQv event
Inflow =	2.93 cfs @ 11.90 hrs, Volume=	0.149 af
Outflow =	0.03 cfs @24.00 hrs, Volume=	0.087 af, Atten= 99%, Lag= 725.9 min
Primary =	0.03 cfs @24.00 hrs, Volume=	0.087 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Starting Elev= 485.48' Surf.Area= 19,918 sf Storage= 43,729 cf Peak Elev= 485.74' @ 24.00 hrs Surf.Area= 20,944 sf Storage= 49,115 cf (5,386 cf above start)

Plug-Flow detention time= (not calculated: initial storage excedes outflow) Center-of-Mass det. time= 1,219.4 min (2,043.1 - 823.7)

Volume	Inve	rt Avail.S	torage	Storage Description				
#1	482.50) ⁻ 119	,483 cf	Custom Stage Dat	ta (Irregular) Liste	d below (Recalc)		
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
482.5	50	9,856	364.0	0	0	9,856		
483.0	00	11,355	389.0	5,298	5,298	11,366		
484.(00	14,636	436.0	1 2,961	18,259	14,479		
486.5	50	24,031	561.0	47,851	66,110	24,474		
488.5	50	29,433	618.0	53,373	119,483	29,951		
Device	Routing	Inve	rt Outl	et Devices				
#1	Primary	487.5	X 6	2.0" x 2.0" Horiz. Overflow Grate X 6.00 columns X 6 rows C= 0.600 in 2.0" x 2.0" Grate Limited to weir flow at low heads				
#2 #3	Primary Secondar	485.4 y 486.6	6.48' 1.5" Vert. Control Orifice C= 0.600					

	TC-Old Stage outfall with raingarden Prepared by Lamoureux & Dickinson HydroCAD® 9.10 s/n 05471 © 2009 HydroCAD			24-hr WQv Rainfall=0.90" Printed 1/13/2015 Page 7				
Primary OutFlow Max=0.03 cfs @ 24.00 hrs HW=485.74' (Free Discharge) -1=Overflow Grate (Controls 0.00 cfs) -2=Control Orifice (Orifice Controls 0.03 cfs @ 2.16 fps)								
	Secondary OutFlow Max=0.00 cfs @ 0.00 l 	hrs HW=485.4	8' (Free Discharg	e)				
	Summary for	Pond 2P: La	awnwood Swale	DRY SWALE				
	Inflow = 0.29 cfs @ 12.03 hrs, \ Outflow = 0.13 cfs @ 12.17 hrs, \ Discarded = 0.13 cfs @ 12.17 hrs, \ Primary = 0.00 cfs @ 0.00 hrs, \ Routing by Stor-Ind method, Time Span= 0.0	/olume= /olume= /olume= /olume= 00-60.00 hrs, dt	0.016 af 0.000 af = 0.01 hrs	r WQv event 56%, Lag= 8.3 min ALL RUNDEE INFILTRATED				
Peak Elev= 482.41' @ 12.17 hrs Surf.Area= 398 sf Storage= 128 cf Plug-Flow detention time= 5.9 min calculated for 0.016 af (100% of inflow) Center-of-Mass det. time= 5.9 min (853.2 - 847.3) Volume Invert Avail.Storage Storage Description								
	· · · · · · · · · · · · · · · · · · ·		ta (Irregular) Listed	below (Recalc)				
	Elevation Surf.Area Perim. (feet) (sq-ft) (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>				
	482.00 236 124.0	0	0	236				
	483.00711146.0483.50977157.0	452 420	452 872	728 1,003				
	Device Routing Invert Outlet De							
			over Surface area vater Elevation = 47					
	#2 Primary 483.00' 24.0'' W 3	•						
	Discarded OutFlow Max=0.13 cfs @ 12.17	hrs HW=482.4	11' (Free Discharg	e)				
	Primary OutFlow Max=0.00 cfs @ 0.00 hrs -2=Overflow to gutter (Controls 0.00 cfs)		(Free Discharge)					
	Summary for	Pond 3P: B	rookside Swale	DRY SWALE				
~>	Inflow Area = 2.030 ac, 0.00% Imper Inflow = 0.55 cfs @ 12.04 hrs, Outflow = 0.34 cfs @ 12.13 hrs, Discarded = 0.34 cfs @ 12.13 hrs, Primary = 0.00 cfs @ 0.00 hrs, Routing by Stor-Ind method, Time Span= 0.00	/olume= /olume= /olume= /olume=	0.033 af 0.000 af	r WQv event 37%, Lag= 5.6 min AUL RUNDFF INFILTRATEO				


Peak Elev= 473.10' @ 12.13 hrs Surf.Area= 1,153 sf Storage= 108 cf

Plug-Flow detention time= 1.7 min calculated for 0.033 af (100% of inflow) Center-of-Mass det. time= 1.7 min (888.7 - 887.0)

Volume	Invert	Avail.	Storage	Storage Description					
#1	473.00	3	3,504 cf	Custom Stage Da	ta (Irregular) List	ed below (Recalc)			
Elevatio		urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
473.0	00	1,012	512.0	0	0	1,012			
474.(00	2,845	534.0	1,851	1,851	2,916			
474.5	50	3,790	545.0	1,653	3,504	3,899			
Device	Routing	Inve	ert Outle	et Devices					
#1	Discarded	473.0	0' 12.5	12.500 in/hr Exfiltration over Surface area					
			Con	ductivity to Groundy	water Elevation = -	470.00'			
#2	Primary	474.0	0' 24.0	" W x 7.0" H Vert. (Overflow to gutte	r C= 0.600			
D'				0.40 has 104/- 470					

Discarded OutFlow Max=0.34 cfs @ 12.13 hrs HW=473.10' (Free Discharge) **1=Exfiltration** (Controls 0.34 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=473.00' (Free Discharge)

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.470	30	Meadow, non-grazed, HSG A (3S)
2.080	39	>75% Grass cover, Good, HSG A (4S, 5S, 7S)
2.380	61	>75% Grass cover, Good, HSG B (4S, 7S)
9.480	71	Meadow, non-grazed, HSG C (3S)
5.499	74	>75% Grass cover, Good, HSG C (2S, 4S)
1.225	77	Woods, Good, HSG D (2S)
12.880	78	Meadow, non-grazed, HSG D (3S)
4.700	80	>75% Grass cover, Good, HSG D (2S)
0.500	98	Drives (4S)
0.340	98	Drives/rooftop (5S, 7S)
0.157	98	Gravel Drives (2S)
0.817	98	Paved Drives (2S)
0.617	98	Paved Road (2S)
0.516	98	Roofs (2S)
0.790	98	Rooftop (3S)
0.250	98	Street (5S, 7S)
1.490	98	Street & sidewalk (6S)
0.980	98	Street & sidewalks (4S)
1.430	98	Street, drive & sidewalk (3S)

Summary for Subcatchment 2S: Turtle Pond

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 17.91 cfs @ 11.90 hrs, Volume= 0.733 af, Depth= 0.79"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr 1 year Rainfall=2.10"

	Area (sf)	CN	Description
	132,381	74	>75% Grass cover, Good, HSG C
*	22,465	98	Roofs
*	6,837	98	Gravel Drives
	204,723	80	>75% Grass cover, Good, HSG D
*	35,569	98	Paved Drives
*	26,894	98	Paved Road
	53,376	77	Woods, Good, HSG D
	482,245	81	Weighted Average
	390,480	78	80.97% Pervious Area
	91,765	98	19.03% Impervious Area

Summary for Subcatchment 3S: Old Stage/Windridge

Runoff	=	7.75 cfs @	12.39 hrs,	Volume=	1.103 af,	Depth= 0.53"
--------	---	------------	------------	---------	-----------	--------------

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr 1 year Rainfall=2.10"

	Area	(ac) C	N Desc	cription						
*	0.	790 9	98 Rooftop							
*	1.	430 9		et, drive &	sidewalk					
					grazed, HS	GD				
				Meadow, non-grazed, HSG C						
				Meadow, non-grazed, HSG A						
				ted Aver						
			· · · · ·	4% Pervio						
				% Impervi						
	۷.	220 3	0.00	vo impervi	ous Alea					
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
_	23.8	150	0.0200	0.11		Sheet Flow, Overland/meadow				
						Grass: Dense n= 0.240 P2= 2.20"				
	11.9	1,620	0.0230	2.27		Shallow Concentrated Flow, Meadow				
		,		·		Grassed Waterway Kv= 15.0 fps				
	2.0	500	0.0120	4.10	12.89	Pipe Channel, Pipe				
		•••				24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'				
						n= 0.025 Corrugated metal				
	1.0	500	0.0500	8.37	26.30	Pipe Channel, Pipe				
				••••	20100	24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'				
						n= 0.025 Corrugated metal				
	38.7	2 770	Total							

Summary for Subcatchment 4S: Turtle Xing

Runoff 3.41 cfs @ 12.07 hrs, Volume= 0.291 af, Depth= 0.54" =

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr 1 year Rainfall=2.10"

	Area	(ac) C	N Des	cription					
*	0.	.000 9	98 Root	ftop to rain	gardens =	RAINGARDENIS			
*	0.	.500 🤅	98 Drive	es					
*				et & sidew	alks				
					over, Good				
					over, Good				
_	1.	.700 (31 >759	% Grass c	over, Good	, HSG B			
				ghted Avei	-				
				77.02% Pervious Area					
	1.	.480 9	98 22.9	8% Imper	/ious Area				
	τ.	h 11.	01	1 (- 1 14 -	Örn anlika	Description			
	TC (min)	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	14.6	100	0.0300	0.11		Sheet Flow, Overland/lawn			
						Grass: Dense n= 0.240 P2= 2.20"			
	0.4	80	0.0500	3.35		Shallow Concentrated Flow, Lawn			
						Grassed Waterway Kv= 15.0 fps			
	0.5	125	0.0400	4.06		Shallow Concentrated Flow, Gutter			
						Paved Kv= 20.3 fps			
	15.5	305	Total						

Summary for Subcatchment 5S: Portion Lawnwood

Runoff	=	0.51 cfs @	12.02 hrs	Volume=	0.031 of	Depth= 0.72"
RUHOH	-	0.31015(0)	12.02 (115,	voiunie-	0.00 i al,	

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr 1 year Rainfall=2.10"

	Area (ac)	CN	Description
*	0.080	98	Street
*	0.120	98	Drives/rooftop
_	0.320	39	>75% Grass cover, Good, HSG A
	0.520	62	Weighted Average
	0.320	39	61.54% Pervious Area
	0.200	98	38.46% Impervious Area

 Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
9.9	50	0.0200	0.08		Sheet Flow, Overland lawn
					Grass: Dense n= 0.240 P2= 2.20"
0.2	25	0.0200	2.12		Shallow Concentrated Flow, Overland lawn
					Grassed Waterway Kv= 15.0 fps
0.5	100	0.0300	3.52		Shallow Concentrated Flow, Gutter
 	·····		<u></u>	· · · · · · · · · · · · · · · · · · ·	Paved Kv= 20.3 fps
10.6	175	Total			

Summary for Subcatchment 6S: Old Stage pave

Runoff = 5.03 cfs @ 11.91 hrs, Volume= 0.233 af, Depth= 1.87"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr 1 year Rainfall=2.10"

	Area	(ac) C	N Des	cription		
*	1.	490 S	8 Stre	et & sidewa	alk	
	1.	490 9	100.	00% Imper	rvious Area	
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.3	15	0.0250	0.85		Sheet Flow, Street
						Smooth surfaces n= 0.011 P2= 2.20"
	1.0	200	0.0250	3.21		Shallow Concentrated Flow, To gutter
_						Paved Kv= 20.3 fps
	1.3	215	Total			

Summary for Subcatchment 7S: Portion Brookside

Runoff = 0.99 cfs @ 12.01 hrs, Volume= 0.061 af, Depth= 0.36"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr 1 year Rainfall=2.10"

	Area (ac)	CN	Description
*	0.170	98	Street
*	0.220	98	Drives/rooftop
	0.960	39	>75% Grass cover, Good, HSG A
_	0.680	61	>75% Grass cover, Good, HSG B
	2.030	58	Weighted Average
	1.640	48	80.79% Pervious Area
	0.390	98	19.21% Impervious Area

TC-Old Stage outfall with raingardens & swales

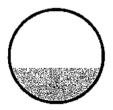
Prepared by Lamoureux & Dickinson HydroCAD® 9.10 s/n 05471 © 2009 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	9.9	50	0.0200	0.08		Sheet Flow, Overland lawn
			~ ~ / ~ ~	• • •		Grass: Dense n= 0.240 P2= 2.20"
	0.6	115	0.0430	3.11		Shallow Concentrated Flow, Lawn
-						Grassed Waterway Kv= 15.0 fps
	10.5	165	Total			

Summary for Reach 5R: Outfall

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 46.601 ac, 16.92% Impervious, Inflow Depth > 0.50" for 1 year event


 Inflow =
 9.20 cfs @ 12.34 hrs, Volume=
 1.929 af

 Outflow =
 9.19 cfs @ 12.35 hrs, Volume=
 1.929 af, Atten= 0%, Lag= 0.4 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Max. Velocity= 8.38 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.58 fps, Avg. Travel Time= 0.5 min

Peak Storage= 93 cf @ 12.34 hrs Average Depth at Peak Storage= 0.76' Bank-Full Depth= 2.00', Capacity at Bank-Full= 29.92 cfs

24.0" Round Pipe n= 0.025 Corrugated metai Length= 85.0' Slope= 0.0647 '/' Inlet Invert= 450.50', Outlet Invert= 445.00'

Summary for Pond 1P: Exist Pond

Inflow Area =	11.071 ac, 19.03% Impervious, Inflow Depth = 0.79" for 1 year event
Inflow =	17.91 cfs @ 11.90 hrs, Volume= 0.733 af
Outflow =	0.17 cfs @ 23.94 hrs, Volume= 0.303 af, Atten= 99%, Lag= 722.5 min
Primary =	0.06 cfs @ 23.94 hrs, Volume= 0.236 af
Secondary =	0.11 cfs @ 23.94 hrs, Volume= 0.067 af

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Starting Elev= 485.48' Surf.Area= 19,918 sf Storage= 43,729 cf Peak Elev= 486.69' @ 23.94 hrs Surf.Area= 24,524 sf Storage= 70,758 cf (27,029 cf above start)

Plug-Flow detention time= (not calculated: initial storage excedes outflow) Center-of-Mass det. time= 1,115.4 min (1,933.1 - 817.8)

-7

Type II 24-hr 1 year Rainfall=2.10" Printed 1/13/2015 Page 7

Prepared by Lamoureux & Dickinson	
HydroCAD® 9.10 s/n 05471 © 2009 HydroCAD Software Solutions LLC	

Volume	Invert	Avail.	Storage	Storage Description	on		
#1	482.50	11	9,483 cf	Custom Stage Da	i ta (Irregular) Listed	below (Recalc)	
Elevatio		urf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>	
482.5		9,856	364.0	0	0	9,856	
483.0		11,355	389.0	5,298	5,298	11,366	
484.0		14,636	436.0	12,961	18,259	14,479	
486.5	-	24,031	561.0	47,851	66,110	24,474	
488.5	50	29,433	618.0	53,373	119,483	29,951	
<u>Device</u>	Routing	Inv	ert Outle	et Devices			
#1	Primary	487.5	50' 2.0''	x 2.0" Horiz. Over	flow Grate X 6.00 co	olumns	
				rows C= 0.600 in 2.			
				ted to weir flow at lo			
#2	Primary			Vert. Control Orifi			
#3	Secondary	486.6		way, Cv= 2.62 (C=	3.28)		
				d (feet) 0.00 0.50			
			VVIOT	th (feet) 1.00 3.00			
└─2=Co Şecond	ary OutFlov	e (Orifice) v Max=0.1	Controls (0 cfs @ 2	0.06 cfs @ 5.16 fps) .69' (Free Discharg	e)	
		S	ummary	for Pond 2P: L	awnwood Swale	DRY	SWENCE
Inflow A	rea =	0.520 ac,	38.46% li	mpervious, Inflow (Depth = 0.72" for	1 year event	
Inflow				rs, Volume=	0.031 af	-	
Outflow	= ().20 cfs @	12,17 h	rs, Volume=	0.031 af, Atten= 6	51%, Lag= 9.1 r	nin
Discarde				rs, Volume=	0.031 af		
Primary	= (0.00 cfs @	0.00 h	rs, Voiume=	0.000 af		
	Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Peak Elev= <u>482.77'</u> @ 12.17 hrs Surf.Area= 580 sf Storage= <u>305 cf</u>						
	w detention of-Mass det.			lated for 0.031 af (.6 - 766.8)	100% of inflow)		
Volume	Invert	Avail.	Storage	Storage Description	<u>n</u>		
#1	482.00		872 cf	Custom Stage Da	ta (Irregular) Listed	below (Recalc)	

Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
482.00	236	124.0	0	0	236
483.00	711	146.0	452	452	728
483.50	977	157.0	420	872	1,003

Prepare	TC-Old Stage outfall with raingardens & swales Type II 24-hr 1 year Rainfall=2.10"Prepared by Lamoureux & DickinsonPrinted 1/13/2015HydroCAD® 9.10 s/n 05471 © 2009 HydroCAD Software Solutions LLCPage 8								
Device	Routing	Invert	Outlet	Devices					
#1	Discarded	482.00'		in/hr Exfiltration					
#2	Primary	483.00'		ctivity to Groundw V x 7.0" H Vert. O					
	Discarded OutFlow Max=0.20 cfs @ 12.17 hrs HW=482.77' (Free Discharge)								
	Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=482.00' (Free Discharge)								
		Sum	mary f	or Pond 3P: Br	ookside Swale	DRY SWALE			
Inflow Outflow Discarde Primary Routing Peak Ele Plug-Flo Center-c	Inflow Area = 2.030 ac, 19.21% Impervious, Inflow Depth = 0.36" for 1 year event Inflow = 0.99 cfs @ 12.01 hrs, Volume= 0.061 af Outflow = 0.48 cfs @ 12.14 hrs, Volume= 0.061 af, Atten= 52%, Lag= 7.6 min Discarded = 0.48 cfs @ 12.14 hrs, Volume= 0.061 af								
Volume #1	Invert 473.00'			torage Description		d balaw (Pasala)			
#1	475.00	3,50	4 CI 🤤	ustom Stage Dat	a (irregular) Eiste				
Elevatio			erim.	Inc.Store	Cum.Store	Wet.Area			
(fee			feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>			
473.0			12.0	0	0	1,012			
474.0 474.5			34.0 45.0	1,851 1,653	1,851 3,504	2,916 3,899			
		0,780 0	4J.V	1,000	0,004	0,000			
Device	Routing	Invert	Outlet	Devices					
#1	Discarded	473.00'		in/hr Exfiltration					
#2	Primary	474.00'		ctivity to Groundwa V x 7.0" H Vert. O					

Discarded OutFlow Max=0.48 cfs @ 12.14 hrs HW=473.33' (Free Discharge)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=473.00' (Free Discharge) ←2=Overflow to gutter (Controls 0.00 cfs)

Summary for Subcatchment 2S: Turtle Pond

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 36.65 cfs @ 11.90 hrs, Volume= 1.472 af, Depth= 1.60"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr 10 year Rainfall=3.20"

	Area (sf)	CN	Description
	132,381	74	>75% Grass cover, Good, HSG C
*	22,465	98	Roofs
*	6,837	98	Gravel Drives
	204,723	80	>75% Grass cover, Good, HSG D
*	35,569	98	Paved Drives
*	26,894	98	Paved Road
	53,376	77	Woods, Good, HSG D
	482,245	81	Weighted Average
	390,480	78	80.97% Pervious Area
	91,765	98	19.03% Impervious Area

Summary for Subcatchment 3S: Old Stage/Windridge

Runoff	=	20.33 cfs @	12.35 hrs, Volume=	2.523 af, Depth= 1.21"
--------	---	-------------	--------------------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr 10 year Rainfall=3.20"

	Area	(ac) C	N Dese	cription		
*	0.	790 9	8 Roof	ftop		
*	1.	430 9		et, drive &	sidewalk	
	12.	880 7			grazed, HS	GD
	9.	480 7			grazed, HS	
	0.	470 3			grazed, HS	
_	25.	050 7	76 Weig	ghted Aver	ade	
	22.	830 7		4% Pervio		
	2.	220 9	8.86	% Impervi	ous Area	
				•		
	Τ¢	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	23.8	150	0.0200	0.11		Sheet Flow, Overland/meadow
						Grass: Dense n= 0.240 P2= 2.20"
	11.9	1,620	0.0230	2.27		Shallow Concentrated Flow, Meadow
						Grassed Waterway Kv= 15.0 fps
	2.0	500	0.0120	4.10	12.89	Pipe Channel, Pipe
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
						n= 0.025 Corrugated metal
	1.0	500	0.0500	8.37	26.30	Pipe Channel, Pipe
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
						n= 0.025 Corrugated metal
	00 7	0 770	T-4-1			

Summary for Subcatchment 4S: Turtle Xing

Runoff = 7.66 cfs @ 12.08 hrs, Volume= 0.597 af, Depth= 1.11"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr 10 year Rainfall=3.20"

	Area	(ac) C	N Dese	cription			
*	0.	000 9)8 Root	ftop to rain	gardens		
*	0.	500 9	98 Drive	es	-		
*	0.	980 9	8 Stree	et & sidew	alks		
	2.	460 7			over, Good,		
					over, Good,		
	<u> </u>	<u>700 (</u>	61 > 759	% Grass c	over, Good,	HSG B	
	6.	440 7	2 Weig	ghted Avei	rage		
	4.	960 6	64 77.0	2% Pervio	us Area		
	1.	480 9	98 22.9	8% Imperv	vious Area		
	_					–	
	Tc	Length	Slope	Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	14.6	100	0.0300	0.11		Sheet Flow, Overland/lawn	
						Grass: Dense n= 0.240 P2= 2.20"	
	0.4	80	0.0500	3.35		Shallow Concentrated Flow, Lawn	
						Grassed Waterway Kv= 15.0 fps	
	0.5	125	0.0400	4.06		Shallow Concentrated Flow, Gutter	
						Paved Kv= 20.3 fps	
_					·····		

Summary for Subcatchment 5S: Portion Lawnwood

Runoff	-	0 78 cfs @	12.02 hrs, Volume=	0.049 af, Depth= 1.14"
Nullon	-	0.70 013 00	TZ.UZ ING, VOIUNIE-	

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr 10 year Rainfall=3.20"

	Area (ac)	CN	Description
*	0.080	98	Street
*	0.120	98	Drives/rooftop
	0.320	39	>75% Grass cover, Good, HSG A
	0.520	62	Weighted Average
	0.320	39	61.54% Pervious Area
	0.200	98	38.46% Impervious Area

Prepared by Lamoureux & Dickinson HydroCAD® 9.10 s/n 05471 © 2009 HydroCAD Software Solutions LLC

_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	9.9	50	0.0200	0.08		Sheet Flow, Overland lawn
						Grass: Dense n= 0.240 P2= 2.20"
	0.2	25	0.0200	2.12		Shallow Concentrated Flow, Overland lawn
						Grassed Waterway Kv= 15.0 fps
	0.5	100	0.0300	3.52		Shallow Concentrated Flow, Gutter
_						Paved Kv= 20.3 fps
	10.6	175	Total			

Summary for Subcatchment 6S: Old Stage pave

Runoff	-	7.77 cfs @	11.91 hrs,	Volume=	0.368 af, Depth= 2.9	97"
--------	---	------------	------------	---------	----------------------	-----

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr 10 year Rainfall=3.20"

_	Area	(ac) C	N Desc	cription		
7	· 1,	490 9	8 Stre	et & sidew	alk	
	1.	490 9	98 100.00% Impervious Area			
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	0.3	· · · ·	0.0250	0.85	(013)	Sheet Flow, Street
	1.0	200	0.0250	3.21		Smooth surfaces n= 0.011 P2= 2.20" Shallow Concentrated Flow, To gutter Paved Kv= 20.3 fps
-	1.3	215	Total			

Summary for Subcatchment 7S: Portion Brookside

Runoff = 1.53 cfs @ 12.01 hrs, Volume= 0.109 af, Depth= 0.64"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type il 24-hr 10 year Rainfall=3.20"

_	Area (ac)	CN	Description
*	0.170	98	Street
*	0.220	Drives/rooftop	
	0.960	39	>75% Grass cover, Good, HSG A
	0.680	61	>75% Grass cover, Good, HSG B
_	2.030	58	Weighted Average
	1.640	48	80.79% Pervious Area
	0.390	98	19.21% Impervious Area

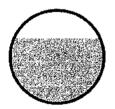
TC-Old	Stage o	utfall w	Type II 24-hr 10 year Rainfall=3.20"			
Prepare	d by Lam	oureux	& Dickins	Printed 1/13/2015		
HydroCA	D® 9.10 s	<u>/n 05471</u>	© 2009 H	Page 12		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	

_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
-	9.9	50	0.0200	0.08	She	et Flow, Overland lawn
					Gra	s: Dense n= 0.240 P2= 2.20"
	0.6	115	0.0430	3.11	Sha	llow Concentrated Flow, Lawn
_					Gra	sed Waterway Kv= 15.0 fps
	10.5	165	Total			

Summary for Reach 5R: Outfall

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 46.601 ac, 16.92% Impervious, Inflow Depth > 1.16" for 10 year event


 Inflow =
 25.04 cfs @ 12.34 hrs, Volume=
 4.522 af

 Outflow =
 25.02 cfs @ 12.34 hrs, Volume=
 4.522 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Max. Velocity= 10.66 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.98 fps, Avg. Travel Time= 0.5 min

Peak Storage= 200 cf @ 12.34 hrs Average Depth at Peak Storage= 1.40' Bank-Full Depth= 2.00', Capacity at Bank-Full= 29.92 cfs

24.0" Round Pipe n= 0.025 Corrugated metal Length= 85.0' Slope= 0.0647 '/' Inlet Invert= 450.50', Outlet Invert= 445.00'

Summary for Pond 1P: Exist Pond

Inflow Area =	11.071 ac, 19.03% Impervious, Inflow Depth = 1.60" for	10 year event
inflow =	36.65 cfs @ 11.90 hrs, Volume= 1.472 af	
Outflow =	1.80 cfs @ 12.80 hrs, Volume= 1.033 af, Atten= 1	95%, Lag= 54.2 min
Primary =	0.07 cfs @ 12.80 hrs, Volume= 0.249 af	
Secondary =	1.72 cfs @ 12.80 hrs, Volume= 0.784 af	

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Starting Elev= 485.48' Surf.Area= 19,918 sf Storage= 43,729 cf Peak Elev= 487.05' @ 12.80 hrs Surf.Area= 25,469 sf Storage= 79,789 cf (36,060 cf above start)

Plug-Flow detention time= 3,102.7 min calculated for 0.029 af (2% of inflow) Center-of-Mass det. time= 446.7 min (1,254.0 - 807.2)

Inver	t Avail.S	Storage	Storage Description	ו			
482.50	' 119	9,483 cf	Custom Stage Dat	a (Irregular) Listed	below (Recalc)		
n S	ourf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
0 0 0 0 0	9,856 11,355 14,636 24,031 29,433	364.0 389.0 436.0 561.0 618.0	0 5,298 12,961 47,851 53,373	0 5,298 18,259 66,110 119,483	9,856 11,366 14,479 24,474 29,951		
Routing		····		au Crato X 6 00 a	alumna		
Faillary	X 6 i		rows C= 0.600 in 2.0" x 2.0" Grate				
Primary Secondary		0' Spill Head	way, Cv= 2.62 (C= 3 I (feet) 0.00 0.50				
Primary OutFlow Max=0.07 cfs @ 12.80 hrs HW=487.05' (Free Discharge) -1=Overflow Grate (Controls 0.00 cfs) -2=Control Orifice (Orifice Controls 0.07 cfs @ 5.92 fps)							
	482.50 n S 0 0 0 0 Primary Primary Secondary OutFlow I erflow Gra	482.50' 119 n Surf.Area i) (sq-ft) 0 9,856 0 11,355 0 14,636 0 24,031 0 29,433 Routing Inversion Primary 487.5 Primary 485.4 Secondary 486.6 OutFlow Max=0.07 cf erflow Grate (Control	482.50' 119,483 cf n Surf.Area Perim. i) (sq-ft) (feet) 0 9,856 364.0 0 11,355 389.0 0 14,636 436.0 0 24,031 561.0 0 29,433 618.0 Routing Invert Outle Primary 487.50' 2.0" X 6 r Limit Primary 485.48' 1.5" Secondary 486.60' Spill Head Widt OutFlow Max=0.07 cfs @ 12.8 erflow Grate (Controls 0.00 cf	482.50' 119,483 cf Custom Stage Dat n Surf.Area Perim. Inc.Store i) (sq-ft) (feet) (cubic-feet) 0 9,856 364.0 0 0 11,355 389.0 5,298 0 14,636 436.0 12,961 0 24,031 561.0 47,851 0 29,433 618.0 53,373 Routing Invert Outlet Devices Primary 487.50' 2.0" x 2.0" Horiz. Overfit X 6 rows C= 0.600 in 2.0 Limited to weir flow at low Limited to weir flow at low Primary 485.48' 1.5" Vert. Control Orific Secondary 486.60' Spillway, Cv= 2.62 (C= 3) Head (feet) 0.00 0.50 Width (feet) 1.00 3.00 OutFlow Max=0.07 cfs @ 12.80 hrs Grate (Controls 0.00 cfs)	482.50' 119,483 cf Custom Stage Data (Irregular) Listed n Surf.Area Perim. Inc.Store Cum.Store b) (sq-ft) (feet) (cubic-feet) (cubic-feet) 0 9,856 364.0 0 0 0 0 11,355 389.0 5,298 5,298 0 14,636 436.0 12,961 18,259 0 24,031 561.0 47,851 66,110 0 29,433 618.0 53,373 119,483 Routing Invert Outlet Devices Primary 487.50' 2.0" x 2.0" Horiz. Overflow Grate X 6.00 cr X 6 rows C= 0.600 in 2.0" x 2.0" Grate Limited to weir flow at low heads Primary 485.48' 1.5" Vert. Control Orifice C= 0.600 Secondary 486.60' Spillway, Cv= 2.62 (C= 3.28) Head (feet) 0.00 0.50 Width (feet) 1.00 3.00 0 0 0.50 Width (feet) 1.00 3.00		

Secondary OutFlow Max=1.72 cfs @ 12.80 hrs HW=487.05' (Free Discharge) -3=Spillway (Weir Controls 1.72 cfs @ 1.99 fps)

Summary for Pond 2P: Lawnwood Swale

Inflow Area =	0.520 ac, 38.46% Impervious, Inflow De	epth = 1.14" for 10 year event
Inflow =	0.78 cfs @ 12.02 hrs, Volume=	0.049 af
Outflow =	0.39 cfs @ 12.14 hrs, Volume=	0.049 af, Atten= 50%, Lag= 7.4 min
Discarded =	0.26 cfs @ 12.14 hrs, Volume=	0.048 af
Primary =	0.13 cfs @ 12.14 hrs, Volume=	0.001 af

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Peak Elev= 483.07' @ 12.14 hrs Surf Area= 747 sf Storage= 505 cf

Plug-Flow detention time= 12.2 min calculated for 0.049 af (100% of inflow) Center-of-Mass det. time= 12.2 min (769.1 - 756.9)

Volume	Invert	Avail	.Storage	Storage Description	<u>ו</u>	
#1	482.00'		872 cf	Custom Stage Dat	a (Irregular) Listed	below (Recalc)
Elevation (feet)		.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
482.00		236	124.0	0	0	236
483.00		711	146.0	452	452	728
483.50		977	157.0	420	872	1,003

TC-Old Stage outfall with raingardens & swales

Prepared by Lamoureux & Dickinson HydroCAD® 9.10 s/n 05471 © 2009 HydroCAD Software Solutions LLC

Type II 24-hr 10 year Rainfall=3.20" Printed 1/13/2015 Page 13 TC-Old Stage outfall with raingardens & swales

Prepared by Lamoureux & Dickinson HydroCAD® 9.10 s/n 05471 © 2009 HydroCAD Software Solutions LLC

Type II 24-hr 10 year Rainfall=3.20" Printed 1/13/2015 Page 14

Device	Routing	Invert	Outlet Devices					
#1 Discarded 482.00'								
			Conductivity to Groundwater Elevation = 479.00'					
#2	Primary	483.00'	24.0" W x 7.0" H Vert. Overflow to gutter C= 0.600					

Discarded OutFlow Max=0.26 cfs @ 12.14 hrs HW=483.07' (Free Discharge) **1=Exfiltration** (Controls 0.26 cfs)

Primary OutFlow Max=0.13 cfs @ 12.14 hrs HW=483.07' (Free Discharge)

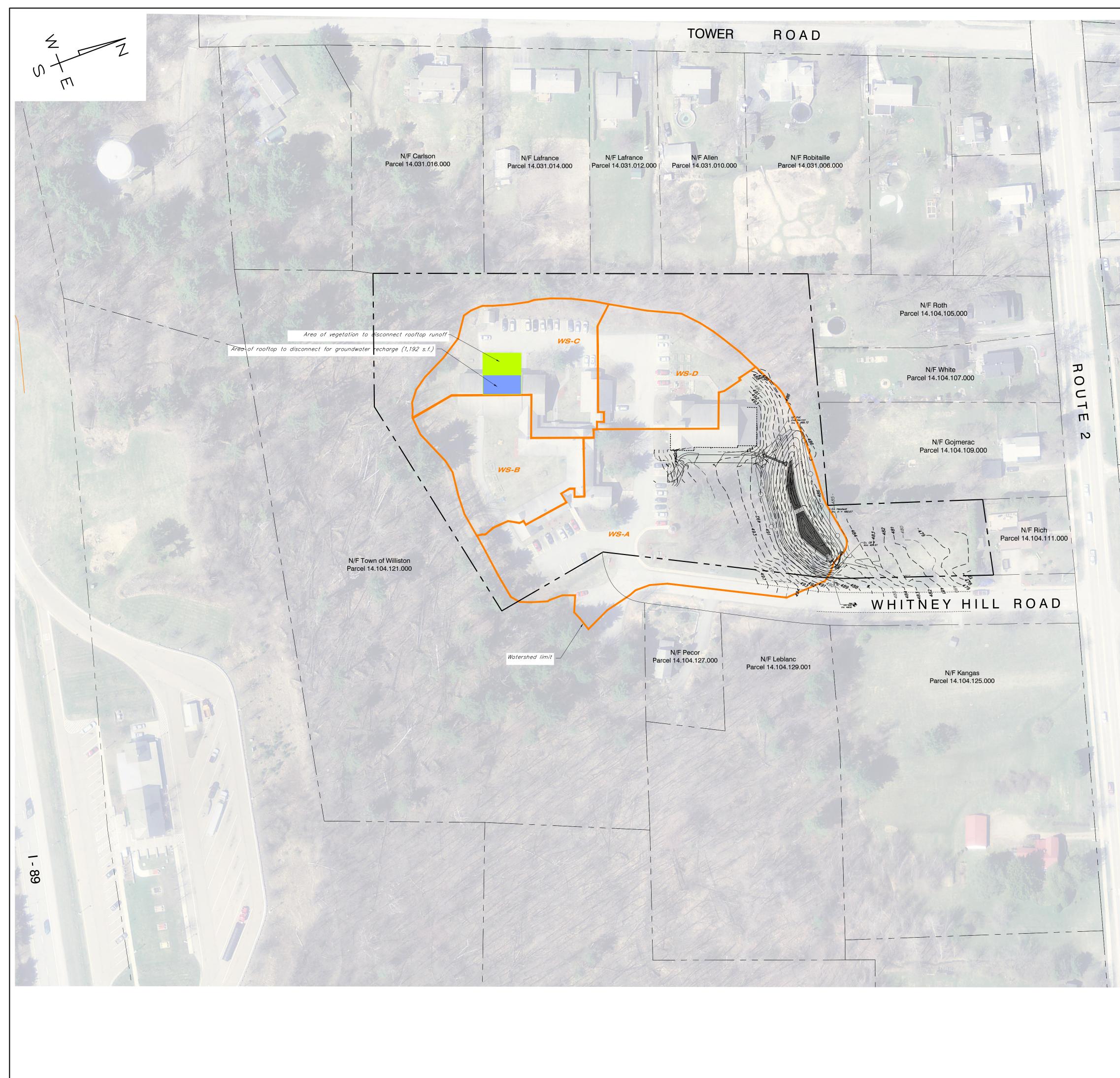
Summary for Pond 3P: Brookside Swale

Inflow Area =	2.030 ac, 19.21% Impervious, Inflow De	epth = 0.64" for 10 year event
Inflow =	1.53 cfs @ 12.01 hrs, Volume=	0.109 af
Outflow =	0.64 cfs @ 12.16 hrs, Volume=	0.109 af, Atten= 58%, Lag= 8.6 min
Discarded =	0.64 cfs @ 12.16 hrs, Volume=	0.109 af
Primary =	0.00 cfs @0.00 hrs, Volume≕	0.000 af

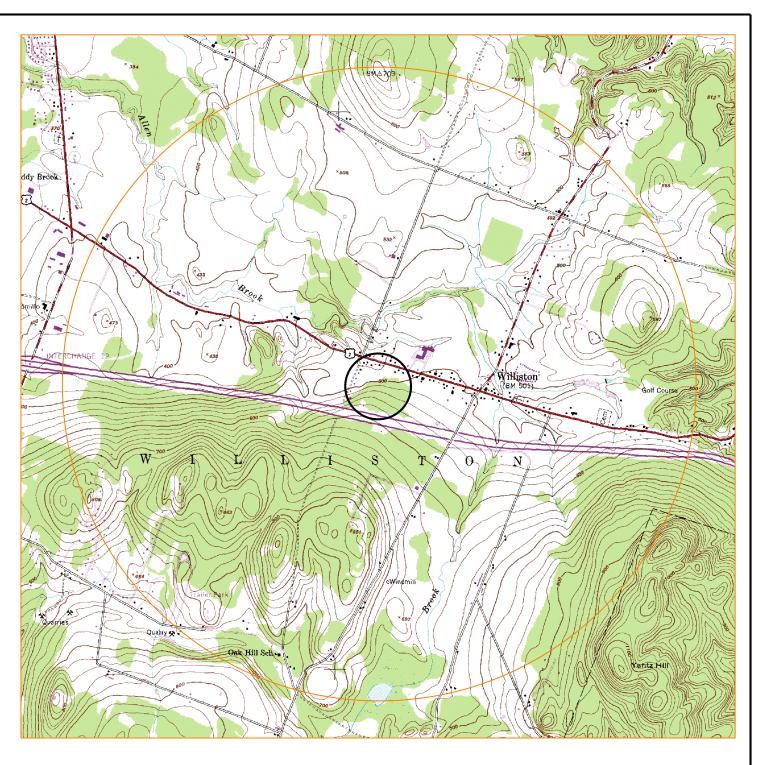
Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Peak Elev= 473.57' @ 12.16 hrs Surf.Area= 1,939 sf Storage= 823 cf

Plug-Flow detention time= 6.7 min calculated for 0.109 af (100% of inflow) Center-of-Mass det. time= 6.7 min (797.1 - 790.3)

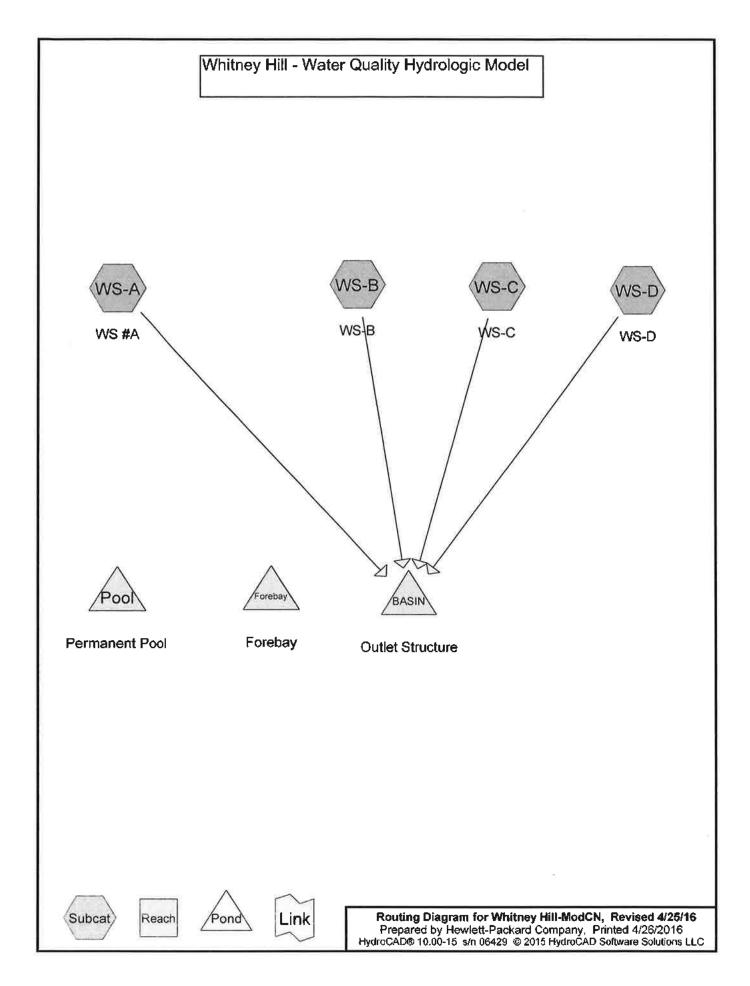
Volume	Inver	t Avail	Storage	Storage Description	n				
#1	473.00	*	3,504 cf	Custom Stage Da	ita (Irregular) Liste	d below (Recalc)			
Elevatio		urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
473.0 474.0 474.5	00	1,012 2,845 3,790	512.0 534.0 545.0	0 1,851 1,653	0 1,851 3,504	1,012 2,916 3,899			
Device	Routing	Inv	ert Outle	et Devices					
#1	Discarded	C		12.500 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 470.00' 24.0" W x 7.0" H Vert. Overflow to gutter C= 0.600					
#2	Primary								
Discard	Discorded OutElour May-0 64 of @ 12.16 bro. H\N=472.57 (Erec Discharge)								


Discarded OutFlow Max=0.64 cfs @ 12.16 hrs HW=473.57' (Free Discharge)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=473.00' (Free Discharge)



WILLISTON ELDER HOUSING: PERMIT 1-0963



LOCATION

NTS

Date revised		Description	Checked	Date
Design	WHN	Overall Site Plan		
Drawn	SLM/TJB			
Checked				
Scale	NTS	Whitney Hil		
Date	4/26/16			
Project	06229/14111	Whitney Hill Road	W	illiston, Vermont
		SING Consulting Engineers, Inc. et, Colchester, Vermont 05446	File name 14111 whit hill base 2015 Printing date 4/28/16	OV-1

Project Notes

Whitney Hill - Stormwater Model

Hydrologic Model Water Quality Storm using Modified Curve Number

Area Listing (all nodes)

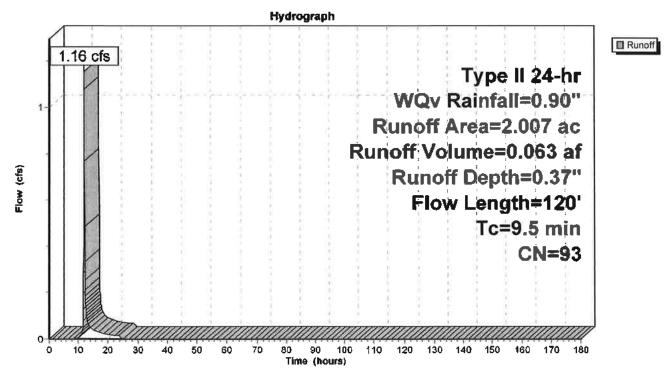
	Агеа	CN	Description
(a	acres)		(subcatchment-numbers)
	3.761	93	Mod CN (WS-A, WS-B, WS-C, WS-D)
	3.761	93	TOTAL AREA

Time span=0.00-180.00 hrs, dt=0.05 hrs, 3601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentWS-A: WS #A	Runoff Area=2.007 ac 0.00% Impervious Runoff Depth=0.37" Flow Length=120' Tc=9.5 min CN=93 Runoff=1.16 cfs 0.063 af
SubcatchmentWS-B: WS-B	Runoff Area=0.557 ac 0.00% Impervious Runoff Depth=0.37" Flow Length=820' Tc=20.4 min CN=93 Runoff=0.22 cfs 0.017 af
SubcatchmentWS-C:WS-C	Runoff Area=0.646 ac 0.00% Impervious Runoff Depth=0.37" Flow Length=1,060' Tc=14.0 min CN=93 Runoff=0.32 cfs 0.020 af
SubcatchmentWS-D:WS-D	Runoff Area=0.551 ac 0.00% Impervious Runoff Depth=0.37" Flow Length=350' Tc=7.5 min CN=93 Runoff=0.34 cfs 0.017 af
Pond BASIN: Outlet Structure	Peak Elev=481.88' Storage=2,707 cf Inflow=1.93 cfs 0.117 af Outflow=0.10 cfs 0.117 af
Pond Forebay: Forebay	Peak Elev=0.00' Storage=0 cf
Pond Pool: Permanent Pool	Peak Elev=0.00' Storage=0 cf

Total Runoff Area = 3.761 ac Runoff Volume = 0.117 af Average Runoff Depth = 0.37" 100.00% Pervious = 3.761 ac 0.00% Impervious = 0.000 ac

Summary for Subcatchment WS-A: WS #A


Runoff = 1.16 cfs @ 12.01 hrs, Volume= 0.063 af, Depth= 0.37"

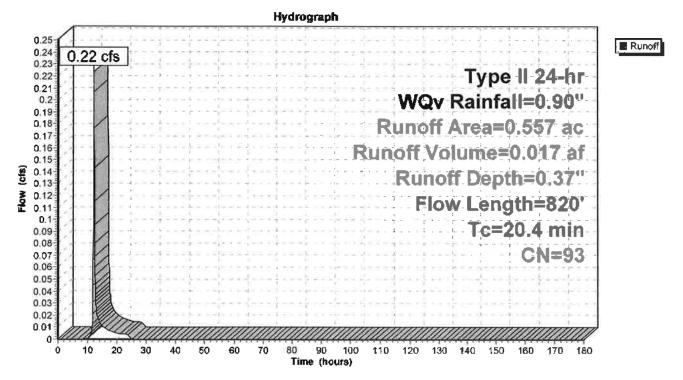
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-180.00 hrs, dt= 0.05 hrs Type II 24-hr WQv Rainfall=0.90"

_	Area	(ac)	CN	Desc	cription		
*	2.	007	93	3 Mod	CN		
	2.	007 [7 100.00% F		00% Pervi	ous Area	
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	9.4	ę	90	0.0700	0.16		Sheet Flow, Sheet Grass Grass: Dense n= 0.240 P2= 2.30"
	0.1	:	30	0.0800	4.55		Shallow Concentrated Flow, SC Lawn Unpaved Kv= 16.1 fps
_				-			

9.5 120 Total

Subcatchment WS-A: WS #A

Summary for Subcatchment WS-B: WS-B


0.017 af, Depth= 0.37" Runoff 0.22 cfs @ 12.14 hrs, Volume=

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-180.00 hrs, dt= 0.05 hrs Type II 24-hr WQv Rainfall=0.90"

	Area	(ac)	CN D	escription			
*	0.557		93 N	lod CN			
-	0.	557	1	00.00% Pen	ious Area		
	Tc (min)	Leng (fee				Description	
	16.8	10	0 0.02	0.10		Sheet Flow, Sheet Meadow	
	3.6	72	20 0.042	20 3.30		Grass: Dense n= 0.240 P2= 2.30" Shallow Concentrated Flow, Grass Unpaved Kv= 16.1 fps	
	20.4	82	20 Total				

820 Total

Subcatchment WS-B: WS-B

Whitney Hill-ModCN

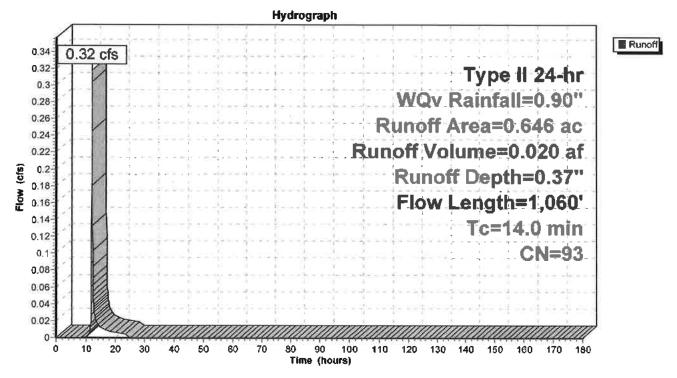
Prepared by Hewlett-Packard Company

Type II 24-hr WQv Rainfall=0.90" Revised 4/25/16 Printed 4/26/2016

HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solutions LLC

Page 7

Summary for Subcatchment WS-C: WS-C

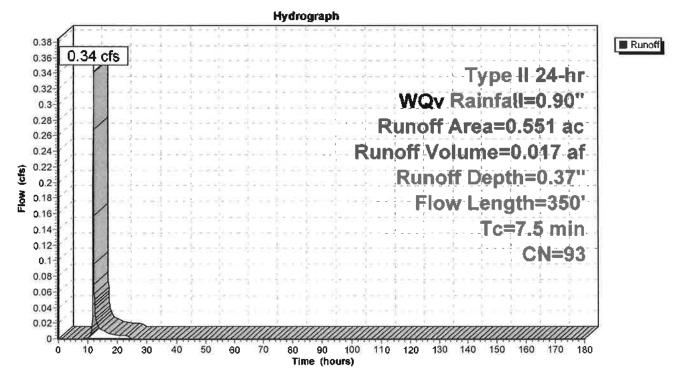

Runoff 0.32 cfs @ 12.07 hrs, Volume= 0.020 af, Depth= 0.37" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-180.00 hrs, dt= 0.05 hrs Type II 24-hr WQv Rainfall=0.90"

	Area	(ac)	CN Des	cription		
*	0.	646	93 Mod	CN		
	0.	646	100.	00% Pervi	ous Area	
	Tc (min)	Lengt (fee		Velocity (ft/sec)	Capacity (cfs)	Description
	10.8	10	0 0.0600	0.15		Sheet Flow, Sheet Meadow Grass: Dense n= 0.240 P2= 2.30"
	3.2	96	0 0.0940	4.94		Shallow Concentrated Flow, Grass Unpaved Kv= 16.1 fps
_						

14.0 1.060 Total

Subcatchment WS-C: WS-C


Summary for Subcatchment WS-D: WS-D

Runoff = 0.34 cfs @ 11.99 hrs, Volume= 0.017 af, Depth= 0.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-180.00 hrs, dt= 0.05 hrs Type II 24-hr WQv Rainfall=0.90"

	Area	(ac)	С	N Desc	ription		
*	0.	551	9	3 Mod	CN		
	0	.551		100.0	00% Pervi	ous Area	
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	
	5.7	3	30	0.0270	0.09		Sheet Flow, Sheet Meadow Grass: Dense n= 0.240 P2= 2.30"
	0.7	1	70	0.0500	1.57		Sheet Flow, pavement Smooth surfaces n= 0.011 P2= 2.30"
	1,1	25	50	0.0600	3.94		Shallow Concentrated Flow, Gras Meadow Unpaved Kv= 16.1 fps
	7.5	35	50	Total			

Subcatchment WS-D: WS-D

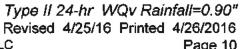
Summary for Pond BASIN: Outlet Structure

Inflow Area =	3.761 ac, 0.00% Impervious, Inflow Depth = 0.37"	for WQv event
inflow =	1.93 cfs @ 12.02 hrs, Volume= 0.117 af	
Outflow =).10 cfs @ 13.89 hrs, Volume= 0.117 af, Al	ten= 95%, Lag= 112.2 min
Primary =).10 cfs @ 13.89 hrs, Volume= 0.117 af	

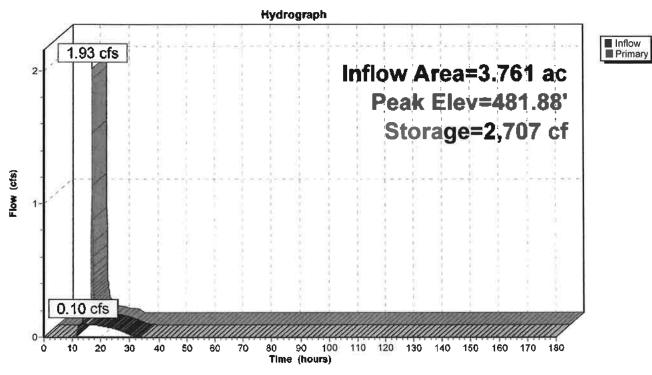
Routing by Stor-Ind method, Time Span= 0.00-180.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 481.88' @ 13.89 hrs Surf.Area= 3,080 sf Storage= 2,707 cf

Plug-Flow detention time= 351.2 min calculated for 0.117 af (100% of inflow) Center-of-Mass det. time= 351.7 min (1,199.9 - 848.2)

Volume	Inv	ert Avail.Sto	rage Storage I	Description		
#1	480.7	70' 23,04	43 cf Custom	of Custom Stage Data (Prismatic)Listed below (Recalc)		
Claustic		Quef Area	Inc. Charte	Church States		
Elevatio		Surf.Area	Inc.Store	Cum.Store		
(fee	∋t)	(sq-ft)	(cubic-feet)	(cubic-feet)		
480.7	70	1,475	0	0		
481.0	00	1,925	510	510		
483.0	00	4,555	6,480	6,990		
484.0	00	6,100	5,328	12,318		
485.5	50	8,200	10,725	23,043		
		,	,	,		
Device	Routing	Invert	Outlet Devices			
#1	Primary	480.70'	1.9" Vert. Orif	ice/Grate C=	0.600	
#2	Primary	483.50'	60.0" W x 12.0)" H Vert. Orifi	ice/Grate C= 0.600	
#3	Primary	483.50'	60.0" W x 12.0)" H Vert. Orifi	ice/Grate C= 0.600	
#4	Primary	484.00'	6.0' long x 6.0	0' breadth Bro	ad-Crested Rectangular Weir	
					0.80 1.00 1.20 1.40 1.60 1.80 2.00	
			2.50 3.00 3.5			
			Coef. (English)	2.37 2.51 2	70 2.68 2.68 2.67 2.65 2.65 2.65	
					2.72 2.76 2.83	
			1.00 1.00 1.0	- 1 1.00 1		
Primary		Max=0 10 cfs @	@ 13.89 hrs HW	/=481_88' (Fre	ee Discharge)	


Primary OutFlow Max=0.10 cfs @ 13.89 hrs HW=481.88' (Free Discharge)

-1=Orifice/Grate (Orifice Controls 0.10 cfs @ 5.05 fps)


-2=Orifice/Grate (Controls 0.00 cfs)

-3=Orifice/Grate (Controls 0.00 cfs)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Page 10

Pond BASIN: Outlet Structure

Summary for Pond Forebay: Forebay

Volume	Invert Avail.Storage			Storage Description			
#1	478.60'		531 cf	Custon	n Stage Data (P	rismatic)Listed below (Recalc)	
Elevation (feet)	Sur	f.Area (sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)		
478.60		55		0	0		
479.00 480.00 480.70		115 315 490		34 215 282	34 249 531	Forebay Volume =	
						0.012 ac-ft.	

10% WQv = 479 cubic feet Therefore 10% WQv provided in Forebay

Volume	Invert A	vail.Storage	Storage	Description				
				Storage Description				
#1	477.00' 2,453 cf		Custom Stage Data (Prismatic)Listed below (Recalc)					
				•	,			
Elevation	Surf.Are	ea Inc	Store	Cum.Store				
(feet)	(sq-	ft) (cubi	c-feet)	(cubic-feet)				
477.00	7	' 5	0	0				
478.60	52	20	476	476				
479.00	61	5	227	703				
480.00	1,09	90	853	1,555	Permanent Pool Volume			
480.70	1,47	′5	898	2,453	0.056 22 #			

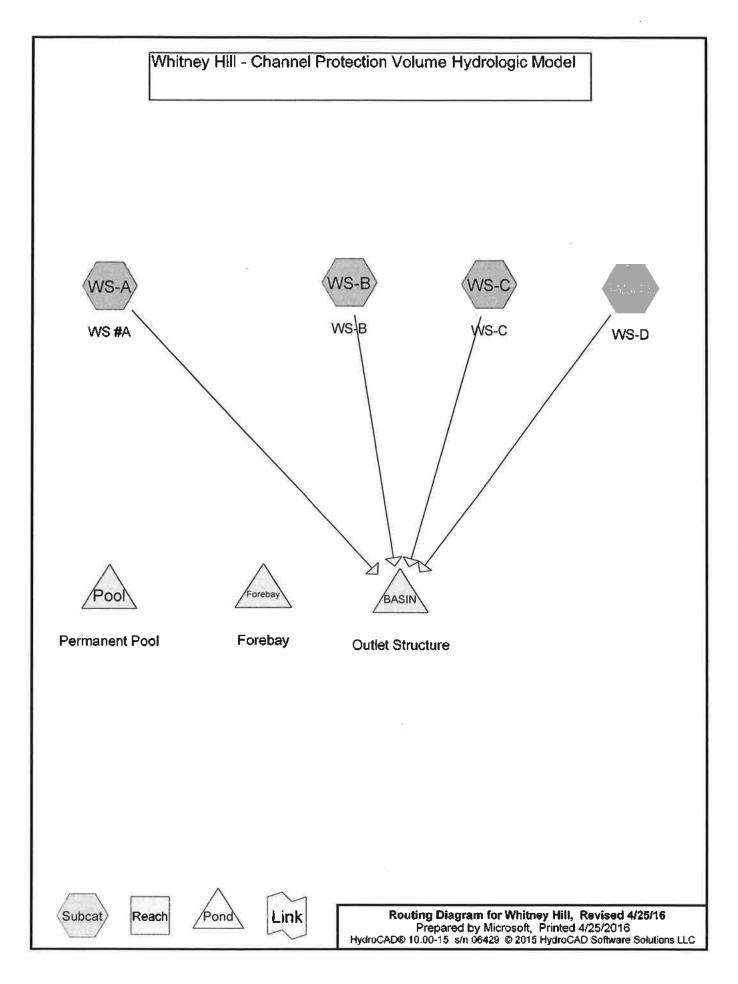
Summary for Pond Pool: Permanent Pool

0.056 ac-ft

Required WQv = 4,789 cubic feet. Need to rely on Extended Detention

Hydrograph for Pond BASIN: Outlet Structure

		Primary	
(hours) (cfs) (cubic-feet)	(feet)	(cfs)	
	480.70	0.00	
	480.70	0.00	WQv Storm
	480.70	0.00	
	481.86	0.10	/ released over
	481.59	0.09	approximately 15
	481.22	0.06	hours
	480.83	0.02	nours
	480.74	0.00	
	480.71	0.00	
	480.71	0.00	
	480.70	0.00	
	480.70	0.00	
	480.70	0.00	
	480.70	0.00	
	480.70	0.00	
	480.70	0.00	
	480 .70	0.00	
	480.70	0.00	
	480.70	0.00	
	480.70	0.00	
	480.70	0.00	
	480.70	0.00	
	480.70	0.00	
	480.70	0.00	
	480.70	0.00	
	480.70	0.00	
	480.70	0.00	
	480.70	0.00	
	480.70	0.00	
	480.70	0.00	
	480.70	0.00	
	480.70	0.00	
	480.70	0.00	
	480.70	0.00	
	480.70	0.00	
	480.70	0.00	
180.00 0.00 0	480.70	0.00	


Appendix - Channel Protection Volume

WHITNEY HILL

Williston, Vermont

ę

April 26, 2016

Project Notes

Whitney Hill - Stormwater Model

 $\widetilde{\mathcal{A}}$

1.5

Channel Protection Volume Calculations

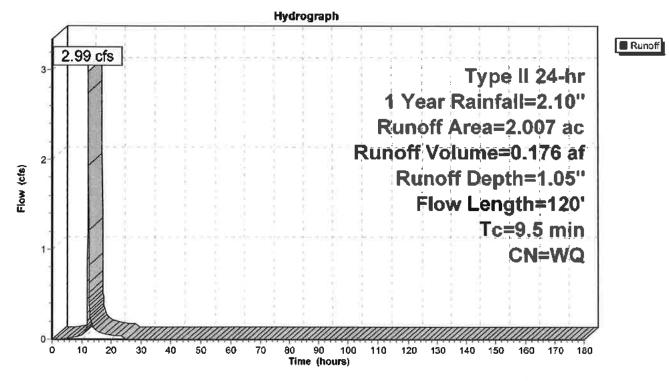
Whitney HillTypPrepared by MicrosoftReHydroCAD® 10.00-15s/n 06429© 2015HydroCAD Software Solutions LLC

Time span=0.00-180.00 hrs, dt=0.05 hrs, 3601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentWS-A: WS #A	Runoff Area=2.007 ac 35.48% Impervious Runoff Depth=1.05"
	Flow Length=120' Tc=9.5 min CN=WQ Runoff=2.99 cfs 0.176 af
SubcatchmentWS-B:WS-B	Runoff Area=0.557 ac 31.42% Impervious Runoff Depth≃0.96"
	Flow Length=820' Tc=20.4 min CN=WQ Runoff=0.53 cfs 0.045 af
SubcatchmentWS-C:WS-C	Runoff Area=0.646 ac 47.52% Impervious Runoff Depth=1.22"
	Flow Length=1,060' Tc=14.0 min CN=WQ Runoff=0.96 cfs 0.066 af
SubcatchmentWS-D: WS-D	Runoff Area=0.551 ac 41.74% Impervious Runoff Depth=1.15"
	Flow Length=350' Tc=7.5 min CN=WQ Runoff=0.95 cfs 0.053 af
Pond BASIN: Outlet Structure	Peak Elev=483.42' Storage=9,033 cf Inflow=5.16 cfs 0.339 af
	Outflow=0.15 cfs 0.339 af
Pond Forebay: Forebay	Peak Elev=0.00' Storage=0 cf
Rend Real: Remement Real	Peak Elev=0.00' Storage=0 cf
Pond Pool: Permanent Pool	Feak Elev-0.00 Storage-0 Cl

Total Runoff Area = 3.761 ac Runoff Volume = 0.339 af Average Runoff Depth = 1.08" 62.14% Pervious = 2.337 ac 37.86% Impervious = 1.424 ac

Page 4


Summary for Subcatchment WS-A: WS #A

Runoff = 2.99 cfs @ 12.01 hrs, Volume= 0.176 af, Depth= 1.05"

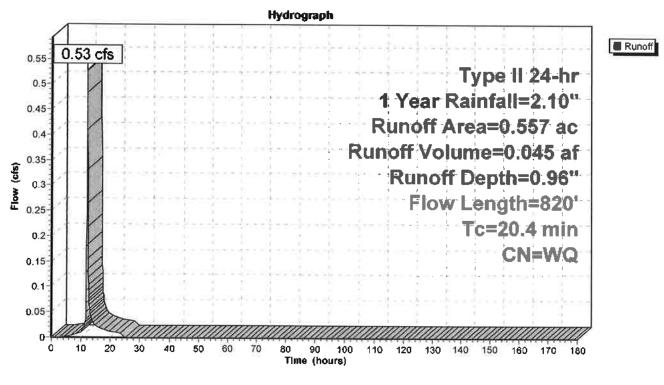
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-180.00 hrs, dt= 0.05 hrs Type II 24-hr 1 Year Rainfall=2.10"

1000	Area	(ac) C	N Des	cription			
*	0.	712	98 Imp	ervious			
	1.	088	80 >75'	% Grass co	over, Good	, HSG D	
-	0.	207	77 Woo	ds, Good,	HSG D		
	2.	007	Wei	ghted Aver	age		
	1.	295	64.5	2% Pervio	us Area		
0.712 35.48% Impervious Area					vious Area		
							<u>.</u>
	Тс	Length	Slope	Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	9.4	90	0.0700	0.16		Sheet Flow, Sheet Grass	
						Grass: Dense n= 0.240 P2= 2.30"	
	0.1	30	0.0800	4.55		Shallow Concentrated Flow, SC Lawn	
_						Unpaved Kv= 16.1 fps	
	9.5	120	Total				

Subcatchment WS-A: WS #A

Page 5

Summary for Subcatchment WS-B: WS-B


Runoff 0.53 cfs @ 12.13 hrs, Volume= 0.045 af, Depth= 0.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-180.00 hrs, dt= 0.05 hrs Type II 24-hr 1 Year Rainfall=2.10"

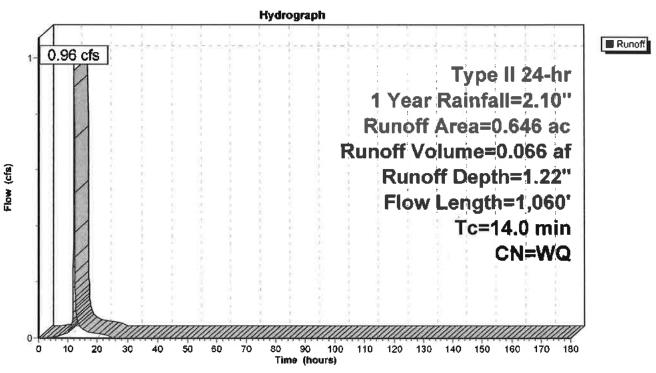
-	Area	(ac) C	N Desi	cription			
*	0.	175 9	98 Impe	ervious Are	a	· · · · · · · · · · · · · · · · · · ·	
	0.	137]	74 >759	% Grass co	over, Good	HSG C	
_	0.	245 8			over, Good		
	0.557 Weighted Average						
	0.	382	68.5	8% Pervio	uš Area		
	0.	175	31.4	2% Imperv	ious Area		
	Tc	Length	Slope	Velocity	Capacity	Description	
		Longui	olobe	roloony			
-	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
-		÷					
-	(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, Sheet Meadow Grass: Dense n= 0.240 P2= 2.30"	
-	(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, Sheet Meadow Grass: Dense n= 0.240 P2= 2.30"	
_	<u>(min)</u> 16.8	(feet) 100	(ft/ft) 0.0200	(ft/sec) 0.10		Sheet Flow, Sheet Meadow	

Total 820

Subcatchment WS-B: WS-B

Revised 4/25/16 Printed 4/25/2016

Page 6


Summary for Subcatchment WS-C: WS-C

Runoff 0.96 cfs @ 12.06 hrs, Volume= 0.066 af, Depth= 1.22"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-180.00 hrs, dt= 0.05 hrs Type II 24-hr 1 Year Rainfall=2.10"

	Area	(ac) (CN Des	cription			
*	0.	307	98 lmp	ervious Are	a		
0.339 80 >75% Grass cover, Good, HSG D						HSG D	
	0.	646	We	ighted Avei	age		
	0.	339	52.4	48% Pervio	us Area		
	0.	307	47.	52% Imperv	vious Area		
	Тс	Length			Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	10.8	100	0.0600	0.15		Sheet Flow, Sheet Meadow	
						Grass: Dense n= 0.240 P2= 2.30"	
	3.2	960	0.0940	4.94		Shallow Concentrated Flow, Grass	
						Unpaved Kv= 16.1 fps	
	14.0	1,060	Total				

Subcatchment WS-C: WS-C

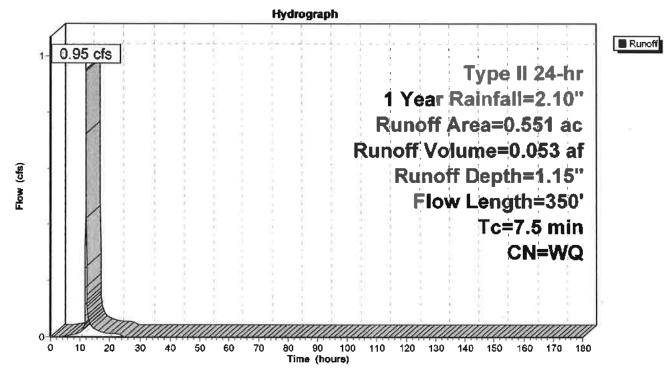
Whitney Hill

Prepared by Microsoft

Type II 24-hr 1 Year Rainfall=2.10" Revised 4/25/16 Printed 4/25/2016

HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solutions LLC

Page 7


Summary for Subcatchment WS-D: WS-D

Runoff = 0.95 cfs @ 11.99 hrs, Volume= 0.053 af, Depth= 1.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-180.00 hrs, dt= 0.05 hrs Type II 24-hr 1 Year Rainfall=2.10"

_	Area	(ac) C	N Dese	cription		
*	0.	230	98 Impe	ervious Are	a	
	0.	321			over, Good,	, HSG D
	0.	551		phted Aver		
	0.	321		6% Pervio		
	0.	230	41.7	4% Imperv	vious Area	
				•		
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.7	30	0.0270	0.09		Sheet Flow, Sheet Meadow
						Grass: Dense n= 0.240 P2= 2.30"
	0.7	70	0.0500	1.57		Sheet Flow, pavement
						Smooth surfaces n= 0.011 P2= 2.30"
	1.1	250	0.0600	3.94		Shallow Concentrated Flow, Gras Meadow
_						Unpaved Kv= 16.1 fps
	7.5	350	Total			

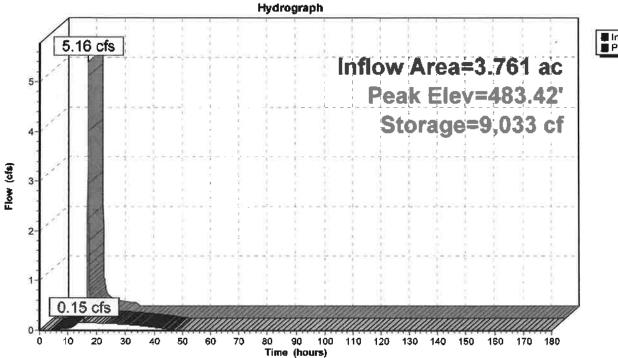
Subcatchment WS-D: WS-D

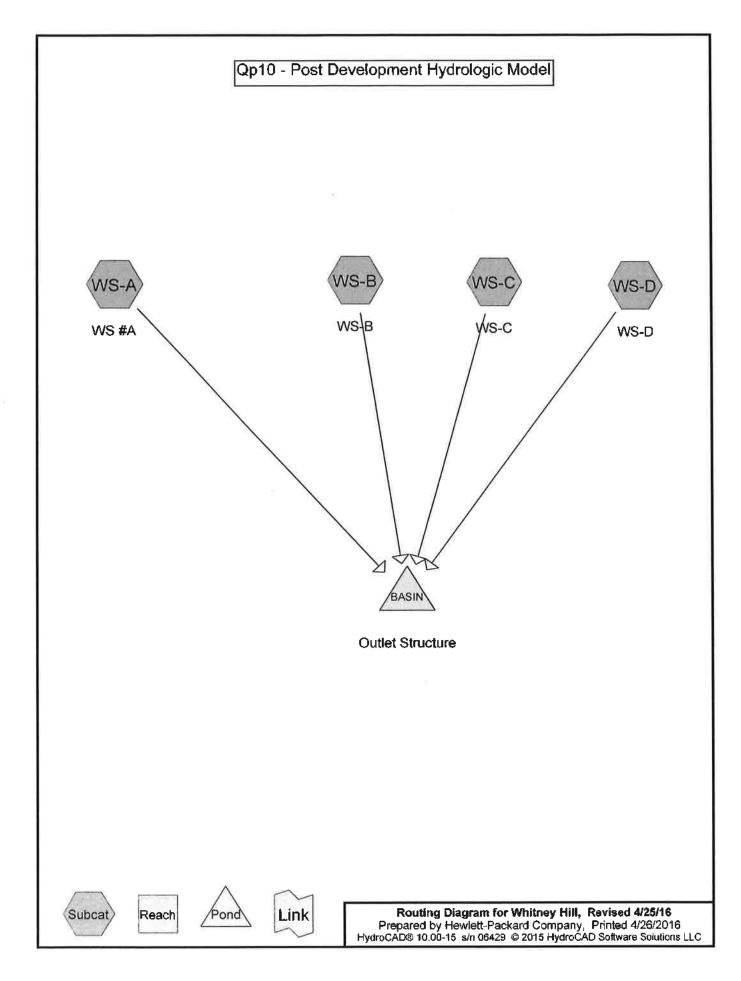
Summary for Pond BASIN: Outlet Structure

Inflow Are Inflow Outflow Primary	=	3.761 ac, 37.6 5.16 cfs @ 12 0.15 cfs @ 15 0.15 cfs @ 15	2.01 hrs, Vol 5.63 hrs, Vol	ume= 0.3 ume= 0.3	= 1.08" for 1 Yearevent 39 af 39 af, Atten= 97%, Lag= 216.8 min 39 af
				180.00 hrs, dt= 0.0 ,202 sf Storage=	
Plug-Flow Center-of- Volume	detentior Mass det	time= 686.2 m 11.4 hc	<u>nin (1,</u> 489.5 - ours	l for 0.339 af (100 - 803.3) ge Description	% of inflow)
#1	480.70				rismatic)Listed below (Recalc)
Elevation (feet) 480.70 481.00 483.00 484.00 485.50		Surf.Area (sq-ft) 1,475 1,925 4,555 6,100 8,200	Inc.Store (cubic-feet) 0 510 6,480 5,328 10,725	Cum.Store (cubic-feet) 0 510 6,990 12,318 23,043	1.9" low flow orifice
#1 F #2 F #3 F	Routing Primary Primary Primary Primary	Invert 480.70' 483.50' 483.50' 484.00'	60.0" W x 1 60.0" W x 1 6.0' long x Head (feet) 2.50 3.00 Coef. (Engli	Drifice/Grate C= 2.0" H Vert. Orifi 2.0" H Vert. Orifi 6.0' breadth Bro 0.20 0.40 0.60 3.50 4.00 4.50 5	ce/Grate C= 0.600 ce/Grate C= 0.600 ad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 5.00 5.50 70 2.68 2.67 2.65 2.65 2.65

Primary OutFlow Max=0.15 cfs @ 15.63 hrs HW=483.42' (Free Discharge)

-1=Orifice/Grate (Orifice Controls 0.15 cfs @ 7.82 fps)


-2=Orifice/Grate (Controls 0.00 cfs) -3=Orifice/Grate (Controls 0.00 cfs)


-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Hydrograph Inflow
Primary 5.16 cfs Inflow Area=3.761 ac 5 Peak Elev=483.42' Storage=9,033 cf 4 3 2 1 0.15 cfs

Pond BASIN: Outlet Structure

Page 9

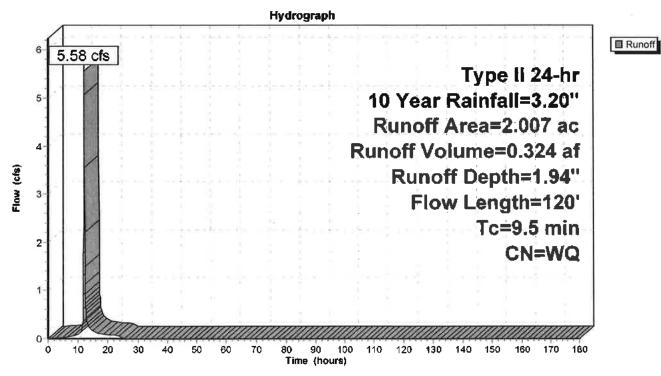
Project Notes

Whitney Hill - Stormwater Model

Overbank Flood Protection Treatment Standard Hydrologic Model

Time span=0.00-180.00 hrs, dt=0.05 hrs, 3601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentWS-A: WS #A	Runoff Area=2.007 ac 35.48% Impervious Runoff Depth=1.94" Flow Length=120' Tc=9.5 min CN=WQ Runoff=5.58 cfs 0.324 af
SubcatchmentWS-B:WS-B	Runoff Area=0.557 ac 31.42% Impervious Runoff Depth=1.80" Flow Length=820' Tc=20.4 min CN=WQ Runoff=1.03 cfs 0.084 af
SubcatchmentWS-C:WS-C	Runoff Area=0.646 ac 47.52% Impervious Runoff Depth=2.15" Flow Length=1,060' Tc=14.0 min CN=WQ Runoff=1.70 cfs 0.116 af
SubcatchmentWS-D:WS-D	Runoff Area=0.551 ac 41.74% Impervious Runoff Depth=2.06" Flow Length=350' Tc=7.5 min CN=WQ Runoff=1.73 cfs 0.094 af
Pond BASIN: Outlet Structure	Peak Elev=483.84' Storage=11,358 cf Inflow=9.54 cfs 0.618 af Outflow=3.94 cfs 0.617 af

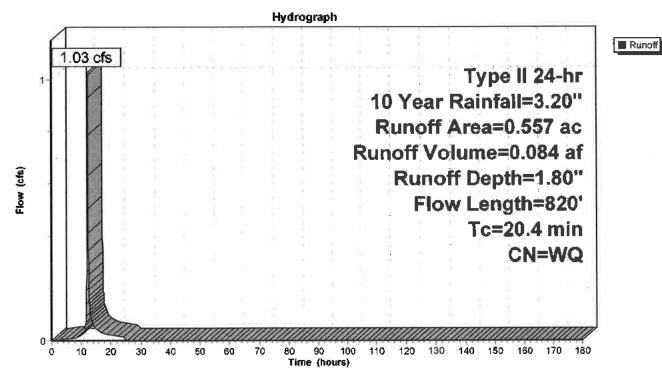

Summary for Subcatchment WS-A: WS #A

Runoff = 5.58 cfs @ 12.01 hrs, Volume= 0.324 af, Depth= 1.94"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-180.00 hrs, dt= 0.05 hrs Type II 24-hr 10 Year Rainfall=3.20"

	Area	(ac) (N Des	cription			_
*	0.	712	98 Impe	ervious			
	1.	088	80 >75	% Grass co	over, Good,	, HSG D	
	0.	207	77 Woo	ds, Good,	HSG D		
	2.007 Weighted Average						
	1.	295	64.5	2% Pervio	us Area		
	0.	712	35.4	8% Imperv	ious Area		
	Tc	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	9.4	90	0.0700	0.16		Sheet Flow, Sheet Grass	
						Grass: Dense n= 0.240 P2= 2.30"	
	0.1	30	0.0800	4.55		Shallow Concentrated Flow, SC Lawn	
_						Unpaved Kv= 16.1 fps	
	9.5	120	Total				

Subcatchment WS-A: WS #A

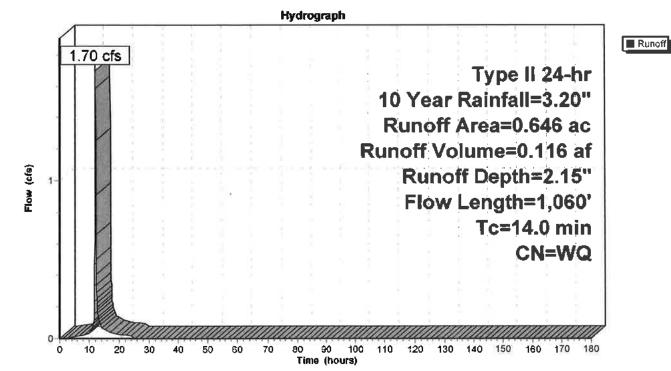

Summary for Subcatchment WS-B: WS-B

Runoff = 1.03 cfs @ 12.13 hrs, Volume= 0.084 af, Depth= 1.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-180.00 hrs, dt= 0.05 hrs Type II 24-hr 10 Year Rainfall=3.20"

<i>v</i> =	Area	(ac)	CN	Desc	ription			
*	0.	175	98	Impe	rvious Are	a		
	0.	137				over, Good,		
	0.	245	80	>75%	6 Grass co	over, Good,	, HSG D	
	0.557 Weighted Average							
	0.	382			8% Pervio			
	0.	175		31.4	2% Imperv	ious Area		
	Tc (min)	Length (feet)		iope ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	16.8	100	0.0	200	0.10		Sheet Flow, Sheet Meadow	
	3.6	720	0.0	420	3.30		Grass: Dense n= 0.240 P2= 2.30" Shallow Concentrated Flow, Grass Unpaved Kv= 16.1 fps	
	20.4	820) Tot	tal				

Subcatchment WS-B: WS-B

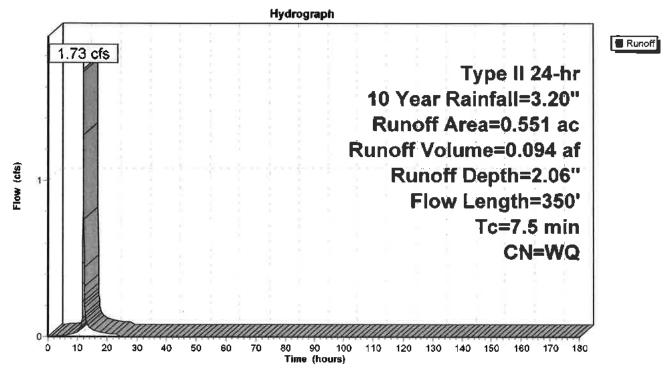

Summary for Subcatchment WS-C: WS-C

Runoff	=	1.70 cfs @	12.06 hrs.	Volume=	0.116 af,	Depth= 2.15"
--------	---	------------	------------	---------	-----------	--------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-180.00 hrs, dt= 0.05 hrs Type II 24-hr 10 Year Rainfall=3.20"

	Area	(ac) (CN De	scription			
*	0	307	98 lm	pervious Are	ea		
-	0.	339	80 >7	5% Grass c	over, Good,	, H\$G D	
10	0	.646	We	eighted Ave	rage		
	0.	.339	52	48% Pervic	us Area		
	0.	.307	47	52% Imper	vious Area		
	Tc (min)	Length (feet)	•		Capacity (cfs)	Description	
	10.8	100	0.060	0.15		Sheet Flow, Sheet Meadow	
						Grass: Dense n= 0.240 P2= 2.30"	
	3.2	960	0.094) 4.94		Shallow Concentrated Flow, Grass	
-						Unpaved Kv= 16.1 fps	
	14.0	1,060	Total				

Subcatchment WS-C: WS-C


Summary for Subcatchment WS-D: WS-D

Runoff = 1.73 cfs @ 11.99 hrs, Volume= 0.094 af, Depth= 2.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-180.00 hrs, dt= 0.05 hrs Type II 24-hr 10 Year Rainfall=3.20"

-	Area	(ac) C	N Desc	cription		
*	0.	230 9	98 Impe	ervious Are	a	
~	0.	321 8	30 >759	% Grass c	over, Good,	, HSG D
	0.	551	Weig	ghted Aver	age	
	0.	321	58.2	6% Pervio	us Area	
	0.	230	41.7	4% Impen	ious Area	
	_					
	T¢	Length	Slope	Velocity	Capacity	Description
-	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.7	30	0.0270	0.09		Sheet Flow, Sheet Meadow
						Grass: Dense n= 0.240 P2= 2.30"
	0.7	70	0.0500	1.57		Sheet Flow, pavement
						Smooth surfaces n= 0.011 P2= 2.30"
	1.1	250	0.0600	3.94		Shallow Concentrated Flow, Gras Meadow
-						Unpaved Kv= 16.1 fps
	7.5	350	Total			

Subcatchment WS-D: WS-D

Whitney Hill

Type II 24-hr 10 Year Rainfall=3.20" Revised 4/25/16 Printed 4/26/2016

 Prepared by Hewlett-Packard Company
 Revised 4/25/16 Printe

 HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solutions LLC

Page 8

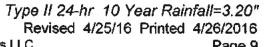
Post Development Peak Discharge	Summary for Pond BASIN: Outlet Structure
Inflow = Outflow =	3.761 ac, 37.86% Impervious, Inflow Depth = 1.97" for 10 Year event 9.54 cfs @ 12.01 hrs, Volume= 0.618 af 0.94 cfs @ 12.20 hrs, Volume= 0.617 af, Atten= 59%, Lag= 11.0 min 3.94 cfs @ 12.20 hrs, Volume= 0.617 af

Routing by Stor-Ind method, Time Span= 0.00-180.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 483.84' @ 12.20 hrs Surf.Area= 5,852 sf Storage= 11,358 cf

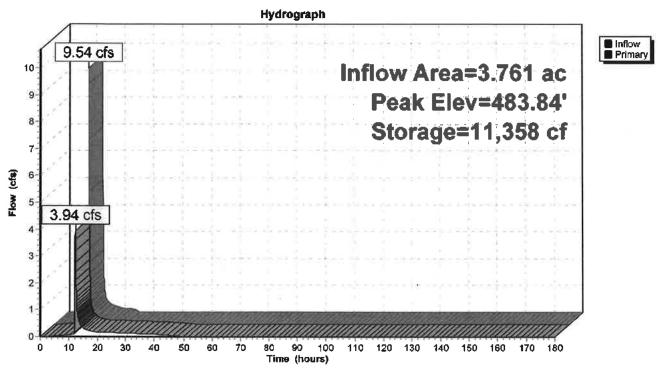
Plug-Flow detention time= 477.2 min calculated for 0.617 af (100% of inflow) Center-of-Mass det. time= 476.0 min (1,271.7 - 795.7)

Volume	Inv	ert Avail.Sto	orage Storage I	Description	
#1	480.	70' 23,0	43 cf Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatio (fee 480.7 481.0	et) 70	Surf.Area (sq-ft) 1,475 1,925	Inc.Store (cubic-feet) 0 510	Cum.Store (cubic-feet) 0 510	
483.0		4,555	6,480	6,990	
484.0	00	6,100	5,328	12,318	
485.3	50	8,200	10,725	23,043	
Device #1 #2 #3 #4	Routing Primary Primary Primary Primary	Invert 480.70'	Outlet Devices 1.9" Vert. Orif 60.0" W x 12.0 18.0" Vert. Or 6.0' long x 6.0 Head (feet) 0. 2.50 3.00 3.5 Coef. (English) 2.65 2.66 2.6	ice/Grate C=)" H Vert. Orifi ifice/Grate C: 0' breadth Bro 20 0.40 0.60 0 4.00 4.50 5) 2.37 2.51 2.	ce/Grate C= 0.600 = 0.600 ad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 5.00 5.50 70 2.68 2.68 2.67 2.65 2.65 2.65 2.72 2.76 2.83

Primary OutFlow Max=3.92 cfs @ 12.20 hrs HW=483.84' (Free Discharge)


-1=Orifice/Grate (Orifice Controls 0.17 cfs @ 8.42 fps)

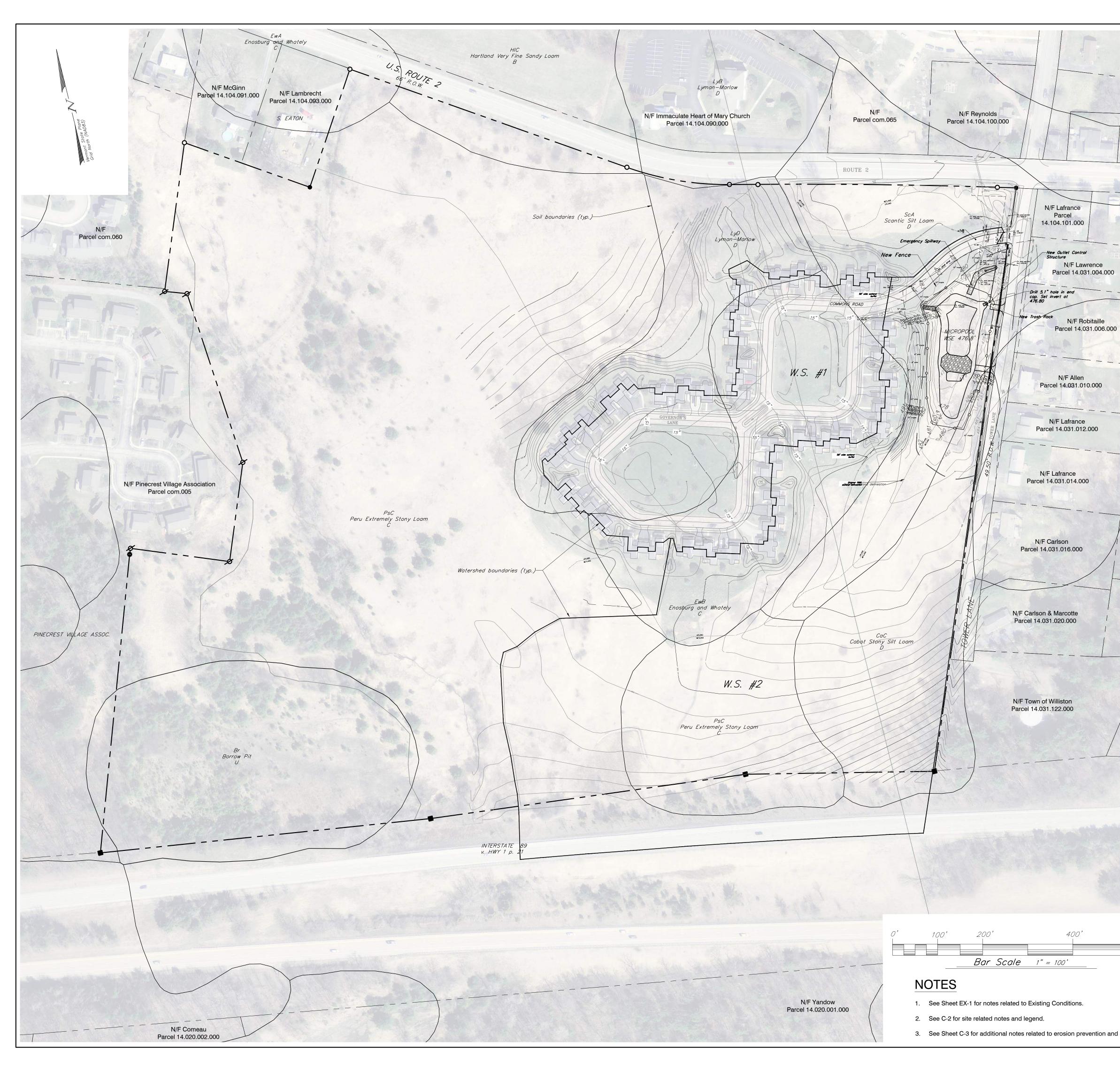
-2=Orifice/Grate (Orifice Controls 3.16 cfs @ 1.87 fps)

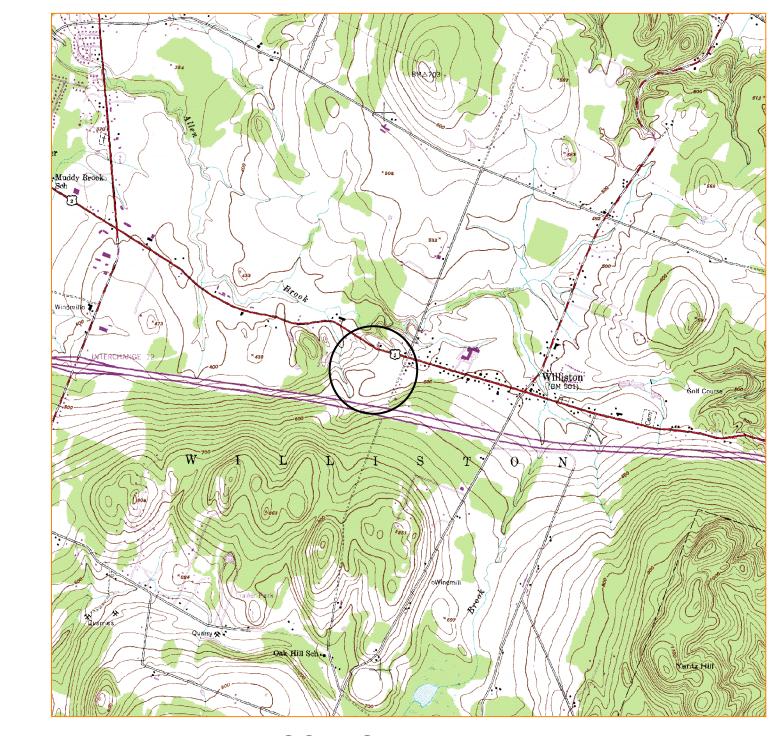

-3=Orifice/Grate (Orifice Controls 0.59 cfs @ 1.98 fps)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

3.94 cfs	<	5.38	cfs
----------	---	------	-----

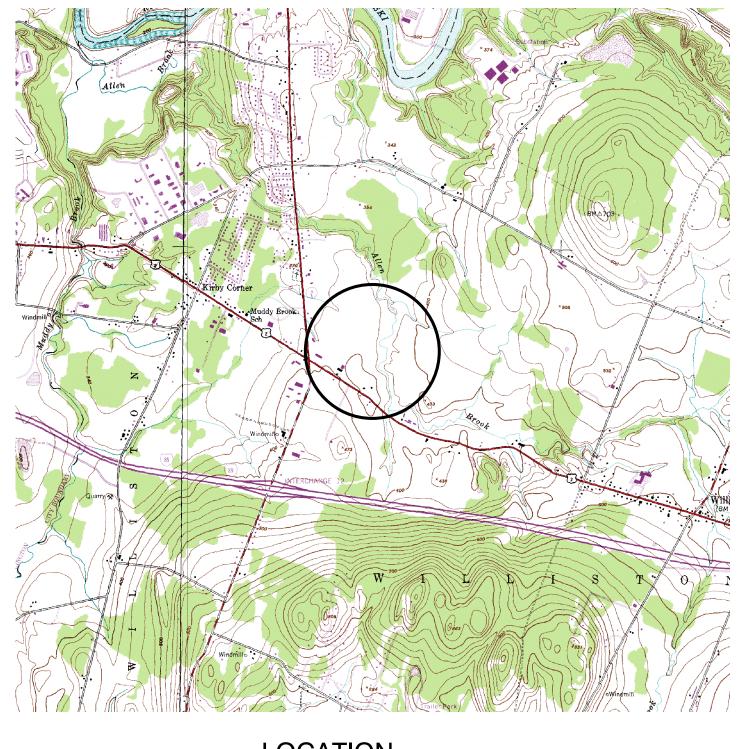
Page 9




Pond BASIN: Outlet Structure

COMMONS: PERMIT 1-1052

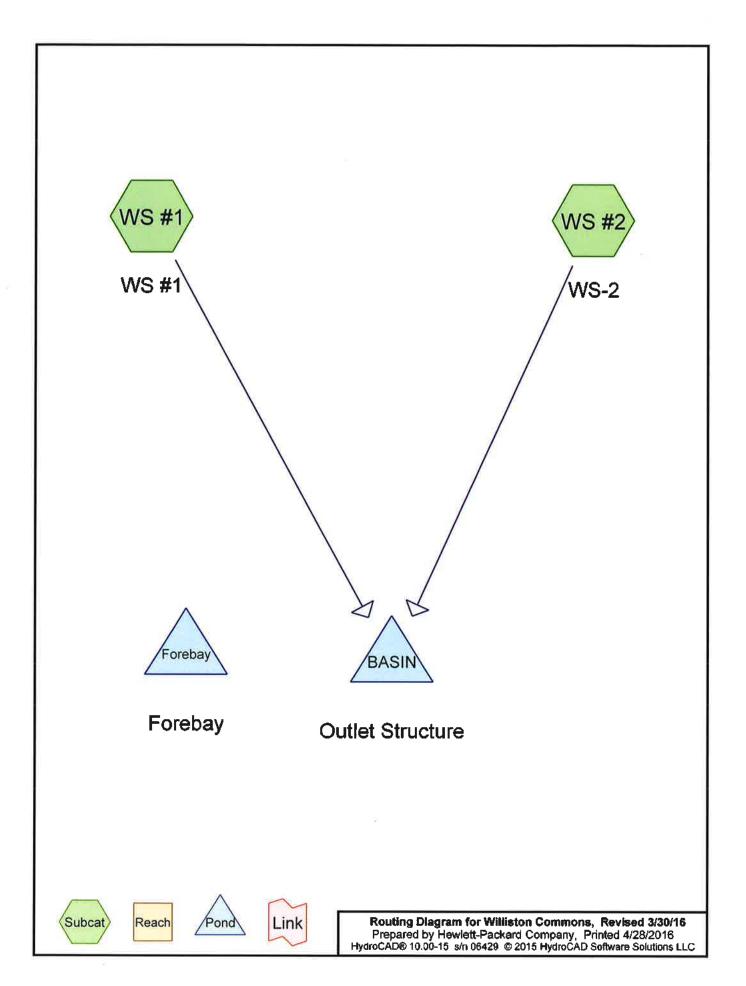
LOCATION


NTS

NOTES

- 1. See Sheet EX-1 for additional notes and legend related to Existing Conditions.
- 2. See Sheet C-3 for additional notes related to erosion prevention and sediment control.
- 3. The Contractor shall be responsible for repairing all disturbed areas back to original or better condition, including but not limited to curbing, sidewalks, road, parking areas, landscaping, site lighting, electrical, and etc. All asphalt shall be sawcut prior to paving.
- 4. All stumps, rock, and other non-approved trench backfill material discovered during construction is the exclusive property of the Contractor and shall be removed from the site and disposed of in a State approved disposal location.
- 5. Contractor shall be responsible for providing a passing sieve of the representative gravel delivered to the site for the construction of the stable vegetated access path.
- 6. The Contractor shall comply with the procedures outlined in the Low Risk Site Handbook for Erosion Prevention and Sediment Control. The Contractor shall be responsible for installing, maintaining and removing all erosion and sediment control devices shown on the plans or details and, to the maximum extent practical, to minimize potential contamination of stormwater runoff from the construction activities.
- 7. The Contractor shall be responsible for all construction barrier/safety fencing required for the project.
- 8. Contractor shall be responsible for importing topsoil as required to complete the project. Contractor shall test topsoil for approval.
- 9. The Contractor shall be responsible for all signage and fencing necessary to providing safe vehicular and pedestrian access through or around the site during construction.
- 10. All storm pipes shall be PVC SDR 35 unless otherwise noted. PVC pipe shall contain no recycled content.
- 11. Temporary groundwater dewatering and stormwater by-pass pumping and/or diversion is the responsibility of the Contractor. The Contractor is responsible for providing all necessary pumps and equipment to perform the work. Overnight pumping is not allowed.
- 12. Dewatering shall be accomplished by creating a sump pit filled with crushed stone and pumping to a sediment filter bag placed downslope of the disturbed soils. The pumpout water shall be monitored to ensure visibly discolored water does leave the project site.
- 13. This project is subject to all erosion prevention and sediment control measures including the monitoring, inspection, and reporting requirements of State of Vermont Construction Stormwater Discharge Permit. The Contractor shall be the Principal Operator for the project.
- 14. Removal of all erosion control matting and inlet protection is the responsibility of the Contractor.
- 15. Contractor shall use select soil for the construction of the pond earth embankment. Remove topsoil & organics. Place fill in 6" lifts. Permeability testing shall be performed on a minimum two stockpile soil samples prior to placing soil on earth embankment. Soil permeability shall be less than 0.003 mm/sec. and shall be approved by the Engineer. Soil shall be placed and compacted to 95% of the Standard Proctor. Topsoil, seed, and properly secure mulch all portions of the earth embankment above the proposed water surface elevation.
- 16. Area of wetland impact: 40,335 s.f.
- 17. Area of wetland buffer impact: 3,027 s.f.

600'	Date revised		Description	Checked	Date			
	Design	WHN	Overall Site Plan					
	Drawn	DMR/SLM						
_	Checked	WHN	WILLISTON COMM	ONS				
	Scale	1" = 100'	Stormwater EF					
	Date	4/28/2016	Stornwater EF/	-1				
	Project	14114	Commons Road	Wi	lliston, Vermont			
ntion and sediment control.		KREBS & LANSING Consulting Engineers, Inc. 164 Main Street, Colchester, Vermont 05446						



LOCATION

NTS

		50' 30	00'	60	00'	90	0'
		<i>B</i>	ar Scale	1" = 150'			
Date revised		Description				Checked	Date
esign ₋	WHN	-		Overall	Site Plan		
rawn _	SLM	_					
hecked _	WHN			TAFT	FARMS		
cale _	1" = 150'					_	
ate _	4/26/16	-		Recrea	tion Area	a	
roject _	14257.1	Route 2				Wi	lliston, Vermont
KREB	S & LAN Vain Stre		-	-		File name 14257.1 recreation area overall site plan ov-1 Printing date 4/27/16	OV-1

Williston Commons

 Prepared by Hewlett-Packard Company
 Revised 3/30/16 Printed 4/28/2016

 HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solutions LLC
 Page 2

Project Notes

Williston Commons

Williston Commons

Prepared by Hewlett-Packard Company	Revised	3/30/16	Printed	4/28/2016
HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solutions L	LC			Page 3

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
1.612	74	>75% Grass cover, Good, HSG C (WS #1)
1.462	80	>75% Grass cover, Good, HSG D (WS #1)
2.883	98	Impervious (WS #1)
0.479	98	Impervious Area (WS #2)
6.469	74	Pasture/grassland/range, Good, HSG C (WS #2)
11.061	80	Pasture/grassland/range, Good, HSG D (WS #2)
23.966	81	TOTAL AREA

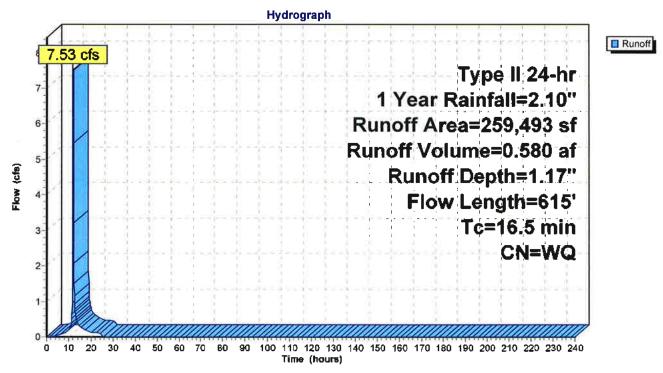
Williston Commons	Type II 2-	4-hr 1 Y	ear Rair	nfall=2.10"
Prepared by Hewlett-Packard Company	Revised	3/30/16	Printed	4/28/2016
HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solutions	LLC			Page 4

Time span=0.00-240.00 hrs, dt=0.10 hrs, 2401 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment WS #1: WS #1	Runoff Area=259,493 sf 48.39% Impervious Runoff Depth=1.17" Flow Length=615' Tc=16.5 min CN=WQ Runoff=7.53 cfs 0.580 af
SubcatchmentWS #2: WS-2	Runoff Area=784,474 sf 2.66% Impervious Runoff Depth=0.58" Flow Length=1,280' Tc=31.2 min CN=WQ Runoff=7.57 cfs 0.865 af
Pond BASIN: Outlet Structure	Peak Elev=478.32' Storage=82,210 cf Inflow=12.49 cfs 1.444 af Outflow=0.78 cfs 1.443 af
Pond Forebay: Forebay	Peak Elev=0.00' Storage=0 cf

Total Runoff Area = 23.966 ac Runoff Volume = 1.444 af Average Runoff Depth = 0.72" 85.97% Pervious = 20.604 ac 14.03% Impervious = 3.362 ac

Page 5


Summary for Subcatchment WS #1: WS #1

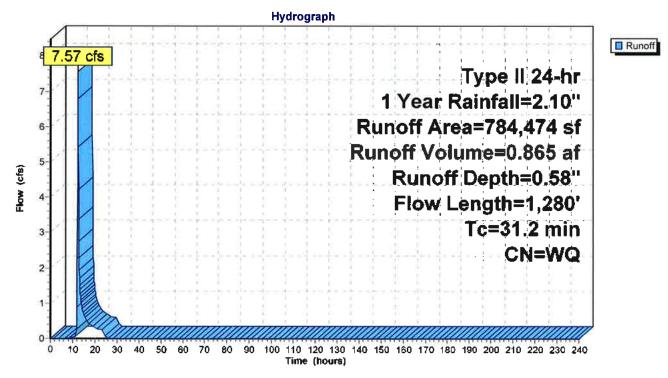
Runoff 7.53 cfs @ 12.09 hrs, Volume= 0.580 af, Depth= 1.17" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-240.00 hrs, dt= 0.10 hrs Type II 24-hr 1 Year Rainfall=2.10"

	A	rea (sf)	CN D	escription		
*	1	25,581	98 Ir	mpervious		
		63,688	80 >	75% Gras	s cover, Go	ood, HSG D
_		70,224	74 >	75% Gras	s cover, Go	ood, HSG C
1	2	59,493	V	Veighted A	verage	
	1	33,912	5	1.61% Per	vious Area	
	1	25,581	4	8.39% lmp	pervious Ar	ea
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	13.5	100	0.0350	0.12		Sheet Flow, Sheet Grass
						Grass: Dense n= 0.240 P2= 2.30"
	0.5	115	0.0480	3.53		Shallow Concentrated Flow, SC Lawn
						Unpaved Kv= 16.1 fps
	2.5	400	0.0325	2.70		Shallow Concentrated Flow, SC Pipe outfall to pond
÷						Grassed Waterway Kv= 15.0 fps
	16.5	615	Total			

Subcatchment WS #1: WS #1

Summary for Subcatchment WS #2: WS-2


Runoff = 7.57 cfs @ 12.30 hrs, Volume= 0.865 af, Depth= 0.58"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-240.00 hrs, dt= 0.10 hrs Type II 24-hr 1 Year Rainfall=2.10"

	A	rea (sf)	CN D	escription							
*		20,874	98 Ir	npervious	Агеа						
	2	81,773	74 P	Pasture/grassland/range, Good, HSG C							
	4	81,827	80 P	asture/gra	ssland/rang	ge, Good, HSG D					
	7	84,474	V	Veighted A	verage						
	7	63,600	9	7.34% Pei	vious Area						
		20,874 2.66% Impervious Area									
	Тс	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	23.3	150	0.0200	0.11		Sheet Flow, Sheet Meadow					
						Grass: Dense n= 0.240 P2= 2.30"					
	7.9	1,130	0.0220	2.39		Shallow Concentrated Flow, Gras Meadow					
						Unpaved Kv= 16.1 fps					
	94.9	4.000	Tabal								

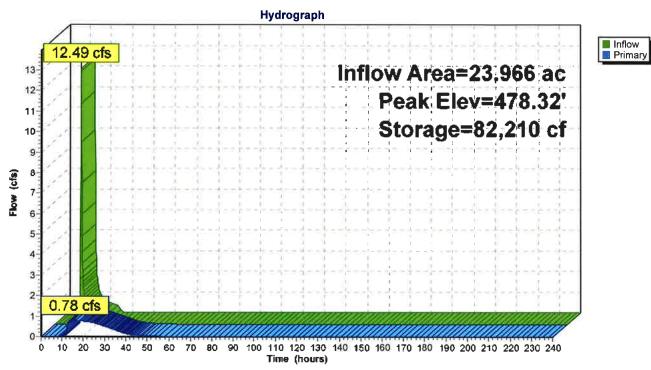
31.2 1,280 Total

Subcatchment WS #2: WS-2

Summary for Pond BASIN: Outlet Structure

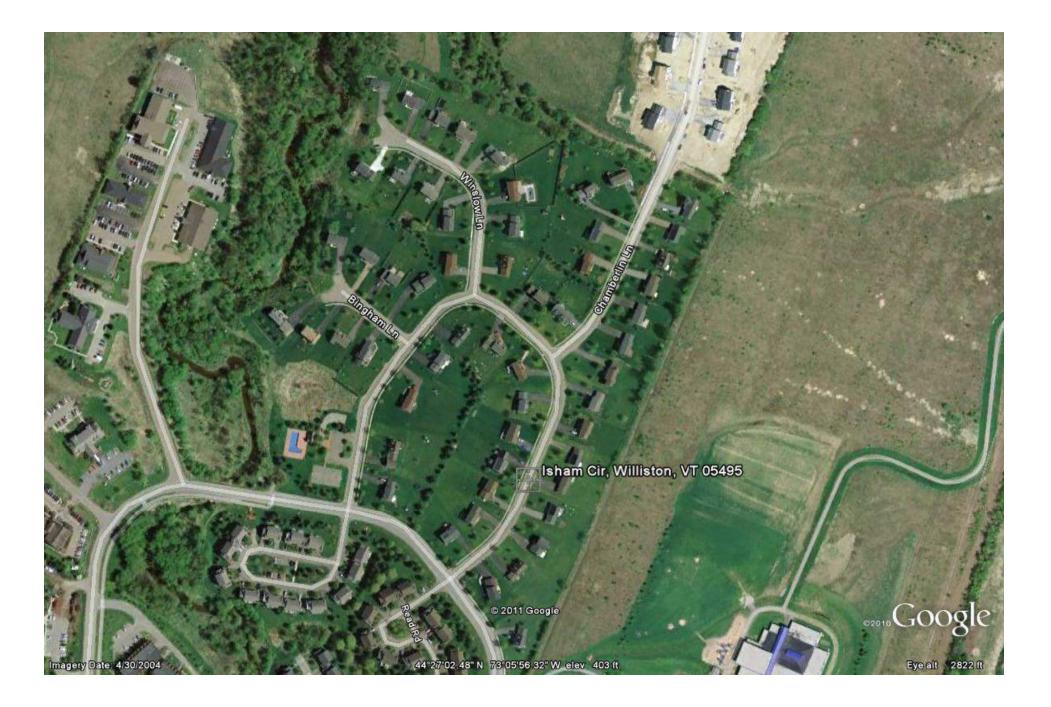
Inflow Area = 23.966 ac, 14.0 Inflow = 12.49 cfs @ 12 Outflow = 0.78 cfs @ 15 Primary = 0.78 cfs @ 15 Routing by Stor-Ind method, Time Starting Elev= 476.80' Surf.Area= Peak Elev= 478.32' @ 15.90 hrs Plug-Flow detention time= 1,806.8 Center-of-Mass det. time= 725.7 m				2.16 hrs, V 5.90 hrs, V 5.90 hrs, V Span= 0.0 = 20,120 sf Surf.Area=	/olume= /olume= /olume= 0-240.00 Storage 28,470 s lated for 0	1.444 1.443 1.443 hrs, dt= 0.10 = 44,970 cf f Storage= .411 af (28%	4 af 3 af, Atten= 9 3 af 0 hrs / 2 82,210 cf (3 6 of inflow)	4%, Lag= 224.4 min	
	Center-t	V-Wass ut	st. time= 720.7 fi	1,070.	0-000.5	12.1 nou	rs		
	Volume	Inve	ert Avail.Sto	rage Stor	rage Desc	ription			
	#1	472.8	30' 134,89	97 cf Cus	stom Stag	je Data (Pri:	smatic)Listed	below (Recalc)	
	Elevatio (fee 472.8 474.0 475.0 475.0	et) 30 00 00 00	Surf.Area (sq-ft) 6,390 8,620 10,880 14,140	9,00 9,75 12,51	t) (c 0 6 0 0	cum.Store <u>ubic-feet)</u> 9,006 18,756 31,266 41,266		manent Pool ume	
	476.8 477.0		20,120 20,900		13,704 44,970 ⁶ 4,102 49,072				
	477.0 478.0 480.0	00	20,900 27,330 34,380	24,10 24,11 61,71	5	49,072 73,187 134,897	5.1" Lo	ow Flow Orifice	
	Device	Routing	Invert						-
	#1 #2 #3	Primary Primary Primary	476.80' 478.40' 479.00'	48.0" W 2 6.0' long Head (fee 2.50 3.00 Coef. (En	x 12.0" H x 6.0' br et) 0.20 (0 3.50 4.1 glish) 2.3	eadth Broad 0.40 0.60 0 00 4.50 5.0 37 2.51 2.7	e/Grate C= 0 d-Crested Re .80 1.00 1.20 00 5.50	0.600 ctangular Weir 0 1.40 1.60 1.80 2.00 2.67 2.65 2.65 2.65	

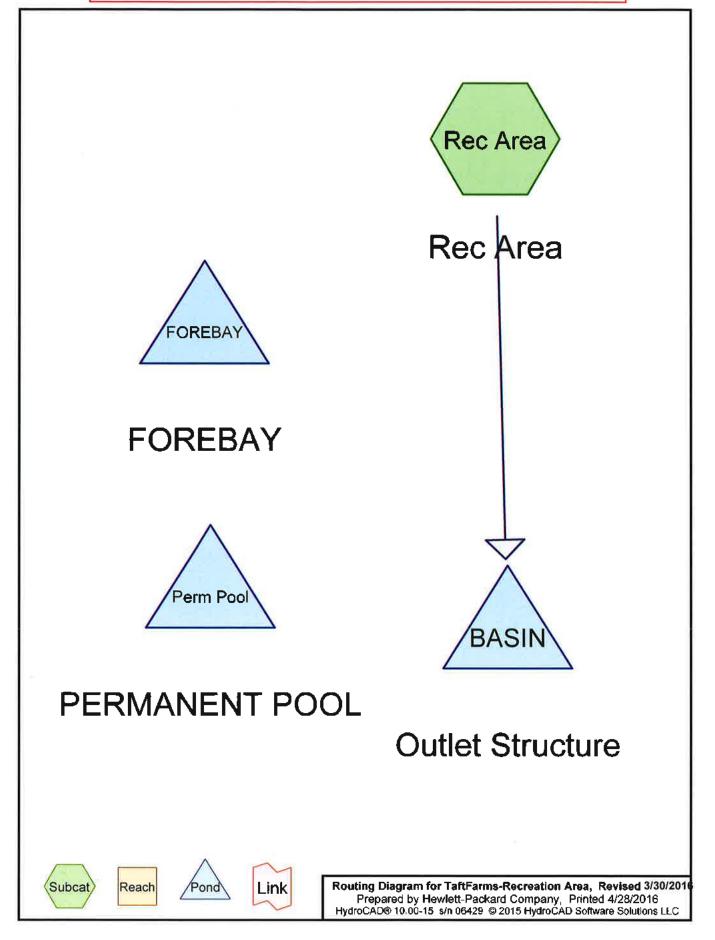
Primary OutFlow Max=0.78 cfs @ 15.90 hrs HW=478.32' (Free Discharge)


-1=Orifice/Grate (Orifice Controls 0.78 cfs @ 5.51 fps) -2=Orifice/Grate (Controls 0.00 cfs)

16

-3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)


Williston Commons Prepared by Hewlett-Packard Company HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solutions LLC


Summary for Pond Forebay: Forebay

Volume	Invert	Avail.Storage	Storage	e Description	
#1	472.80'	7,630 ci	Custon	n Stage Data (Pris	smatic)Listed below (Recalc)
Elevation	Surf.A		nc.Store	Cum.Store	
(f ee t)	(SC	q-ft) (cul	oic-feet)	(cubic-feet)	
472.80	-	700	0	0	
474.00	1,3	280	1,188	1,188	[Conclusive \/ aluma
475.00	1,9	980	1,630	2,818	Forebay Volume
476.00	2,1	735	2,358	5,175 🍃	
476.80	3,4	400	2,454	7,630 🛩	

ISHAM CIRCLE: PERMIT 1-1217

TaftFarms-Recreation Area

 Prepared by Hewlett-Packard Company
 Revised 3/30/2016
 Printed 4/28/2016

 HydroCAD® 10.00-15
 s/n 06429
 © 2015
 HydroCAD Software Solutions LLC
 Page 2

Project Notes

Taft Farms Recreation Area 14257.1

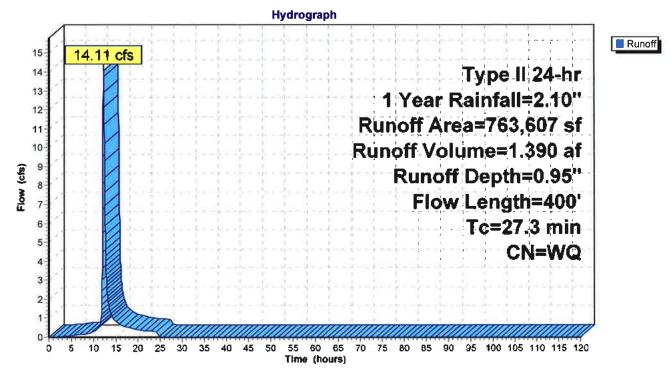
TaftFarms-Recreation Area

Area Listing (all nodes)

Area	CN	Description	
(acres)		(subcatchment-numbers)	
12.939	80	>75% Grass cover, Good, HSG D (Rec Area)	
1.272	98	Impervious - Roofs (Rec Area)	
3.319	98	Impervious-Pavement (Rec Area)	
17.530	85	TOTAL AREA	

TaftFarms-Recreation Area Prepared by Hewlett-Packard Compa HydroCAD® 10.00-15 s/n 06429 © 2015 H					
Time span=0.00-120.00 hrs, dt=0.03 hrs, 4001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method					
Subcatchment Rec Area: Rec Area	Runoff Area=763,607 sf 26.19% Impervious Runoff Depth=0.95" Flow Length=400' Tc=27.3 min CN=WQ Runoff=14.11 cfs 1.390 af				
Pond BASIN: Outlet Structure	Peak Elev=375.40' Storage=37,307 cf Inflow=14.11 cfs 1.390 af Outflow=0.62 cfs 1.390 af				
Pond FOREBAY: FOREBAY	Peak Elev=0.00' Storage=0 cf				
Pond Perm Pool: PERMANENT POOL	Peak Elev=0.00' Storage=0 cf				
Total Runoff Area = 17.5	30 ac Runoff Volume = 1.390 af Average Runoff Depth = 0.95" 73.81% Pervious = 12.939 ac 26.19% Impervious = 4.591 ac				

Summary for Subcatchment Rec Area: Rec Area


Runoff	=	14.11 cfs @	12.22 hrs.	Volume=	1.390 af,	Depth= 0.95"	
T CULION	_	14. I U U U U U		volume-	1.000 al,	Deptii - 0.30	

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.03 hrs Type II 24-hr 1 Year Rainfail=2.10"

	A	rea (sf)	CN E	Description					
*	1	44,576	98 li	mpervious-	-Pavement				
*		55,408		mpervious					
*	5	63,623	80 >	75% Gras	s cover, Go	ood, HSG D			
0,====	7	63,607	٧	Veighted A	verage				
	5	63,623	7	3.81% Pei	rvious Area				
	199,984			26.19% Impervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	24.3	100	0.0080	0.07		Sheet Flow, Sheet Grass			
	3.0	300	0.0110	1.69		Grass: Dense n= 0.240 P2= 2.30" Shallow Concentrated Flow, SC Lawn Unpaved Kv= 16.1 fps			
0,	27.3	400	Total						

27.3 400 Total

Subcatchment Rec Area: Rec Area

Type II 24-hr 1 Year Rainfall=2.10" Revised 3/30/2016 Printed 4/28/2016

Page 6

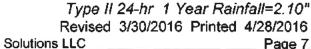
Prepared by Hewlett-Packard Company Revi HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solutions LLC

TaftFarms-Recreation Area

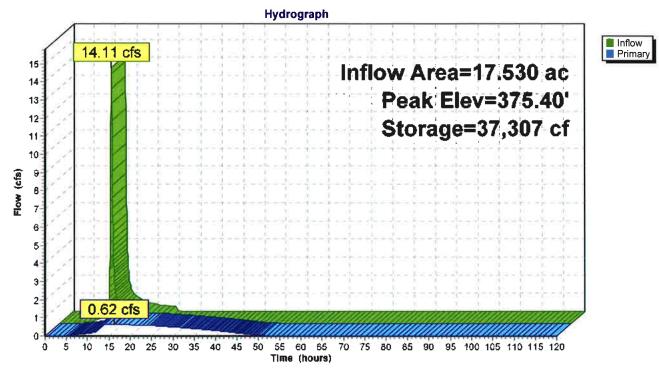
Summary for Pond BASIN: Outlet Structure

Inflow Area =	17.530 ac, 26.19% Impervious, Inflow Depth = 0.95" for 1 Year event
Inflow =	14.11 cfs @ 12.22 hrs, Volume= 1.390 af
Outflow =	0.62 cfs @ 16.24 hrs, Volume= 1.390 af, Atten= 96%, Lag= 241.6 min
Primary =	0.62 cfs @ 16.24 hrs, Volume= 1.390 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.03 hrs Peak Elev= 375.40' @ 16.24 hrs Surf.Area= 9,675 sf Storage= 37,307 cf


Plug-Flow detention time= 732.5 min calculated for 1.390 af (100% of inflow) Center-of-Mass det. time= 732.3 min (1,563.7 - 831.4) 12.2 hours

Volume	Inv	ert Avail.Sto	orage Storage [Description	
#1	370.0	00' 72,9	71 cf Pond (Pr	ismatic)Listed	below (Recalc)
Elevatio	'n	Surf.Area	Inc.Store	Cum.Store	
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)	
370.0		4,335	0	0	
371.0		5,297	4,816	4,816	
372.0	0	6,184	5,741	10,557	
373.0	0	7,119	6,652	17,208	
374.0)0	8,154	7,637	24,845	
375.0)0	9,220	8,687	33,532	
376.0)0	10,359	9,790	43,321	
377.0)0	11,518	10,939	54,260	
378.0)0	1 2 ,7 54	12,136	66,396	
378.5	50	13,549	6,576	72,971	3.2" Low Flow Orifice
	Deutine		Quillet Devices		
Device	Routing	Invert			
#1	Primary	370.00'		ice/Grate C= 0	
#2	Primary	375.50'			e/Grate C= 0.600
#3	Primary	377.50'			d-Crested Rectangular Weir
					0.80 1.00 1.20 1.40 1.60 1.80 2.00
				0 4.00 4.50 5.0	
					70 2.69 2.68 2.68 2.66 2.64 2.64
			2.64 2.65 2.6	5 2.66 2.66 2.0	68 2.70 2.74
	122 0-000				
rimary	OutFlow	Max=0.62 cfs	@ 16.24 hrs HW	/=375.40' (Free	e Discharge)

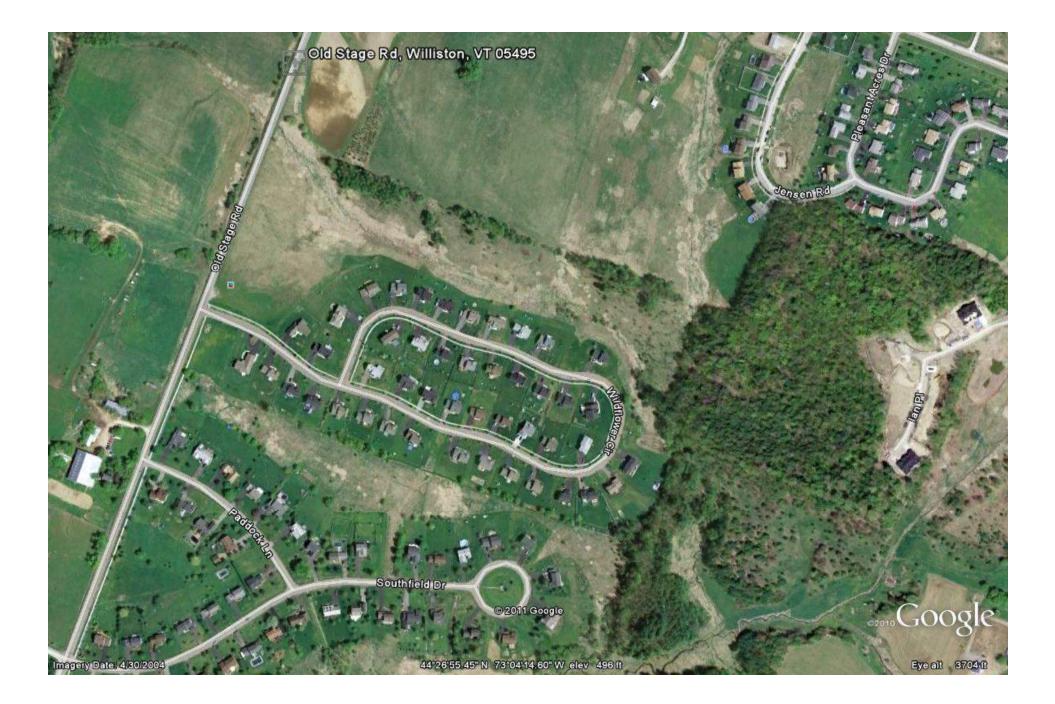

-1=Orifice/Grate (Orifice Controls 0.62 cfs @ 11.05 fps)

-2=Orifice/Grate (Controls 0.00 cfs)

-3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

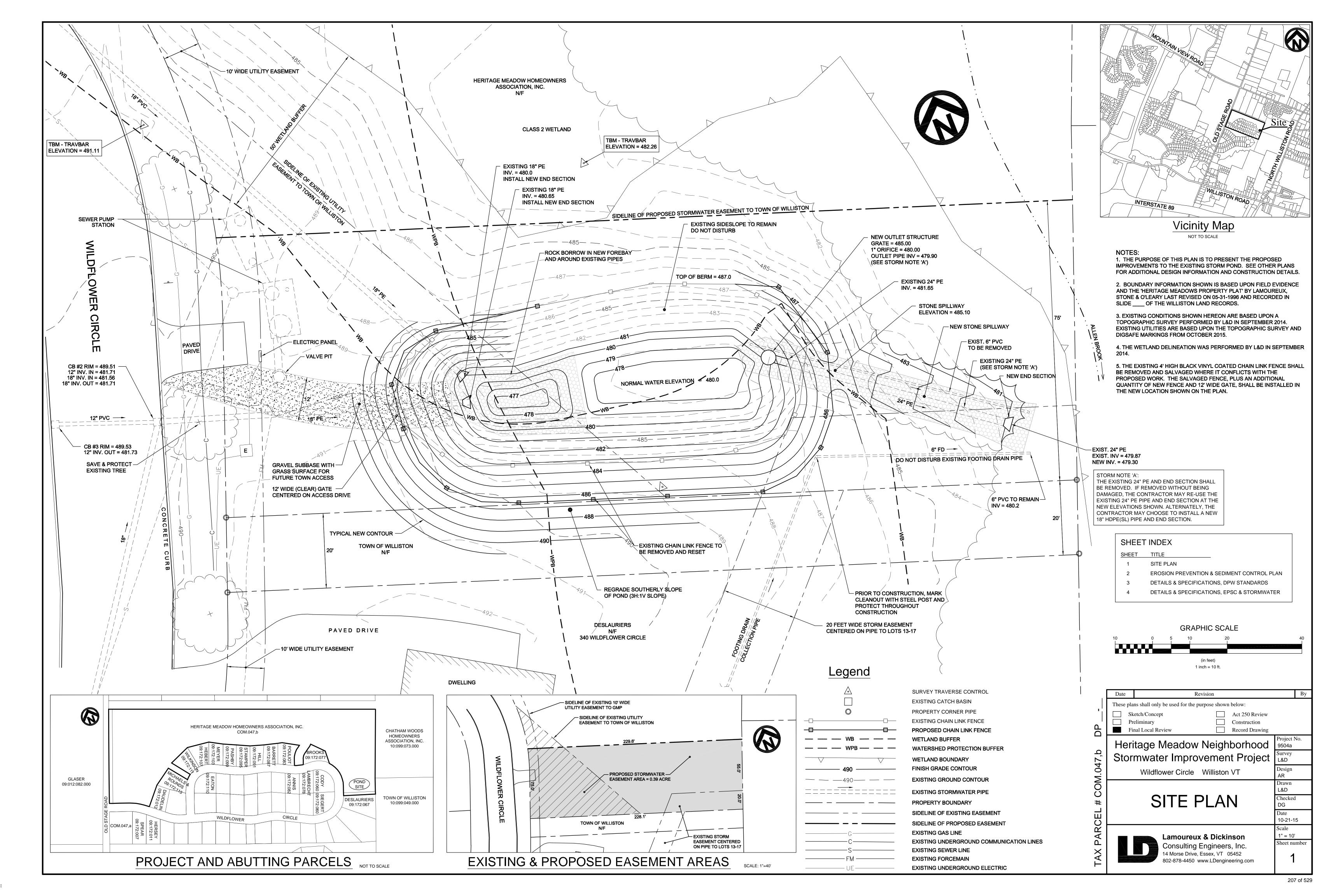
Page 7

Pond BASIN: Outlet Structure

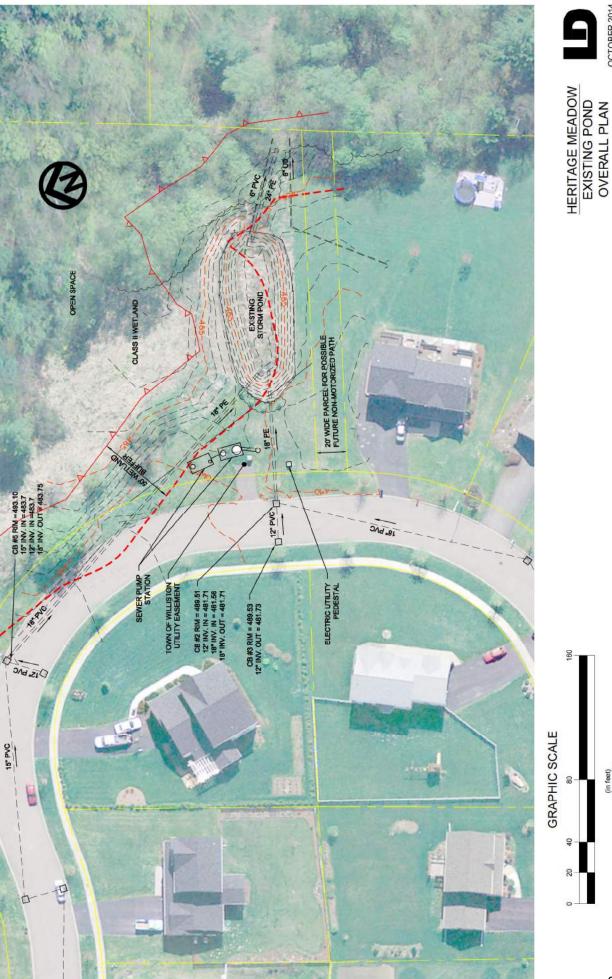

Summary for Pond FOREBAY: FOREBAY

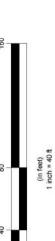
Volume	Invert Ava	il.Storage Storage	Description	
#1	366.00'	2,183 cf Custon	NStage Data (Prismatio	:)Listed below (Recalc)
Elevation	Surf.Area	Inc.Store	Cum.Store	
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	
366.00	238	0	0	
367.00	364	301	301	
368.00	516	440	741	
369.00	693	605	1,346	
370.00	981	837	2,183	
			K	
			N N	
			X	
			X	
			X	
			Forebay Vol	ume

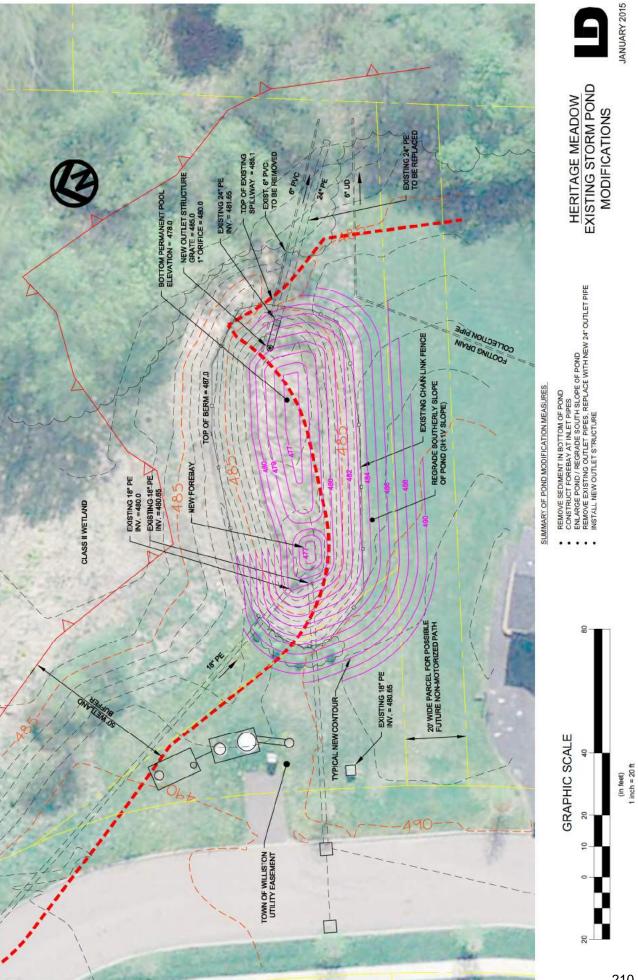
Summary for Pond Perm Pool: PERMANENT POOL


Volume	Invert	Ava	il.Storage	Storage	Description		
#1	363.00'		17,597 cf	Custon	n Stage Data	a (Prismatic)Liste	ed below (Recalc)
Elevation (feet)	Surf./	Area sq-ft)	Inc. (cubic	Store	Cum.Sto (cubic-fe		
363.00		051	(ouble	0	10001010	0	
364.00		290		1,171	1,1	•	
365.00		551		1,421	2,5		
366.00		,072		1,812	4,4		
367.00	3	,503		2,788	7,1	90	
368.00	2	,981		3,242	10,4	32	
369.00		,507		3,244	13,6		
370.00	4	,335		3, 9 21	17,5	i97	
				[Permanent	Pool Volume]

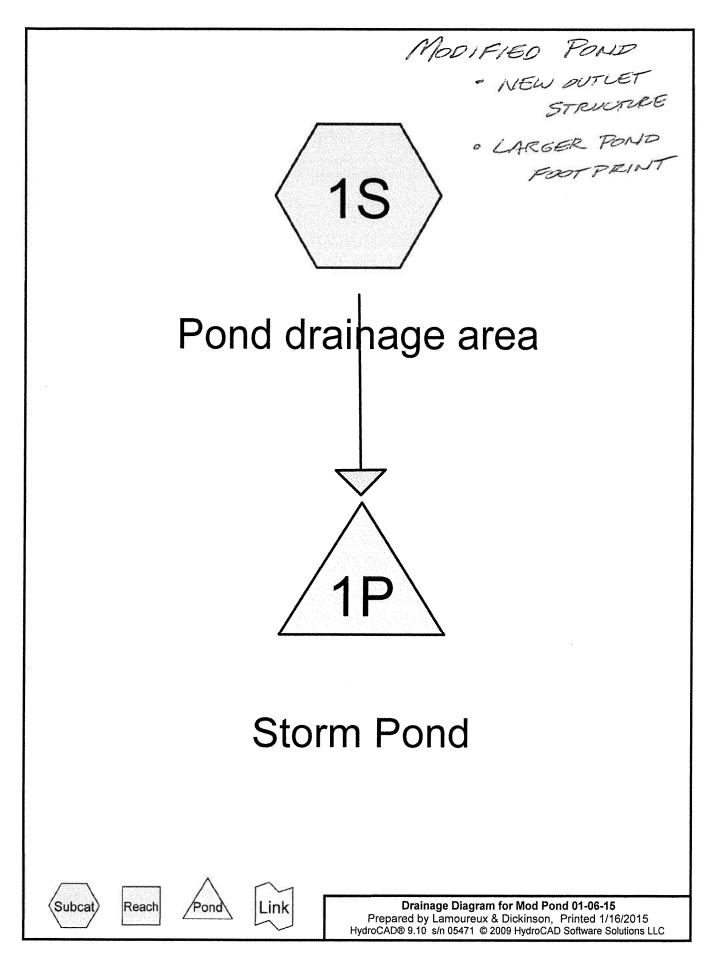
Page 9




HERITAGE MEADOWS: PERMIT 1-1258



Attachment 5 Existing pond overall plan & Existing storm pond modifications



OCTOBER 2014

210 of 529

Attachment 6 Hydrologic Calculations

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.560	61	>75% Grass cover, Good, HSG B (1S)
2.150	74	>75% Grass cover, Good, HSG C (1S)
9.070	80	>75% Grass cover, Good, HSG D (1S)
1.330	98	Drives (1S)
2.380	98	Roadway (1S)
1.160	98	Roofs (1S)
0.350	98	Sidewalk (1S)

Summary for Subcatchment 1S: Pond drainage area

Runoff = 19.14 cfs @ 12.05 hrs, Volume= 1.155 af, Depth= 0.82"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type II 24-hr 1 year Rainfall=2.10"

	Area	(ac)	CN	Dese	cription				
	0.	560	61	>759	% Grass co	over, Good	HSG B		
	2.	150	74			over, Good			
	9.	070	80	>759	% Grass co	over, Good	HSG D		
*	2.	380	98	Roa	dway				
*	0.	350	98	Side	walk				
*	1.	330	98	Drive	es				
*	1.	160	98	Root	s				
	17.	000	84	Weig	ghted Aver	age			
	11.	780		69.2	9% Pervio	us Area			
	5.	220		30.7	1% Imperv	ious Area			
	Tc	Lengt	h S	Slope	Velocity	Capacity	Description		
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)			
	8.6	10	0 0	.0400	0.19		Sheet Flow,		
							Grass: Short	n= 0.150 P2= 2.40"	
	4.2	25	0 0	.0200	0.99		Shallow Conce	entrated Flow,	
							Short Grass Pa	asture Kv= 7.0 fps	
	12.8	35	0 T	otal					

Summary for Pond 1P: Storm Pond

	= 19 = 9 = 3	0.14 cfs @ 0.56 cfs @ 0.95 cfs @	12.05 hr 12.19 hr 12.19 hr	npervious, Inflow D s, Volume= s, Volume= s, Volume= s, Volume=	epth = 0.82" for 1 year event 1.155 af <i>Torrel INFLOW Vol = 50,312 CF</i> 1.155 af, Atten= 50%, Lag= 8.5 min 1.035 af 0.120 af	
Plug-Flow of	Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 485.60' @ 12.19 hrs Surf.Area= 4,872 sf Storage= 17,182 cf - STORAGE VOLUME POND OVER-FLOW STILLING Plug-Flow detention time= 503.4 min calculated for 1.155 af (100% of inflow) Center-of-Mass det. time= 503.5 min (1,357.2 - 853.7)					
Volume	Invert			.4 HR9 Storage Description	1	
#1	480.00'	24,	704 cf	Custom Stage Data	a (Irregular) Listed below (Recalc)	

Mod Pond 01-06-15

Type II 24-hr 1 year Rainfall=2.10" Printed 1/16/2015

	0110 01-00-				Type II 2	4-III I year Railli	ali-2.10
Prepare	ed by Lamo	ureux & Dic	kinson			Printed 7	1/16/2015
HydroCA	AD® 9.10 s/n	05471 © 200	9 HydroC	AD Software Solution	ons LLC		Page 4
Elevation	on Si	urf.Area F	Perim.	Inc.Store	Cum.Store	Wet.Area	
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
480.0	00	1,502	185.0	0	0	1,502	
481.0			201.0	1,743	1,743	2,030	
482.0			218.0	2,261	4,004	2,634	
483.0			235.0	2,828	6,832	3,288	
484.0			253.0	3,441	10,272	4,028	
485.0			270.0	4,098	14,370	4,782	
486.0		•	287.0	4,799	19,169	5,586	
487.0	00	5,914	323.0	5,535	24,704	7,360	
Device	Routing	Invert	Outlet [Devices			
#1	Secondary	485.10'	6.0' lon	g x 6.0' breadth	Spillwav		
					.60 0.80 1.00 1.2	0 1.40 1.60 1.80	2.00
				00 3.50 4.00 4.5			
			Coef. (E	English) 2.37 2.5	1 2.70 2.68 2.68	2.67 2.65 2.65 2	2.65
			2.65 2.	66 2.66 2.67 2.6	39 2.72 2.76 2.83		A I PRISICE
#2	Primary	480.00'	1.0" Ve	rt. Orifice1 X4 r	ows with 12.0" cc s	spacing C= 0.600 -	- MIN OFILIO
#3	Primary	485.00'	2.0" x 2	2.0" Horiz. Grate)	(6.00 columns X	6 rows C= 0.600	- MIN ORIFICE SIZE .
			Limited	to weir flow at low	/ heads		
Drimon		lov-2 05 of	@ 12 10 L	are UN-495 601	(Eroo Diophorro)		
Finiary		14X-3.90 CIS	w 12.191	nrs HW=485.60'	(Free Discharge)		

Ē -2=Orifice1 (Orifice Controls 0.21 cfs @ 9.61 fps) -3=Grate (Orifice Controls 3.74 cfs @ 3.74 fps)

Secondary OutFlow Max=5.59 cfs @ 12.19 hrs HW=485.60' (Free Discharge) -1=Spillway (Weir Controls 5.59 cfs @ 1.85 fps)

Summary for Subcatchment 1S: Pond drainage area

Runoff = 1.72 cfs @ 12.08 hrs, Volume= 0.157 af, Depth= 0.11"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type II 24-hr WQv Rainfall=0.90"

		L>1	5.7 HRS
Volume	Invert	Avail.Storage	Storage Description
#1	480.00'	24,704 cf	Custom Stage Data (Irregular) Listed below (Recalc)

Mod Pond 01-06-15

Prepared by Lamoureux & Dickinson

Type II 24-hr WQv Rainfall=0.90" Printed 1/16/2015

		n 05471 © 20		CAD Software Solution	ons LLC	P	age 8		
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
			185.0 201.0	0 1,743	0 1,743	1,502 2,030			
482.0	00	2,538	218.0	2,261	4,004	2,634			
483.0 484.0	00	3,128 3,763	235.0 253.0	2,828 3,441	6,832 10,272	3,288 4,028			
485.0 486.0		4,442 5,165	270.0 287.0	4,098 4,799	14,370 19,169	4,782 5,586			
487.0	00	5,914	323.0	5,535	24,704	7,360			
Device	Routing	g Invert Outlet Devices							
#1	Secondar	y 485.10	Head 2.50 Coef.	6.0' long x 6.0' breadth Spillway Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.37 2.51 2.70 2.68 2.68 2.67 2.65 2.65 2.65 2.65 2.66 2.66 2.67 2.69 2.72 2.76 2.83					
#2 #3	Primary Primary	480.00 485.00	b' 1.0" V b' 2.0" x	ert. Orifice1 X 4 ro 2.0" Horiz. Grate X d to weir flow at low	ows with 12.0" cc s (6.00 columns X	pacing C= 0.600			
Primary	OutFlow	Max=0.07 cfs	@ 21.98	hrs HW=482.08'	(Free Discharge)				

Primary OutFlow Max=0.07 cfs @ 21.98 hrs HW=482.08' (Free Discharge) -2=Orifice1 (Orifice Controls 0.07 cfs @ 4.26 fps)

-3=Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=480.00' (Free Discharge)

Summary for Subcatchment 1S: Pond drainage area

Runoff = 39.94 cfs @ 12.05 hrs, Volume= 2.383 af, Depth= 1.68"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type II 24-hr 10 year Rainfall=3.20"

	Area	(ac)	CN I	Desc	cription		
	0.	560	61 ;	>75%	6 Grass co	over, Good	, HSG B
	2.	150	74 :	>75%	6 Grass co	over, Good	, HSG C
	9.	070	80 ;	>75%	% Grass co	over, Good	, HSG D
*	2.	380	98 I	Road	dway		
*	0.	350	98 \$	Side	walk		
*		330	98 I	Drive	es		
*	1.	160	<u>98</u>	Roof	S		
	17.000 84 Weighted Average						
	11.	780	(69.29	9% Pervio	us Area	
	5.	220		30.7	1% Imperv	ious Area	
	Tc	Length		ope	Velocity	Capacity	Description
	(min)	(feet)	(f	t/ft)	(ft/sec)	(cfs)	
	8.6	100	0.04	400	0.19		Sheet Flow,
							Grass: Short n= 0.150 P2= 2.40"
	4.2	250	0.02	200	0.99		Shallow Concentrated Flow,
							Short Grass Pasture Kv= 7.0 fps
	12.8	350	Tota	al			

Summary for Pond 1P: Storm Pond

Inflow Area =	17.000 ac, 30.71% Impervious, Inflow E	Depth = 1.68" for 10 year event
Inflow =	39.94 cfs @ 12.05 hrs, Volume=	2.383 af
Outflow =	36.04 cfs @ 12.10 hrs, Volume=	2.383 af, Atten= 10%, Lag= 2.9 min
Primary =	6.36 cfs @ 12.10 hrs, Volume=	1.583 af
Secondary =	29.69 cfs @ 12.10 hrs, Volume=	0.800 af

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 486.62' @ 12.10 hrs Surf.Area= 5,620 sf Storage= 22,490 cf

Plug-Flow detention time= 251.2 min calculated for 2.383 af (100% of inflow) Center-of-Mass det. time= 251.0 min (1,083.8 - 832.7)

Volume	Invert	Avail.Storage	Storage Description
#1	480.00'	24,704 cf	Custom Stage Data (Irregular) Listed below (Recalc)

Mod Pond 01-06-15

Prepared by Lamoureux & Dickinson

Type II 24-hr 10 year Rainfall=3.20" Printed 1/16/2015

HydroCA	D® 9.10 s/	n 05471 © 20	009 Hydro(CAD Software Solution	ons LLC	Page 6			
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
480.0		1,502	185.0	0	0	1,502			
481.0	00	1,995	201.0	1,743	1,743	2,030			
482.0	00	2,538	218.0	2,261	4,004	2,634			
483.0	00	3,128	235.0	2,828	6,832	3,288			
484.(3,763	253.0	3,441	10,272	4,028			
485.0		4,442	270.0	4,098	14,370	4,782			
486.0		5,165	287.0	4,799	19,169	5,586			
487.0	00	5,914	323.0	5,535	24,704	7,360			
Device	Routing	Inve	t Outlet	Devices					
#1	Secondar	-	Head 2.50 Coef. 2.65 2	6.0' long x 6.0' breadth Spillway Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.37 2.51 2.70 2.68 2.68 2.67 2.65 2.65 2.65 2.65 2.66 2.66 2.67 2.69 2.72 2.76 2.83					
#2 #3	Primary	480.00 485.00)' 2.0'' x	ert. Orifice1 X 4 n 2.0" Horiz. Grate) d to weir flow at low	(6.00 columns X				
Primary	Primary OutFlow Max=6.35 cfs @ 12.10 hrs HW=486.61' (Free Discharge)								

Primary OutFlow Max=6.35 cfs @ 12.10 hrs HW=486.61' (Free Discharge) -2=Orifice1 (Orifice Controls 0.24 cfs @ 10.78 fps) -3=Grate (Orifice Controls 6.12 cfs @ 6.12 fps)

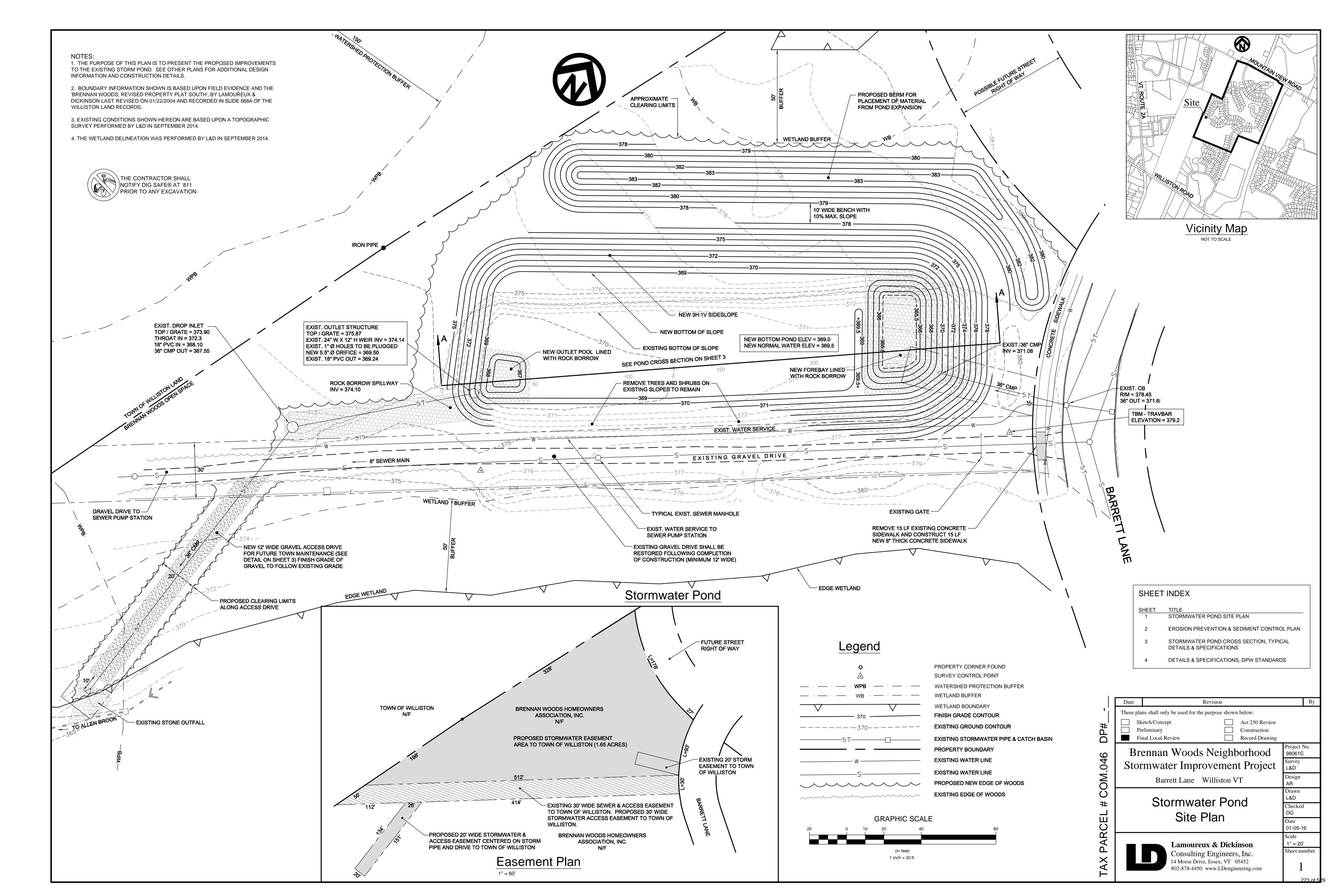
Secondary OutFlow Max=29.65 cfs @ 12.10 hrs HW=486.61' (Free Discharge) -1=Spillway (Weir Controls 29.65 cfs @ 3.26 fps)

Heritage Meadow

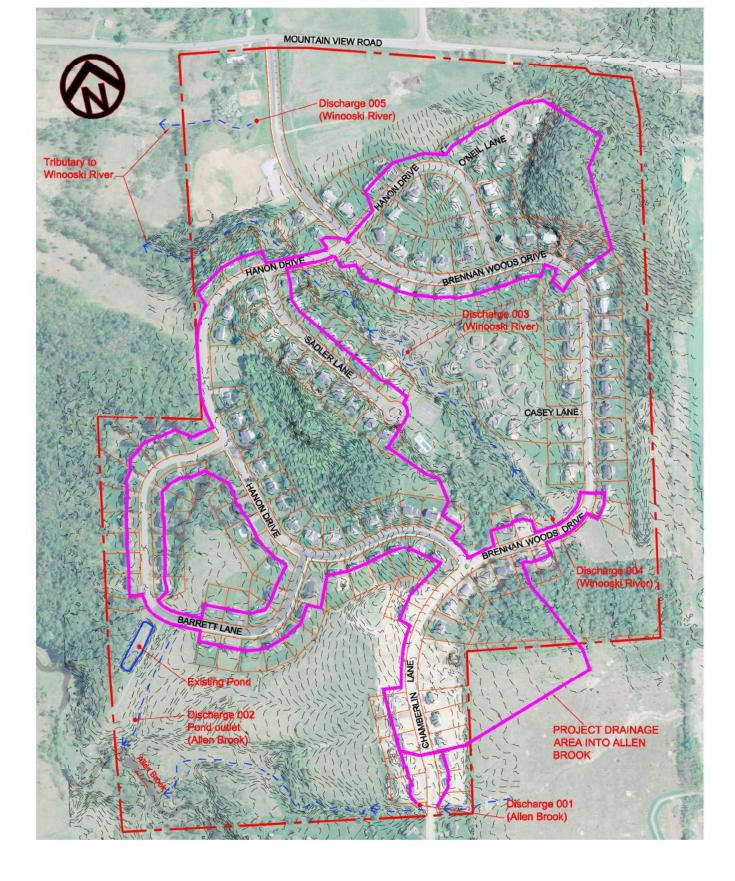
Stormwater Pond Modeling Results - modified stormwater pond (Pond capacity enlarged by expanding south into 20' wide bike path parcel) January 2015

	W.	Water Quality Volume	ле	Char	Channel Protection Volume	lume
Orifice size	Peak Q (cfs)	Peak elev. (feet) Detention (hrs)	Detention (hrs)	Peak Q (cfs)	Peak elev. (feet) Detention (hrs)	Detention (hrs)
1"	0.07	482.08	15.7	9.57	485.60	8.4
1.5"	0.12	481.59	6.8	9.40	485.58	5.3
2"	0.17	481.32	4.1	9.19	485.56	3.5
3"	0.24	481.06	1.8	8.66	485.48	1.7
4"	0.35	480.86	1.1	8.05	485.36	1.1
6"	0.60	480.65	0.7	6.65	484.95	0.5

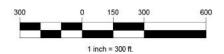
Notes:


- Detention is the center of mass detention time

Outlet Summary Orifice invert 480.00 Grate 485.00 Spillway 485.10 P:/1995/9504A/STORM WATER/Modified pond CPv results.wpd



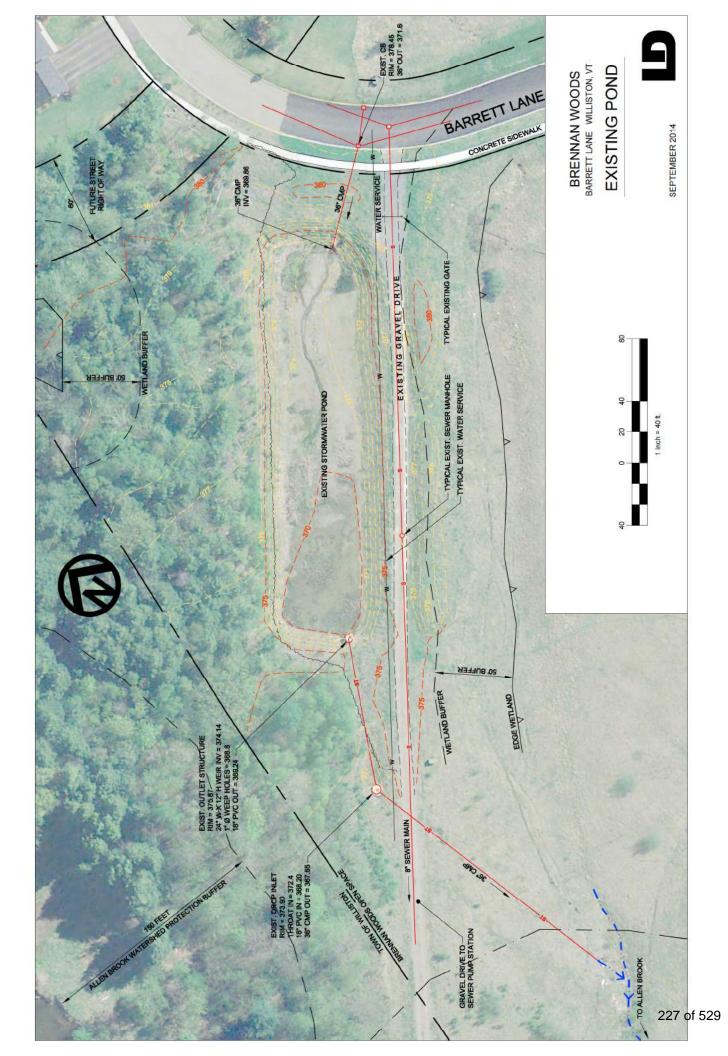
BRENNAN WOODS: PERMIT 1-1272 S/N 2

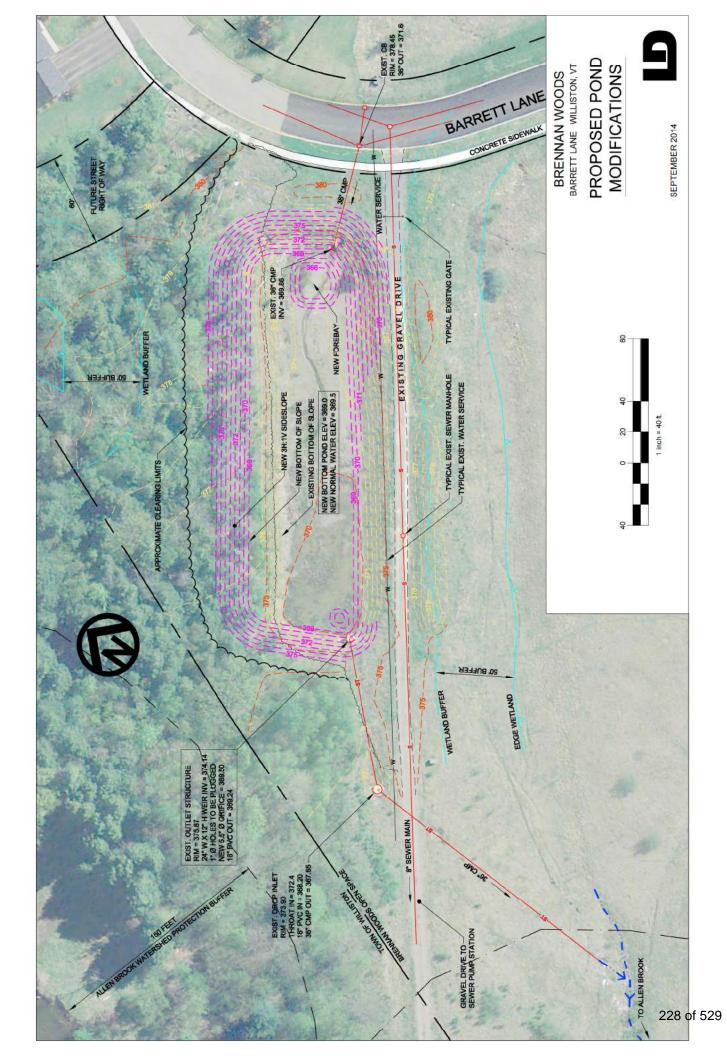


Attachment 5 Existing Stormwater Discharge Location

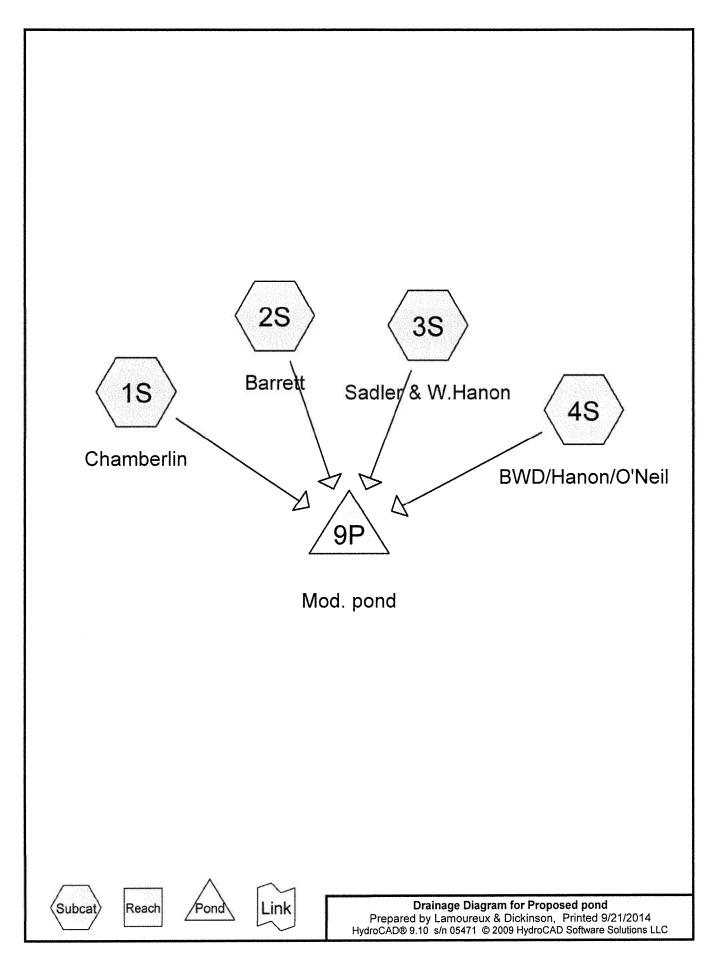
BRENNAN WOODS NEIGHBORHOOD WILLISTON, VT

WATERSHED DISCHARGE MAP





of 529


5

Attachment 6 Existing Pond & Conceptual Design

Attachment 7 Hydrologic Calculations

Area Listing (all nodes)

	Area cres)	CN	Description (subcatchment-numbers)	
1	.390	30	Woods, Good, HSG A (1S)	
4	.750	39	>75% Grass cover, Good, HSG A (1S, 2S, 3S)	
2	.120	61	>75% Grass cover, Good, HSG B (4S)	
0	.440	70	Woods, Good, HSG C (4S)	
3	.420	74	>75% Grass cover, Good, HSG C (3S, 4S)	
10	.630	77	Woods, Good, HSG D (3S, 4S)	
1	.050	79	Woods/grass comb., Good, HSG D (1S)	
29	.740	80	>75% Grass cover, Good, HSG D (1S, 2S, 3S, 4S)	
1	.070	98	O'Neil drives & roof (4S)	
1	.400	98	Roof and Drive (2S)	
5	.930	98	Roof and drive (1S, 3S, 4S)	
1	.120	98	Sidewalk (1S, 2S, 3S, 4S)	
6	.690	98	Street (1S, 2S, 3S, 4S)	
·				

16.21 AC IMPERVIOUS 69.75 AC TOTAL AREA

Summary for Subcatchment 1S: Chamberlin

Runoff = 4.29 cfs @ 12.35 hrs, Volume= 0.565 af, Depth= 0.43"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-80.00 hrs, dt= 0.10 hrs Type II 24-hr 1 year Rainfall=2.10"

_	Area	(ac)	CN	Desc	cription						
*	1.	200	98	Stree	ət						
*	0.	190	98	Side	idewalk						
*	1.	090	98	Roof	and drive						
	1.	390	30	Woo	Woods, Good, HSG A						
	1.050 79 Woods/grass comb., Good, HSG D										
	1.	110	39	>75%	% Grass co	over, Good	, HSG A				
	9.	710	80	>75%	% Grass co	over, Good	, HSG D				
15.740 75 Weighted Average											
	13.	260		84.2	4% Pervio	us Area					
	2.	480		15.7	6% Imperv	ious Area/					
	Tc	Length	n S	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	25.3	100	0.0	0200	0.07		Sheet Flow, Open space				
							Woods: Light underbrush n= 0.400 P2= 2.30"				
	8.3	635	5 0.	0330	1.27		Shallow Concentrated Flow, Thru meadow				
							Short Grass Pasture Kv= 7.0 fps				
	33.6	735	5 To	otal							

Summary for Subcatchment 2S: Barrett

[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.78 cfs @ 12.02 hrs, Volume= 0.198 af, Depth= 0.31"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-80.00 hrs, dt= 0.10 hrs Type II 24-hr 1 year Rainfall=2.10"

	Area (ac)	CN	Description				
*	1.240	98	Street				
*	0.240	98	Sidewalk				
*	1.400	98	Roof and Drive				
	2.920	39	>75% Grass cover, Good, HSG A				
	1.930	80	>75% Grass cover, Good, HSG D				
	7.730	71	Weighted Average				
	4.850		62.74% Pervious Area				
	2.880		37.26% Impervious Area				

233 of 529

Proposed pond	Type II 24-hr 1 year Rainfall=2.10"
Prepared by Lamoureux & Dickinson	Printed 9/21/2014
HydroCAD® 9.10 s/n 05471 © 2009 HydroCAD Software Solutions LLC	Page 4

Tc Slope Velocity Capacity Length Description (feet) (ft/ft) (ft/sec) (cfs) (min) 70 0.0300 Sheet Flow, Lawn 7.4 0.16 Grass: Short n= 0.150 P2= 2.30" 0.8 100 0.0100 2.03 **Shallow Concentrated Flow, Gutter**

Total 8.2 170

Summary for Subcatchment 3S: Sadler & W.Hanon

Paved Kv= 20.3 fps

20.55 cfs @ 12.13 hrs, Volume= 1.609 af, Depth= 0.72" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-80.00 hrs, dt= 0.10 hrs Type II 24-hr 1 year Rainfall=2.10"

	Area	(ac)	CN	Desc	ription		
*	2.	740	98	Stree	et		
*	0.	450	98	Side	walk		
*	3.	010	98	Roof	and drive		
	6.	670	77	Woo	ds, Good,	HSG D	
	0.	720	39	>75%	6 Grass co	over, Good,	HSG A
	1.	740	74			over, Good,	
	11.	650	80	>75%	6 Grass co	over, Good,	HSG D
	26.	980	82	Weig	phted Aver	age	
	20.	780		77.0	2% Pervio	us Area	
	6.	200		22.98	8% Imperv	ious Area	
	Tc	Length	n S	lope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	12.8	100	0.0	0400	0.13		Sheet Flow, Lawn
							Grass: Dense n= 0.240 P2= 2.30"
	5.9	560) 0. ⁻	1000	1.58		Shallow Concentrated Flow, Thru open space
							Woodland Kv= 5.0 fps
	0.5	60	0.0	0100	2.03		Shallow Concentrated Flow, Gutter
							Paved Kv= 20.3 fps
	19.2	720) To	otal			
				Sum	nmary fo	r Subcatc	hment 4S: BWD/Hanon/O'Neil

16.05 cfs @ 12.06 hrs, Volume= 1.076 af, Depth= 0.67" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-80.00 hrs, dt= 0.10 hrs Type II 24-hr 1 year Rainfall=2.10"

Proposed pond

Type II 24-hr 1 year Rainfall=2.10" Printed 9/21/2014 Page 5

Prepared by Lamoureux & Dickinson HydroCAD® 9.10 s/n 05471 © 2009 HydroCAD Software Solutions LLC

	Area	(ac) (CN Des	cription		
*	1.	510	98 Stre	et		
*	0.	240	98 Side	walk		
*	1.	830	98 Roo	f and drive		
*	1.	070	98 O'N	eil drives 8	roof	
*	0.	440	70 Woo	ds, Good,	HSG C	
	3.	960	77 Woo	ods, Good,	HSG D	
	2.	120	61 >75	% Grass c	over, Good,	HSG B
					over, Good,	
	6.	450	80 >75	<u>% Grass c</u>	over, Good,	HSG D
				ghted Avei		
		650		1% Pervio		
	4.	650	24.0	9% Impen	vious Area	
	-		01		0	
	Tc	Length		Velocity	Capacity	Description
	<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	11.7	100	0.0500	0.14		Sheet Flow, Lawn
	0.0	400	0 0070	2.00		Grass: Dense n= 0.240 P2= 2.30"
	0.8	180	0.0670	3.88		Shallow Concentrated Flow, Lawn
	0.3	80	0.0600	4.97		Grassed Waterway Kv= 15.0 fps Shallow Concentrated Flow, Gutter
	0.5	00	0.0000	4.37		Paved Kv= 20.3 fps
	12.8	360	Total			1 avec 1.v- 20.5 lp3
	12.0	300	TOLAI			
				Sur	nmary for	Pond 9P: Mod. pond
	low Ar	ea =				us, Inflow Depth = 0.59" for 1 year event
Inf	low	=	39.53 cf	s@ 12.1	0 hrs, Volu	me= 3.447 af

Outflow	= 1.6	63 cfs @ 17.70	hrs, Volume= 3.434 af, Atten= 96%, Lag= 336.0 min			
Primary			hrs, Volume= 3.434 af			
·	r-	-> NORN	IAL WATER ELEV = 369,50			
Routing by Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.10 hrs / 2						
Starting E	Starting Elev= 369.50' Surf.Area= 16,195 sf Storage= 7,877 cf					
Peak Elev= 373.94' @ 17.70 hrs Surf.Area= 24,664 sf Storage= 98,166 cf (90,289 cf above start)						
Plug-Flow detention time= 798.7 min calculated for 3.249 af (94% of inflow) $Plug-Flow = 4.44 FEET$						
Plug-Flow detention time= 798.7 min calculated for 3.249 af (94% of inflow)						
Center-of-Mass det. time= 724.5 min (1,601.7 - 877.2)						
		Ĺ	12 HOURS			
Volume	Invert	Avail.Storage	Storage Description			
#1						

Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
369.00	15,317	584.0	0	0	15,317_	- NORMAL
370.00	17,098	603.0	16,199	16,199	17,207	WATER=
371.00	18,936	621.0	18,009	34,209	19,064	369.50
372.00	20,830	640.0	19,875	54,084	21,072	Je file
373.00	22,781	659.0	21,798	75,882	23,141	
374.00	24,788	678.0	23,777	99,660	25,270	
375.00	26,852	697.0	25,813	125,473	27,460	- OVERFLOW+
375.50	28,972	716.0	13,953	139,425	29,625	SPILLWAY=
						374.1

234 of 529

Device	Routing	Invert	Outlet Devices
#1	Primary	369.50'	5.5" Vert. Orifice C= 0.600 - NEW
#2	Primary	374.10'	24.0" W x 12.0" H Vert. Orifice 12"x24" C= 0.600 NO CHANGE
#3	Primary	374.10'	33.0 deg x 6.0' long x 1.50' rise Sharp-Crested Vee/Trap Weir SPILLWAY
			C= 2.60

Primary OutFlow Max=1.63 cfs @ 17.70 hrs HW=373.94' (Free Discharge)

-1=Orifice (Orifice Controls 1.63 cfs @ 9.88 fps)

-2=Orifice 12"x24" (Controls 0.00 cfs)

OUTLET STRUCTURE 24" W × 12" H OPENING = 374,10 (NO CHANGE) 5.5" \$ DRIFICE INV = 369.50 (NEN) (9) I" DIAMETER WEEP HALES ->> PLUG

Summary for Subcatchment 1S: Chamberlin

Runoff = 12.92 cfs @ 12.32 hrs, Volume= 1.435 af, Depth= 1.09"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-80.00 hrs, dt= 0.10 hrs Type II 24-hr 10 year Rainfall=3.20"

	Area	(ac)	CN E	Desc	ription						
*	1.	200	98 5	Stree	reet						
*	0.	190	98 5	Side	walk						
*	1.	090	98 F	Roof	and drive						
	1.	390			ds, Good,						
	1.	050			•	comb., Goo					
		110				over, Good					
	9.	710	80 >	>75%	<u>6 Grass co</u>	over, Good	, HSG D				
	15.	740	75 V	Neig	hted Aver	age					
	13.	260	8	84.24% Pervious Area							
	2.	480	1	15.76% Impervious Area							
						_					
	Tc	Length			Velocity	Capacity	Description				
	(min)	(feet)	(ft	:/ft)	(ft/sec)	(cfs)					
	25.3	100	0.02	200	0.07		Sheet Flow, Open space				
							Woods: Light underbrush n= 0.400 P2= 2.30"				
	8.3	635	0.03	30	1.27		Shallow Concentrated Flow, Thru meadow				
							Short Grass Pasture Kv= 7.0 fps				
	33.6	735	Tota	al							

Summary for Subcatchment 2S: Barrett

[49] Hint: Tc<2dt may require smaller dt

Runoff = 10.07 cfs @ 12.00 hrs, Volume= 0.566 af, Depth= 0.88"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-80.00 hrs, dt= 0.10 hrs Type II 24-hr 10 year Rainfall=3.20"

	Area (ac)	CN	Description			
*	1.240	98	Street			
*	0.240	98	Sidewalk			
*	1.400	98	Roof and Drive			
	2.920	39	>75% Grass cover, Good, HSG A			
	1.930	80	>75% Grass cover, Good, HSG D			
	7.730	71	Weighted Average			
	4.850		62.74% Pervious Area			
	2.880		37.26% Impervious Area			

0.0400	0.13	Sheet Flow, Lawn							
0.1000	1.58	Grass: Dense n= 0.240 P2= 2.30" Shallow Concentrated Flow, Thru open space Woodland Kv= 5.0 fps							
0.0100	2.03	Shallow Concentrated Flow, Gutter Paved Kv= 20.3 fps							
Total									
Summary for Subcatchment 4S: BWD/Hanon/O'Neil									
36.43 cfs @	12.05 hrs, Vol	ume= 2.363 af, Depth= 1.47"							
		Span= 1.00-80.00 hrs, dt= 0.10 hrs							
	0.1000 0.0100 Total Summa 36.43 cfs @ R-20 method,	0.1000 1.58 0.0100 2.03 Total Summary for Subcat 36.43 cfs @ 12.05 hrs, Volu							

Proposed pond

HydroCAD® 9.10 s/n 05471 © 2009 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	7.4	70	0.0300	0.16		Sheet Flow, Lawn
						Grass: Short n= 0.150 P2= 2.30"
	0.8	100	0.0100	2.03		Shallow Concentrated Flow, Gutter
						Paved Kv= 20.3 fps
_	8.2	170	Total			

Summary for Subcatchment 3S: Sadler & W.Hanon

Runoff = 46.04 cfs @ 12.12 hrs, Volume= 3.458 af, Depth= 1.54"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-80.00 hrs, dt= 0.10 hrs Type II 24-hr 10 year Rainfall=3.20"

	Area	(ac)	CN E	Desc	ription		
*	2.	740	98 S	Street			
*	0.	450	98 S	Sidewalk			
*	3.	010	98 F	Roof	and drive		
	6.	670	77 V	Noo	ds, Good,	HSG D	
	0.	720	39 >	>75%	6 Grass co	over, Good,	HSG A
	1.	740	74 >	>75%	6 Grass co	over, Good,	HSG C
	11.	650	80 >	>75%	6 Grass co	over, Good,	HSG D
	26.	980	82 V	Neig	hted Aver	age	
	20.	780	7	77.02	2% Pervio	us Area	·
	6.	200	2	22.98	3% Imperv	∕ious Area	
	Tc	Length	n Slo	pe	Velocity	Capacity	Description
	(min)	(feet)) (ft	:/ft)	(ft/sec)	(cfs)	
	12.8	100	0.04	00	0.13		Sheet Flow, Lawn
							Grass: Dense n= 0.240 P2= 2.30"
	5.9	560	0.10	000	1.58		Shallow Concentrated Flow, Thru open space
							Woodland Kv= 5.0 fps
	0.5	60	0.01	00	2.03		Shallow Concentrated Flow, Gutter
							Paved Kv= 20.3 fps
	19.2	720) Tota	al			
			S	Sum	nmary fo	r Subcato	hment 4S: BWD/Hanon/O'Neil

Runoff

Runoff b Type II 2

Proposed pond

Prepared by Lamoureux & Dickinson HydroCAD® 9.10 s/n 05471 © 2009 HydroCAD Software Solutions LLC

	Area	(ac)	CN	Desc	ription							
*	1.	510	98	Stree	treet							
*	0.	240	98	Side	walk							
*	1.	830	98	Roof	and drive	e						
*	1.	070	98	O'Ne	il drives &	roof						
*	0.	440	70	Woo	ds, Good,	HSG C						
	З.	960	77		ds, Good,							
	2.	120	61	>75%	6 Grass co	over, Good,	HSG B					
	1.	680	74	>75%	6 Grass co	over, Good,	HSG C					
	6.	450	80	>75%	6 Grass co	over, Good,	HSG D					
	19.	300	81	Weid	hted Aver	ade						
	14.	650			, 1% Pervio	•						
	4.	650		24.0	9% Imperv	/ious Area						
					•							
	Тс	Lengt	h S	Slope	Velocity	Capacity	Description					
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)						
	11.7	10	0 0.	0500	0.14		Sheet Flow, Lawn					
							Grass: Dense n= 0.240 P2= 2.30"					
	0.8	18	0 0.	0670	3.88		Shallow Concentrated Flow, Lawn					
							Grassed Waterway Kv= 15.0 fps					
	0.3	8	0 0.	0600	4.97		Shallow Concentrated Flow, Gutter					
							Paved Kv= 20.3 fps					
	12.8	36	0 Т	otal								

Summary for Pond 9P: Mod. pond

Inflow Area =	69.750 ac, 23.24% Impervious, Inflow Depth = 1.35" for 10 year event	
Inflow =	94.00 cfs @ 12.09 hrs, Volume= 7.821 af	
Outflow =	37.69 cfs @ 12.43 hrs, Volume= 7.815 af, Atten= 60%, Lag= 20.3 min	
Primary =	37.69 cfs @ 12.43 hrs, Volume= 7.815 af	

Routing by Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.10 hrs / 2 Starting Elev= 369.50' Surf.Area= 16,195 sf Storage= 7,877 cf Peak Elev= 375.33' @ 12.43 hrs Surf.Area= 28,228 sf Storage= 134,472 cf (126,595 cf above start)

Plug-Flow detention time= 417.9 min calculated for 7.624 af (97% of inflow) Center-of-Mass det. time= 394.3 min (1,247.2 - 852.9)

Volume	Invert	Avail.	Storage	Storage Description	n	
#1	369.00'	13	9,425 cf	Custom Stage Dat	ta (Irregular) Listed	below (Recalc)
Elevation (feet)		.Area sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
369.00 370.00 371.00 372.00 373.00 374.00 375.00	17 18 20 22 24 26	5,317 7,098 3,936 0,830 2,781 4,788 5,852 3,852 3,972	584.0 603.0 621.0 640.0 659.0 678.0 697.0 716.0	0 16,199 18,009 19,875 21,798 23,777 25,813 13,953	0 16,199 34,209 54,084 75,882 99,660 125,473 139,425	15,317 17,207 19,064 21,072 23,141 25,270 27,460 29,625

Device	Routing	Invert	Outlet Devices							
#1	Primary		5.5" Vert. Orifice C= 0.600							
#2	Primary	374.10'	24.0" W x 12.0" H Vert. Orifice 12"x24" C= 0.600							
#3	Primary	374.10'	33.0 deg x 6.0' long x 1.50' rise Sharp-Crested Vee/Trap Weir C= 2.60							
Primary	Primary OutFlow Max=36.99 cfs @ 12.43 hrs HW=375.31' (Free Discharge)									

1=Orifice (Orifice Controls 1.88 cfs @ 11.37 fps)
 2=Orifice 12"x24" (Orifice Controls 7.93 cfs @ 3.96 fps)
 -3=Sharp-Crested Vee/Trap Weir (Weir Controls 27.19 cfs @ 3.53 fps)

Summary for Subcatchment 1S: Chamberlin

Runoff = 0.02 cfs @ 15.64 hrs, Volume= 0.020 af, Depth= 0.02"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-80.00 hrs, dt= 0.10 hrs Type II 24-hr WQv Rainfall=0.90"

	Area	(ac)	CN	Desc	cription					
*	1.	200	98	Stree	reet					
*										
*	1.	090	98	Roof	and drive					
	1.	390	30		ds, Good,					
		050	79		•	comb., Goo	•			
		110	39			over, Good				
	9.	710	80	>75%	<u>6 Grass co</u>	over, Good	, HSG D			
	15.	740	75	Weig	ghted Aver	age				
		260		• • • • • •	4.24% Pervious Area					
	2.	480		15.76% Impervious Area						
	Тс	Length		lope	Velocity	Capacity	Description			
	(min)	(feet		ft/ft)	(ft/sec)	(cfs)	Description			
	25.3	100		200	0.07		Sheet Flow, Open space			
							Woods: Light underbrush n= 0.400 P2= 2.30"			
	8.3	635	5 0.0)330	1.27		Shallow Concentrated Flow, Thru meadow			
							Short Grass Pasture Kv= 7.0 fps			
	33.6	735	5 To	tal						

Summary for Subcatchment 2S: Barrett

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.00 cfs @ 24.00 hrs, Volume= 0.001 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-80.00 hrs, dt= 0.10 hrs Type II 24-hr WQv Rainfall=0.90"

	Area (ac)	CN	Description
*	1.240	98	Street
*	0.240	98	Sidewalk
*	1.400	98	Roof and Drive
	2.920	39	>75% Grass cover, Good, HSG A
	1.930	80	>75% Grass cover, Good, HSG D
	7.730	71	Weighted Average
	4.850		62.74% Pervious Area
	2.880		37.26% Impervious Area

			© 2009 H		oftware Solutions LLC Page 12
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.4	70	0.0300	0.16		Sheet Flow, Lawn
0.8	100	0.0100	2.03		Grass: Short n= 0.150 P2= 2.30" Shallow Concentrated Flow, Gutter Paved Kv= 20.3 fps
8.2	170	Total			
		Sun	nmary fo	or Subcat	chment 3S: Sadler & W.Hanon
Runoff	=	1.07 cfs	s@ 12.2	2 hrs, Volu	me= 0.180 af, Depth= 0.08"
Runoff by Type II 24				CS, Time S	Span= 1.00-80.00 hrs, dt= 0.10 hrs
•					
Area (cription		
		8 Stree			
		8 Side 8 Roof	waik and drive		
			ds, Good,		
				over, Good	, HSG A
				over, Good	
11.0				over, Good	
			hted Aver		
20.	780		2% Pervio		
6.2	200	22.9	8% Imperv	ious Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
12.8	100	0.0400	0.13		Sheet Flow, Lawn
5.9	560	0.1000	1.58		Grass: Dense n= 0.240 P2= 2.30" Shallow Concentrated Flow, Thru open space Woodland Kv= 5.0 fps
0.5	60	0.0100	2.03		Shallow Concentrated Flow, Gutter Paved Kv= 20.3 fps
19.2	720	Total			
		Sum	nmary fo	r Subcate	chment 4S: BWD/Hanon/O'Neil
Runoff	=	0.65 cfs	s@ 12.1:	3 hrs, Volu	me= 0.108 af, Depth= 0.07"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-80.00 hrs, dt= 0.10 hrs Type II 24-hr WQv Rainfall=0.90"

Proposed pond Prepared by Lamoureux & Dickinson

Proposed pond

Type II 24-hr WQv Rainfall=0.90" Printed 9/21/2014 Page 13

Prepared by Lamoureux & Dickinson
HydroCAD® 9.10 s/n 05471 © 2009 HydroCAD Software Solutions LLC

	Area	(ac)	CN	Desc	cription		
*	1.	510	98	Stree	et		
*	0.	240	98	Side	walk		
*	1.	830	98	Roof	and drive		
*	1.	070	98	O'Ne	eil drives &	roof	
*	0.	440	70	Woo	ds, Good,	HSG C	
	3.	960	77	Woo	ds, Good,	HSG D	
	2.	120	61	>75%	6 Grass co	over, Good	, HSG B
	1.	680	74	>75%	6 Grass co	over, Good	, HSG C
	6.	450	80	>75%	6 Grass co	over, Good	, HSG D
	19.	300	81	Weig	phted Aver	age	
	14.	650		75.9	1% Pervio	us Area	
	4.	650		24.0	9% Imperv	ious Area	
	Тс	Lengti	n S	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	11.7	100	0.	0500	0.14		Sheet Flow, Lawn
							Grass: Dense n= 0.240 P2= 2.30"
	0.8	180	0.	0670	3.88		Shallow Concentrated Flow, Lawn
							Grassed Waterway Kv= 15.0 fps
	0.3	80	0.	0600	4.97		Shallow Concentrated Flow, Gutter
							Paved Kv= 20.3 fps
	12.8	360) To	otal			

Summary for Pond 9P: Mod. pond

Inflow Area =	69.750 ac, 23.24% Impervious, Inflow Depth = 0.05" for WQv event	
Inflow =	1.59 cfs @ 12.19 hrs, Volume= 0.309 af	
Outflow =	0.24 cfs @ 17.46 hrs, Volume= 0.300 af, Atten= 85%, Lag= 315	5.9 min
Primary =	0.24 cfs @ 17.46 hrs, Volume= 0.300 af	

Routing by Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.10 hrs / 2 Starting Elev= 369.50' Surf.Area= 16,195 sf Storage= 7,877 cf Peak Elev= 369.82' @ 17.46 hrs Surf.Area= 16,776 sf Storage= 13,209 cf (5,332 cf above start)

Plug-Flow detention time= 1,143.4 min calculated for 0.120 af (39% of inflow) Center-of-Mass det. time= 434.1 min (1,407.8 - 973.7)

Volume	Invert	Avail.	Storage	Storage Description	on	
#1	369.00'	13	9,425 cf	Custom Stage Da	ita (Irregular) Liste	ed below (Recalc)
Elevation (feet)		Area sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
369.00 370.00 371.00 372.00 373.00 374.00 375.00 375.50	17 18 20 22 24 26	5,317 7,098 3,936 0,830 2,781 4,788 5,852 3,972	584.0 603.0 621.0 640.0 659.0 678.0 697.0 716.0	0 16,199 18,009 19,875 21,798 23,777 25,813 13,953	0 16,199 34,209 54,084 75,882 99,660 125,473 139,425	15,317 17,207 19,064 21,072 23,141 25,270 27,460 29,625


Device	Routing	Invert	Outlet Devices					
#1	Primary	369.50'	5.5" Vert. Orifice C= 0.600					
#2	Primary	374.10'	24.0" W x 12.0" H Vert. Orifice 12"x24" C= 0.600					
#3	Primary	374.10'	33.0 deg x 6.0' long x 1.50' rise Sharp-Crested Vee/Trap Weir C= 2.60					
Primary OutFlow Max=0.24 cfs @ 17.46 hrs HW=369.82' (Free Discharge)								

-1=Orifice (Orifice Controls 0.24 cfs @ 1.94 fps) -2=Orifice 12"x24" (Controls 0.00 cfs)

COYOTE RUN: PERMIT 1-1507

— st—	
	_
	1

New Area Stabilized Vege Stabilized Vege Refurbished Sta Total New Distu

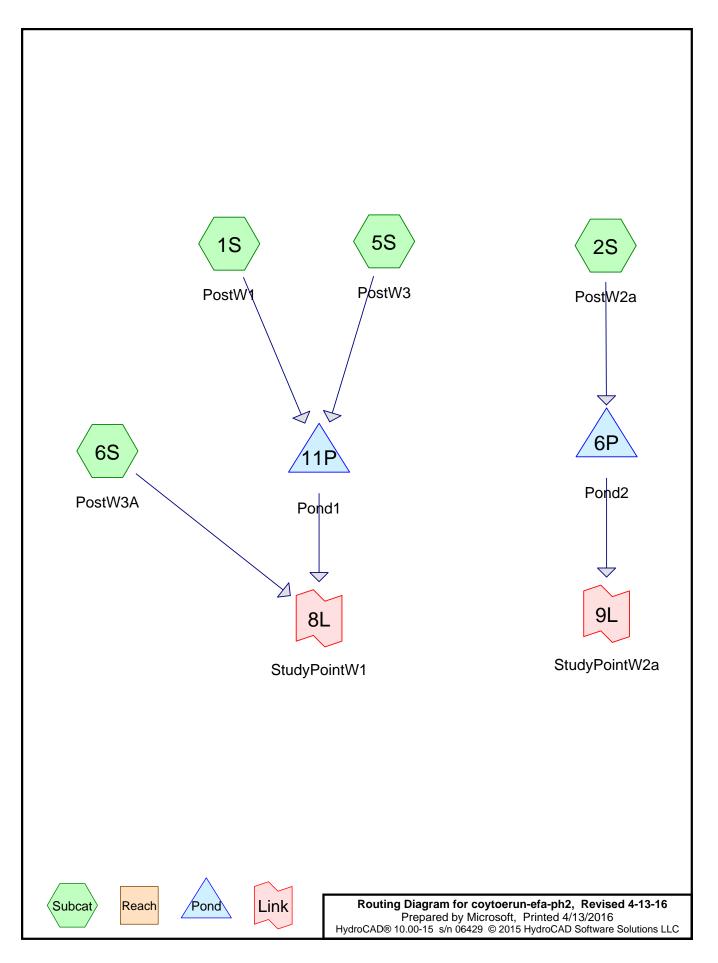
CONSTRUCTION NOTES

- 1. See Sheet C-2 for additional notes related to erosion prevention and sediment control.
- The Contractor shall be responsible for repairing all disturbed areas back to original or better condition, including but not limited to curbing, sidewalks, road, parking areas, landscaping, site lighting, electrical, and etc. All asphalt shall be sawcut prior to paving.
- All stumps, rock, and other non-approved trench backfill material discovered during construction is the exclusive property of the Contractor and shall be removed from the site and disposed of in a State approved disposal location.
- 4. Contractor shall be responsible for providing a passing sieve of the representative gravel delivered to the site for the construction of the stable vegetated access paths.
- The Contractor shall comply with the procedures outlined in the Low Risk Site Handbook for Erosion Prevention and Sediment Control. The Contractor shall be responsible for installing, maintaining and removing all erosion and sediment control devices shown on the plans or details and, to the maximum extent practical, to minimize potential contamination of stormwater runoff from the construction activities.
- 6. The Contractor shall be responsible for all construction barrier/safety fencing required for the project.
- 7. Contractor shall be responsible for importing topsoil as required to complete the project. Contractor shall test topsoil for approval.
- 8. The Contractor shall be responsible for all signage and fencing necessary to providing safe vehicular and pedestrian access through or around the site during construction.
- 9. All storm pipes shall be PVC SDR 35 unless otherwise noted. PVC pipe shall contain no recycled content.
- 10. Temporary groundwater dewatering and stormwater by—pass pumping and/or diversion is the responsibility of the Contractor. The Contractor is responsible for providing all necessary pumps and equipment to perform the work. Overnight pumping is not allowed.
- 11. This project is subject to all erosion prevention and sediment control measures including the monitoring, inspection, and reporting requirements of State of Vermont Construction Stormwater Discharge Permit. The Contractor shall be the Principal Operator for the project.
- 12. Removal of all erosion control matting and inlet protection is the responsibility of the Contractor.

Legend

- -st— — — — Existing Storm Line/Manhole/Basin
 - Finish Grade existing pond
 - 23 Lot number

<u>Notes:</u>


- 1. This plan is in по way a boundary survey. Property lines are based on Town of Williston tax maps.
- Underground utilities are approximate and not warranted to be exact or complete. Dig Safe shall be contacted prior to any excavation.
- 3. Elevations are based on the NAVD 88 vertical datum.
- 4. Project Horizontal Coordinates derived from GPS observation using reference frame NAD83 (2011) 2010.00 epoch. Project vertical datum based on NAVD 88 (Geoid 12A).

a of Disturbance Summary:

Stabilized Vegetated Path to Pond 1 Outlet – 450 s.f. Stabilized Vegetated Path to Pond 1 Outlet – 300 s.f.

Refurbished Stabilized Vegetated Path to Pond 1 Inlet - 150 s.f. Total New Disturbance = 900 s.f.

				, <u>200</u> '	400'		<i>800</i> '
				<u>Bar Sca</u>	<u>1/e</u> 1" = 10	<u>00'</u>	
							0-4-
	<i>Date revis</i> Design Drawn	SWH	Description OVER	all Site Pla	n – Stor	Checked	r EFA
N. HO WO	Checked Scale Date			Соу	ote Ru	IN	
CENSED BUILD			SING Cor	ne & Raven Circle nsulting Engi hester, Vermo		Willisto File name cayate-averall-2016.dwg Printing date	C-1

coytoerun-efa-ph2Prepared by MicrosoftReHydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solutions LLC Revised 4-13-16 Printed 4/13/2016 Page 2

Project Notes

Coyote Run EFA Phase 2

Type II 24-hr 1 Year Rainfall=2.10 Revised 4-13-16 Printed 4/13/2016 OCAD Software Solutions LLC Page 3
or Subcatchment 1S: PostW1
Volume= 0.550 af, Depth= 0.72"
Veighted-CN, Time Span= 1.00-200.00 hrs, dt= 0.05 hrs
D
ea Area
acity Description (cfs)
Sheet Flow, open
Grass: Dense n= 0.240 P2= 2.30" Shallow Concentrated Flow, grassed Unpaved Kv= 16.1 fps
· · ·
atchment 1S: PostW1
Hydrograph
+
Type II 24-hr
1 Year Rainfall=2.10"
Runoff Area=9.230 ac
Runoff Volume=0.550 af
Runoff Depth=0.72"
Flow Length=600'
Tc=17.0 min
CN=82

90 100 110 120 130 140 150 160 170 180 190 200 Time (hours)

0-

 Coyote Run EFA

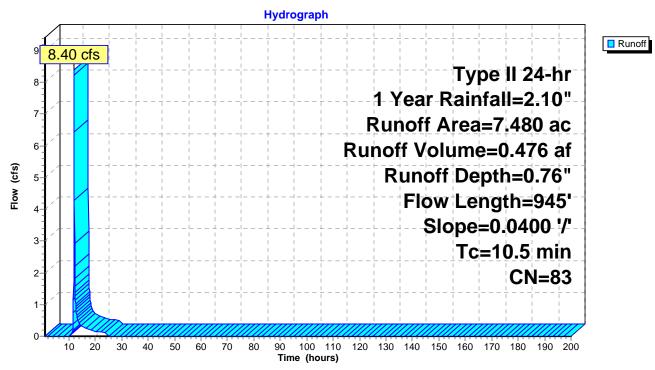
Summary for Subcatchment 2S: PostW2a

Runoff = 9.70 cfs @ 12.03 hrs, Volume= 0.550 af, Depth= 0.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 1 Year Rainfall=2.10"

	Area	(ac)	CN	Desc	cription			
	1.	870	98	Pave	ed parking,	, HSG D		
	0.	710	98	Roof	s, HSG D			
*	5.	020	78	Ope	n C/D			
	7.	600	85	Weig	ghted Aver	age		
	5.	020		66.0	5% Pervio	us Area		
	2.	580		33.9	5% Imperv	vious Area		
	Тс	Lengt	h	Slope	Velocity	Capacity	Description	
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)		
	9.7	5	0	0.0200	0.09		Sheet Flow, open	
							Grass: Dense n= 0.240 P2= 2.30"	
	1.1	15	0	0.0200	2.28		Shallow Concentrated Flow, grassed	
							Unpaved Kv= 16.1 fps	
_	10.8	20	0.	Total				

Subcatchment 2S: PostW2a


Summary for Subcatchment 5S: PostW3

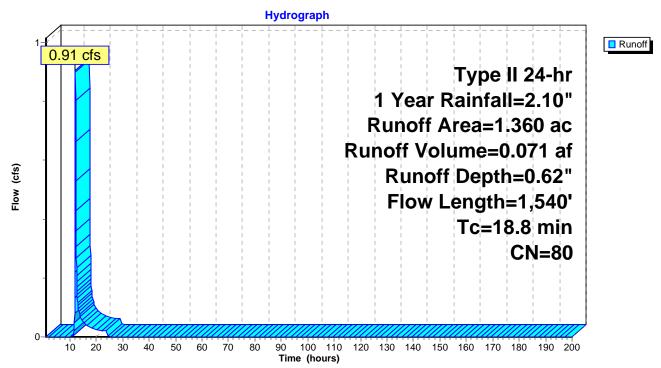
Runoff = 8.40 cfs @ 12.03 hrs, Volume= 0.476 af, Depth= 0.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 1 Year Rainfall=2.10"

	Area	(ac) (CN Des	cription		
	1.	360		ed parking	, HSG D	
	0.	390	98 Roc	ofs, HSG D		
*	5.	730	78 Ope	en C/D		
	7.480 83 Weighted Average			ghted Aver	age	
	5.	730	76.6	50% Pervio	us Area	
	1.	750	23.4	10% Imperv	ious Area	
				·		
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	· · · ·
	7.3	50	0.0400	0.11		Sheet Flow, open
						Grass: Dense n= 0.240 P2= 2.30"
	0.6	120	0.0400	3.22		Shallow Concentrated Flow, grassed
						Unpaved Kv= 16.1 fps
	2.6	775		5.00		Direct Entry, Piped
	10.5	945	Total			

Subcatchment 5S: PostW3

Summary for Subcatchment 6S: PostW3A


Runoff = 0.91 cfs @ 12.13 hrs, Volume= 0.071 af, Depth= 0.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 1 Year Rainfall=2.10"

	Area	(ac) C	N Dese	cription		
	0.	130 9	98 Pave	ed parking	HSG D	
*	1.	230	78 Ope	n C/D		
	1.	360 8	30 Weig	ghted Aver	age	
	1.	230	90.4	4% Pervio	us Area	
	0.	130	9.56	% Impervi	ous Area	
	т.	1	0		0	Description
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	12.8	100	0.0400	0.13		Sheet Flow, open
						Grass: Dense n= 0.240 P2= 2.30"
	1.1	130	0.0140	1.90		Shallow Concentrated Flow, grassed
						Unpaved Kv= 16.1 fps
	4.9	1,310	0.0190	4.41	35.30	Channel Flow, tributary
						Area= 8.0 sf Perim= 10.0' r= 0.80'
_						n= 0.040 Winding stream, pools & shoals

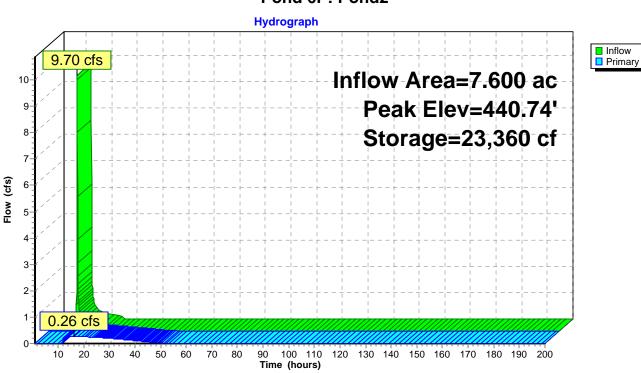
18.8 1,540 Total

Subcatchment 6S: PostW3A

Coyote Run EFA coytoerun-efa-ph2 Type II 24-hr 1 Year Rainfall=2.10" Prepared by Microsoft Re HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solutions LLC Revised 4-13-16 Printed 4/13/2016 Page 7

Summary for Pond 6P: Pond2

Inflow A Inflow Outflow Primary	= =	9.70 cfs @ 12 0.26 cfs @ 10	95% Impervious 2.03 hrs, Volum 5.28 hrs, Volum 5.28 hrs, Volum	ne= 0.550 af,		Ƴear event 6, Lag= 255.1 min			
Routing by Stor-Ind method, Time Span= 1.00-200.00 hrs, dt= 0.05 hrs Starting Elev= 438.50' Surf.Area= 5,252 sf Storage= 8,312 cf Peak Elev= 440.74' @ 16.28 hrs Surf.Area= 8,106 sf Storage= 23,360 cf (15,048 cf above start)									
		on time= 1,208.3 ot. time= 762.1 n		for 0.360 af (65% of 47.7)	inflow)	762.1 min. = 12.7 hours detention for			
Volume	Inve	ert Avail.Sto	rage Storage	Description		CPv.			
#1	435.5			Stage Data (Prisma	tic)Listed be	elow (Recalc)			
Elevatio (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)					
435.5		585	0	0					
436.0		1,310	474	474					
437.0		2,480	1,895	2,369	Volun	ne of Permanent Pool			
438.0	00	4,520	3,500	5,869		3.50 = 8,312 c.f.			
439.0	00	5,984	5,252	11,121					
440.0	00	7,196	6,590	17,711		c.f. of permanent pool			
441.(00	8,429	7,813	25,523	volum	ne > 7,504 c.f of WQv			
442.0	00	9,871	9,150	34,673	requi	red			
443.0	00	11,474	10,673	45,346					
444.(00	13,044	12,259	57,605					
Device	Routing	Invert	Outlet Devices	5					
#1	Primary	438.50'	15.0" Round	Culvert					
			L= 80.0' CPP	, projecting, no head	wall, Ke= 0	.900			
				vert= 438.50' / 438.0					
			n= 0.010 PVC	, smooth interior, FI	ow Area= 1.	23 sf			
#2	Device 1	438.50'	2.6" Vert. Orif	ice/Grate C= 0.600)				
#3	Device 1	440.75'	6.0" Vert. Orif	ice/Grate C= 0.600)				
#4	Device 1	442.25'		Horiz. Orifice/Grate	C= 0.600				
Primary OutFlow Max=0.26 cfs @ 16.28 hrs HW=440.74' (Free Discharge)									


-1=Culvert (Passes 0.26 cfs of 5.93 cfs potential flow) -2=Orifice/Grate (Orifice Controls 0.26 cfs @ 7.03 fps)

-3=Orifice/Grate (Controls 0.00 cfs) -4=Orifice/Grate (Controls 0.00 cfs)

coytoerun-efa-ph2

Coyote Run EFA *Type II 24-hr 1 Year Rainfall=2.10"* Revised 4-13-16 Printed 4/13/2016 ftware Solutions LLC Page 8

Prepared by Microsoft Re HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solutions LLC

Pond 6P: Pond2

coytoerun-efa-ph2

Coyote Run EFA Type II 24-hr 1 Year Rainfall=2.10" Prepared by Microsoft Revised 4-13-16 Printed 4/13/2016 HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solutions LLC Page 9

Summary for Pond 11P: Pond1

Inflow A Inflow Outflow Primary	= =	15.23 cfs @ 12 0.51 cfs @ 10	44% Impervious 2.06 hrs, Volum 6.55 hrs, Volum 6.55 hrs, Volum	e= 1.025 af,		Year event %, Lag= 269.5 min			
Routing by Stor-Ind method, Time Span= 1.00-200.00 hrs, dt= 0.05 hrs / 2 Starting Elev= 437.00' Surf.Area= 12,242 sf Storage= 11,924 cf Peak Elev= 438.61' @ 16.55 hrs Surf.Area= 20,573 sf Storage= 39,144 cf (27,220 cf above start)									
Plug-Flow detention time= 1,097.0 min calculated for 0.751 af (73% of inflow) Center-of-Mass det. time= 744.4 min (1,605.5 - 861.1) for CPv									
Volume			rage Storage						
#1	434.0	JU [*] 97,44	42 cf Custom	Stage Data (Prisma	atic)Listed b	elow (Recalc)			
Elevatio (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)					
434.0	00	1,218	0	0					
435.0		2,089	1,654	1,654					
436.0		3,105	2,597	4,251	11	,924 c.f. of permanent			
437.0		12,242	7,674	11,924	po	ol volume > 11,550 c.f			
438.0 439.0		18,352 21,977	15,297 20,165	27,221 47,386	of	WQv required			
439.0		25,022	23,500	70,885	_				
441.0		28,091	26,557	97,442					
Device	Routing	Invert	Outlet Devices						
#1	Primary	436.60'	15.0" Round						
				, projecting, no head					
				vert= 436.60' / 436.2					
#2	Device 1	437.00'		, smooth interior, Fl i ce/Grate C= 0.600		.23 \$1			
#2	Device 1			Horiz. Orifice/Grate					
π 0	Device I	+00.70		flow at low heads	0-0.000				
#4	Primary	439.50')' breadth Broad-Ci	rested Rec	tangular Weir			
			Head (feet) 0.2	20 0.40 0.60 0.80	1.00 1.20	1.40 1.60 1.80 2.00			
				0 4.00 4.50 5.00 5					
				2.38 2.54 2.69 2 3 2.76 2.79 2.88 3		.67 2.65 2.66 2.66			
			2.00 2.12 2.1	5 Z.10 Z.19 Z.08 3	5.01 3.32				

Primary OutFlow Max=0.51 cfs @ 16.55 hrs HW=438.61' (Free Discharge)

-**1=Culvert** (Passes 0.51 cfs of 5.50 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.51 cfs @ 5.79 fps)

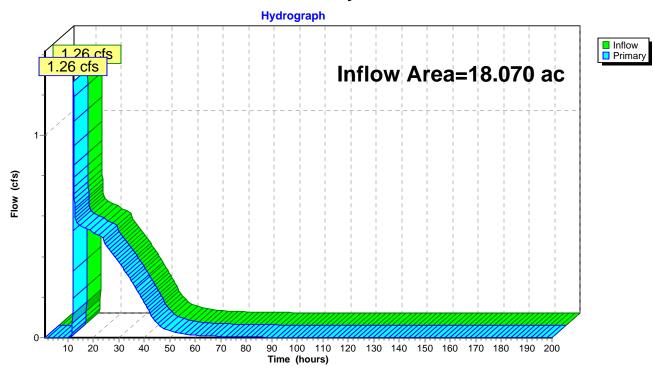
-3=Orifice/Grate (Controls 0.00 cfs)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

coytoerun-efa-ph2 Prepared by Microsoft

Coyote Run EFA Type II 24-hr 1 Year Rainfall=2.10" Revised 4-13-16 Printed 4/13/2016 HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solutions LLC Page 10

Hydrograph Inflow
Primary 15.23 cfs 17 16 Inflow Area=16.710 ac 15-Peak Elev=438.61' 14 13 Storage=39,144 cf 12 11 10-Flow (cfs) 9-8-7. 6 5-4 3 2 0.51 cfs 1 0-40 10 20 30 50 60 100 110 120 130 140 150 160 170 180 190 200 70 80 90 Time (hours)

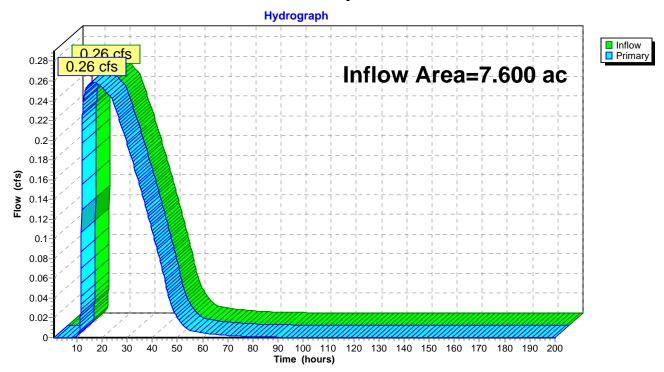

Pond 11P: Pond1

	Coyote Run EFA
coytoerun-efa-ph2	Type II 24-hr 1 Year Rainfall=2.10"
Prepared by Microsoft	Revised 4-13-16 Printed 4/13/2016
HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solution	ns LLC Page 11

Summary for Link 8L: StudyPointW1

Inflow Are	a =	18.070 ac, 21.47% Impervious, Inflow Depth > 0.73" for 1 Year event	
Inflow	=	1.26 cfs @ 12.14 hrs, Volume= 1.096 af	
Primary	=	1.26 cfs @ 12.14 hrs, Volume= 1.096 af, Atten= 0%, Lag= 0.0 min	

Primary outflow = Inflow, Time Span= 1.00-200.00 hrs, dt= 0.05 hrs


Link 8L: StudyPointW1

	Coyote Run EFA
coytoerun-efa-ph2	Type II 24-hr 1 Year Rainfall=2.10"
Prepared by Microsoft	Revised 4-13-16 Printed 4/13/2016
HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Soluti	ions LLC Page 12

Summary for Link 9L: StudyPointW2a

Inflow Are	a =	7.600 ac, 33.95% Impervious, Inflow Depth = 0.87" for 1 Year event
Inflow	=	0.26 cfs @ 16.28 hrs, Volume= 0.550 af
Primary	=	0.26 cfs @ 16.28 hrs, Volume= 0.550 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-200.00 hrs, dt= 0.05 hrs

Link 9L: StudyPointW2a

Summary for Subcatchment 1S: PostW1

Runoff = 17.11 cfs @ 12.10 hrs, Volume= 1.183 af, Depth= 1.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 10 Year Rainfall=3.20"

	Area	(ac)	CN	Desc	cription			
	1.	490	98	Pave	ed parking,	, HSG D		_
	0.	510	98	Roof	s, HSG D			
*	7.	230	78	Ope	n C/D			
	9.	230	82	Weig	ghted Aver	age		_
	7.	230		78.3	3% Pervio	us Area		
	2.	000		21.6	7% Imperv	vious Area		
	Тс	Lengt	th	Slope	Velocity	Capacity	Description	
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)		
_	12.8	10	0 0	0.0400	0.13		Sheet Flow, open	-
							Grass: Dense n= 0.240 P2= 2.30"	
	4.2	50	0 0	0.0150	1.97		Shallow Concentrated Flow, grassed	
							Unpaved Kv= 16.1 fps	
_	17.0	60	0 -	Total				-

Subcatchment 1S: PostW1

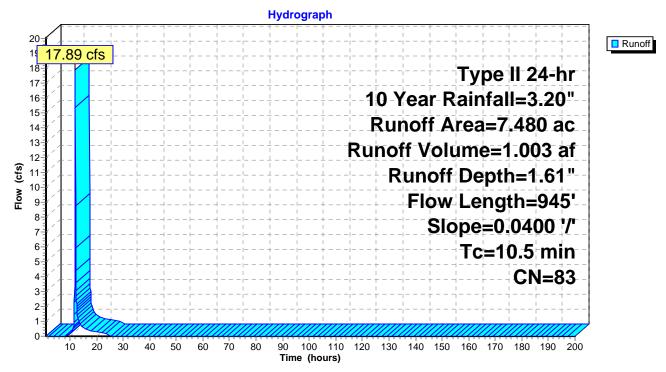
Summary for Subcatchment 2S: PostW2a

Runoff = 19.64 cfs @ 12.03 hrs, Volume= 1.113 af, Depth= 1.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 10 Year Rainfall=3.20"

	Area	(ac)	CN	Desc	cription			
	1.	870	98		ed parking	HSG D		
	0.	710	98	Roof	fs, HSG D			
*	5.	020	78	Ope	n C/D			
	7.	600	85	Weig	ghted Aver	age		
	5.	020		66.0	5% Pervio	us Area		
	2.	580		33.9	5% Imperv	vious Area		
					•			
	Тс	Lengt	th	Slope	Velocity	Capacity	Description	
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)		
	9.7	5	50	0.0200	0.09	<u> </u>	Sheet Flow, open	_
							Grass: Dense n= 0.240 P2= 2.30"	
	1.1	15	50	0.0200	2.28		Shallow Concentrated Flow, grassed	
			-				Unpaved Kv= 16.1 fps	
	10.8	20)0	Total				—

Subcatchment 2S: PostW2a


Summary for Subcatchment 5S: PostW3

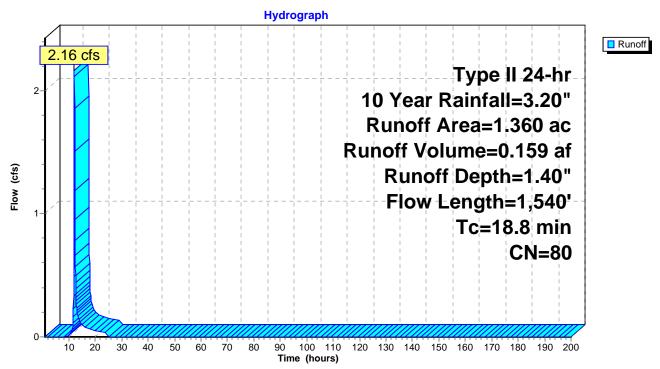
Runoff = 17.89 cfs @ 12.02 hrs, Volume= 1.003 af, Depth= 1.61"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 10 Year Rainfall=3.20"

	Area	(ac) (CN Des	cription		
	1.	360	98 Pave	ed parking	, HSG D	
	0.	390	98 Roo	fs, HSG D		
*	5.	730	78 Ope	n C/D		
	7.	480	83 Wei	ahted Aver	age	
	5.	730	•	0% Pervio	0	
	1.	750	23.4	0% Imperv	vious Area	
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	7.3	50	0.0400	0.11		Sheet Flow, open
						Grass: Dense n= 0.240 P2= 2.30"
	0.6	120	0.0400	3.22		Shallow Concentrated Flow, grassed
						Unpaved Kv= 16.1 fps
	2.6	775		5.00		Direct Entry, Piped
_	10.5	945	Total			

Subcatchment 5S: PostW3

Summary for Subcatchment 6S: PostW3A


Runoff = 2.16 cfs @ 12.12 hrs, Volume= 0.159 af, Depth= 1.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 10 Year Rainfall=3.20"

	Area	(ac) C	N Dese	cription		
	0.	130 9	8 Pave	ed parking	HSG D	
*	1.	230 7	78 Ope	n C/D		
	1.	360 8	30 Weig	ghted Aver	age	
	1.	230	90.4	4% Pervio	us Area	
	0.	130	9.56	% Impervi	ous Area	
	_					
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	12.8	100	0.0400	0.13		Sheet Flow, open
						Grass: Dense n= 0.240 P2= 2.30"
	1.1	130	0.0140	1.90		Shallow Concentrated Flow, grassed
						Unpaved Kv= 16.1 fps
	4.9	1,310	0.0190	4.41	35.30	Channel Flow, tributary
						Area= 8.0 sf Perim= 10.0' r= 0.80'
_						n= 0.040 Winding stream, pools & shoals

18.8 1,540 Total

Subcatchment 6S: PostW3A

Coyote Run EFAcoytoerun-efa-ph2Type II 24-hr 10 Year Rainfall=3.20"Prepared by MicrosoftRevised 4-13-16 Printed 4/13/2016HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solutions LLCPage 17

Summary for Pond 6P: Pond2

Inflow Are	a =	7.600 ac, 33.95% Impervious, Inflow Depth = 1.76" for 10 Year event
Inflow	=	19.64 cfs @ 12.03 hrs, Volume= 1.113 af
Outflow	=	1.28 cfs @ 13.08 hrs, Volume= 1.113 af, Atten= 94%, Lag= 63.1 min
Primary	=	1.28 cfs @ 13.08 hrs, Volume= 1.113 af

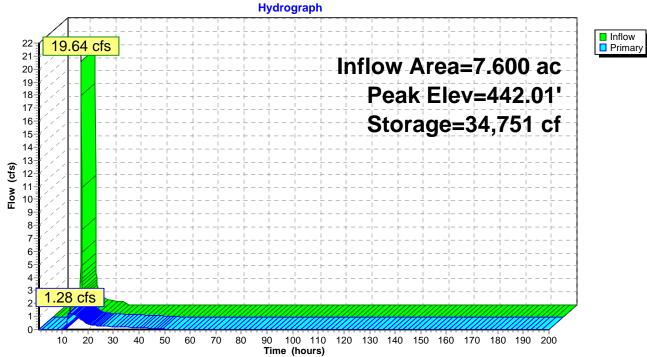
Routing by Stor-Ind method, Time Span= 1.00-200.00 hrs, dt= 0.05 hrs Starting Elev= 438.50' Surf.Area= 5,252 sf Storage= 8,312 cf Peak Elev= 442.01' @ 13.08 hrs Surf.Area= 9,884 sf Storage= 34,751 cf (26,439 cf above start)

Plug-Flow detention time= 726.3 min calculated for 0.922 af (83% of inflow) Center-of-Mass det. time= 528.6 min (1,356.0 - 827.4)

Volume	Inve	ert Avail.Sto	orage Sto	brage Description			
#1	435.5	0' 57,6	05 cf Cu	stom Stage Data (Prismatic)Listed below (Recalc)			
Elevatio		Surf.Area	Inc.Sto				
(fee	et)	(sq-ft)	(cubic-fee	et) (cubic-feet)			
435.5		585		0 0			
436.0		1,310		74 474			
437.0		2,480	1,89	•			
438.0	00	4,520	3,50				
439.0	00	5,984	5,2				
440.0		7,196	6,59				
441.0	00	8,429	7,8′				
442.0		9,871	9,18				
443.0		11,474	10,67	•			
444.0)0	13,044	12,2	59 57,605			
Device	Routing	Invert	Outlet D	evices			
#1	Primary	438.50'		ound Culvert			
	. mary	100100		CPP, projecting, no headwall, Ke= 0.900			
				utlet Invert= 438.50' / 438.00' S= 0.0063 '/' Cc= 0.900			
) PVC, smooth interior, Flow Area= 1.23 sf			
#2	Device 1	438,50'		t. Orifice/Grate C= 0.600			
#3	Device 1	440.75	6.0" Ver	t. Orifice/Grate C= 0.600			
#4	Device 1	442.25'		24.0" Horiz. Orifice/Grate C= 0.600			
			Limited t	to weir flow at low heads			
Primary OutFlow Max=1.28 cfs @ 13.08 hrs HW=442.01' (Free Discharge)							

2=Culvert (Passes 1.28 cfs of 7.92 cfs potential flow) **2=Orifice/Grate** (Orifice Controls 0.33 cfs @ 8.88 fps)

-3=Orifice/Grate (Orifice Controls 0.95 cfs @ 4.83 fps)


-4=Orifice/Grate (Controls 0.00 cfs)

coytoerun-efa-ph2

Coyote Run EFA *Type II 24-hr 10 Year Rainfall=3.20"* Revised 4-13-16 Printed 4/13/2016 oftware Solutions LLC Page 18

Prepared by Microsoft Re HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solutions LLC

Pond 6P: Pond2

Summary for Pond 11P: Pond1

Inflow Are	a =	16.710 ac, 22.44% Impervious, Inflow Depth = 1.57" for 10 Year event
Inflow	=	33.35 cfs @ 12.05 hrs, Volume= 2.186 af
Outflow	=	6.73 cfs @ 12.45 hrs, Volume= 2.184 af, Atten= 80%, Lag= 24.3 min
Primary	=	6.73 cfs @ 12.45 hrs, Volume= 2.184 af

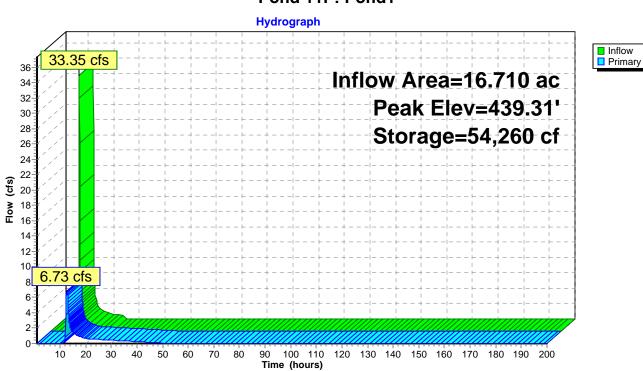
Routing by Stor-Ind method, Time Span= 1.00-200.00 hrs, dt= 0.05 hrs / 2 Starting Elev= 437.00' Surf.Area= 12,242 sf Storage= 11,924 cf Peak Elev= 439.31' @ 12.45 hrs Surf.Area= 22,910 sf Storage= 54,260 cf (42,336 cf above start)

Plug-Flow detention time= 607.3 min calculated for 1.910 af (87% of inflow) Center-of-Mass det. time= 467.0 min (1,306.0 - 839.0)

Inve	rt Avail.Sto	rage Storage	Description	
434.0	0' 97,44	42 cf Custom	Stage Data (Pi	rismatic)Listed below (Recalc)
าก	Surf Area	Inc Store	Cum Store	
_/		0	0	
	2,089	1,654	1,654	
00	3,105	2,597	4,251	
00	12,242	7,674	11,924	
00	18,352	15,297	27,221	
00	21,977		47,386	
			,	
00	28,091	26,557	97,442	
Routina	Invert	Outlet Devices	5	
			Culvert	
,, ,				headwall, Ke= 0.900
				436.20' S= 0.0100 '/' Cc= 0.900
		n= 0.010 PVC	, smooth interio	or, Flow Area= 1.23 sf
Device 1	437.00'	4.0" Vert. Orif	ice/Grate C=	0.600
Device 1	438.75'	24.0" x 24.0"	Horiz. Orifice/0	Grate C= 0.600
		Limited to weir	flow at low hea	ads
Primary	439.50'			ad-Crested Rectangular Weir
		· · ·		0.80 1.00 1.20 1.40 1.60 1.80 2.00
				69 2.68 2.67 2.67 2.65 2.66 2.66
		2.68 2.72 2.7	3 2.76 2.79 2	.88 3.07 3.32
	434.0 200 200 200 200 200 200 200 2	434.00' 97,44 on Surf.Area at) (sq-ft) 00 1,218 00 2,089 00 3,105 00 12,242 00 18,352 00 21,977 00 25,022 00 28,091 Routing Invert Primary 436.60' Device 1 437.00' Device 1 438.75'	434.00' 97,442 cf Custom on Surf.Area Inc.Store et) (sq-ft) (cubic-feet) 00 1,218 0 00 2,089 1,654 00 3,105 2,597 00 12,242 7,674 00 13,352 15,297 00 21,977 20,165 00 25,022 23,500 00 28,091 26,557 Routing Invert Outlet Devices Primary 436.60' 15.0" Round L= 40.0' CPF Inlet / Outlet Ir n= 0.010 Device 1 437.00' 4.0" Vert. Orif Device 1 438.75' 24.0" x 24.0" Limited to weir Head (feet) 0. 2.50 3.00 3.5 Coef. (English Coef. (English	434.00' 97,442 cf Custom Stage Data (Property and the stage) on Surf.Area Inc.Store Cum.Store attemption (sq-ft) (cubic-feet) (cubic-feet) 00 1,218 0 0 00 2,089 1,654 1,654 00 3,105 2,597 4,251 00 12,242 7,674 11,924 00 18,352 15,297 27,221 00 25,022 23,500 70,885 00 28,091 26,557 97,442 Routing Invert Outlet Devices Primary 436.60' 15.0" Round Culvert L= 40.0' CPP, projecting, no Inlet / Outlet Invert= 436.60' / n= 0.010 Device 1 437.00' 4.0" Vert. Orifice/Grate C= Device 1 437.00' 4.0" Vert. Orifice/Grate C= Primary 439.50' 8.0' long x 4.0' breadth Bro Head (feet) 0.20 0.40 0.60 2.50 3.00 3.50 <

Primary OutFlow Max=6.73 cfs @ 12.45 hrs HW=439.31' (Free Discharge)

-1=Culvert (Inlet Controls 6.73 cfs @ 5.48 fps)

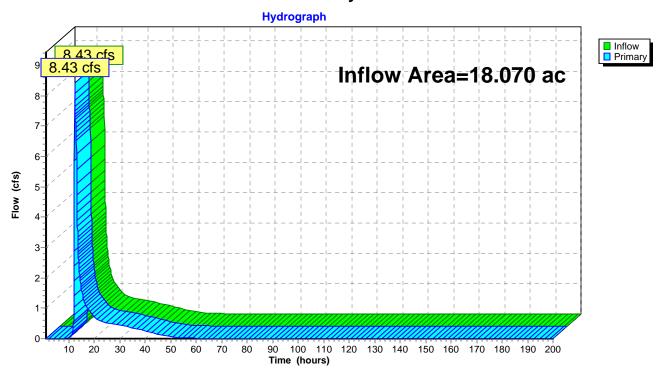

-2=Orifice/Grate (Passes < 0.61 cfs potential flow)

3=Orifice/Grate (Passes < 10.85 cfs potential flow)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

coytoerun-efa-ph2 Prepared by Microsoft

Coyote Run EFA Type II 24-hr 10 Year Rainfall=3.20" Revised 4-13-16 Printed 4/13/2016 HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solutions LLC Page 20

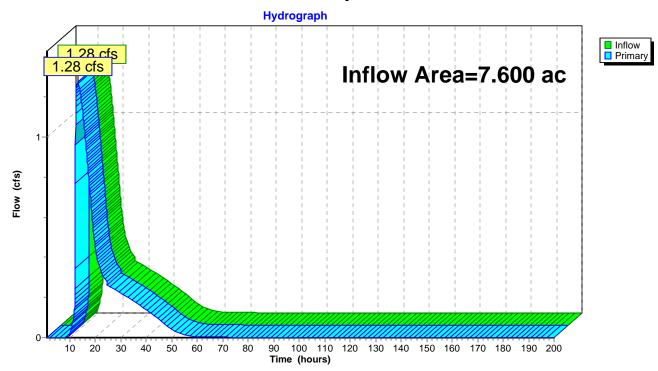


Pond 11P: Pond1

Summary for Link 8L: StudyPointW1

Inflow Area =	18.070 ac, 21.47% Impervious, Inflo	ow Depth = 1.56" for 10 Year event	
Inflow =	8.43 cfs @ 12.22 hrs, Volume=	2.343 af	
Primary =	8.43 cfs @ 12.22 hrs, Volume=	2.343 af, Atten= 0%, Lag= 0.0 mir	۱

Primary outflow = Inflow, Time Span= 1.00-200.00 hrs, dt= 0.05 hrs

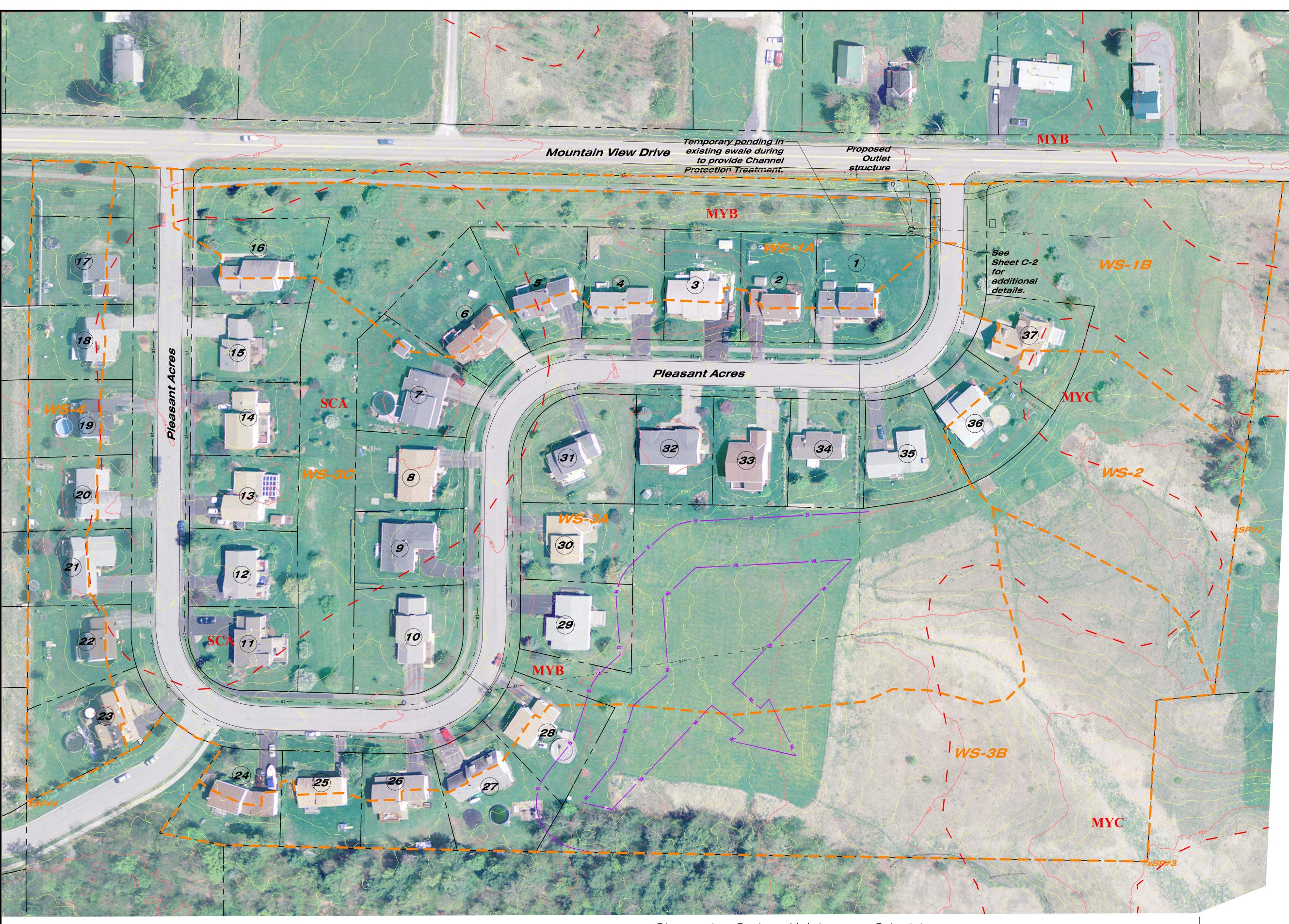

Link 8L: StudyPointW1

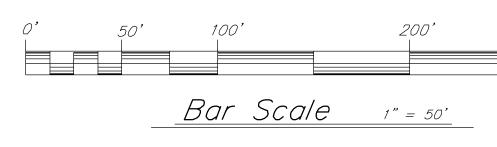
	Coyote Run EFA
coytoerun-efa-ph2	Type II 24-hr 10 Year Rainfall=3.20"
Prepared by Microsoft	Revised 4-13-16 Printed 4/13/2016
HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solu	tions LLC Page 22

Summary for Link 9L: StudyPointW2a

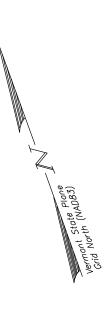
Inflow Are	a =	7.600 ac, 33.95% Impervious, Inflow Depth = 1.76" for 10 Year event
Inflow	=	1.28 cfs @ 13.08 hrs, Volume= 1.113 af
Primary	=	1.28 cfs @ 13.08 hrs, Volume= 1.113 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-200.00 hrs, dt= 0.05 hrs




PLEASANT ACRES: PERMIT 2-0231

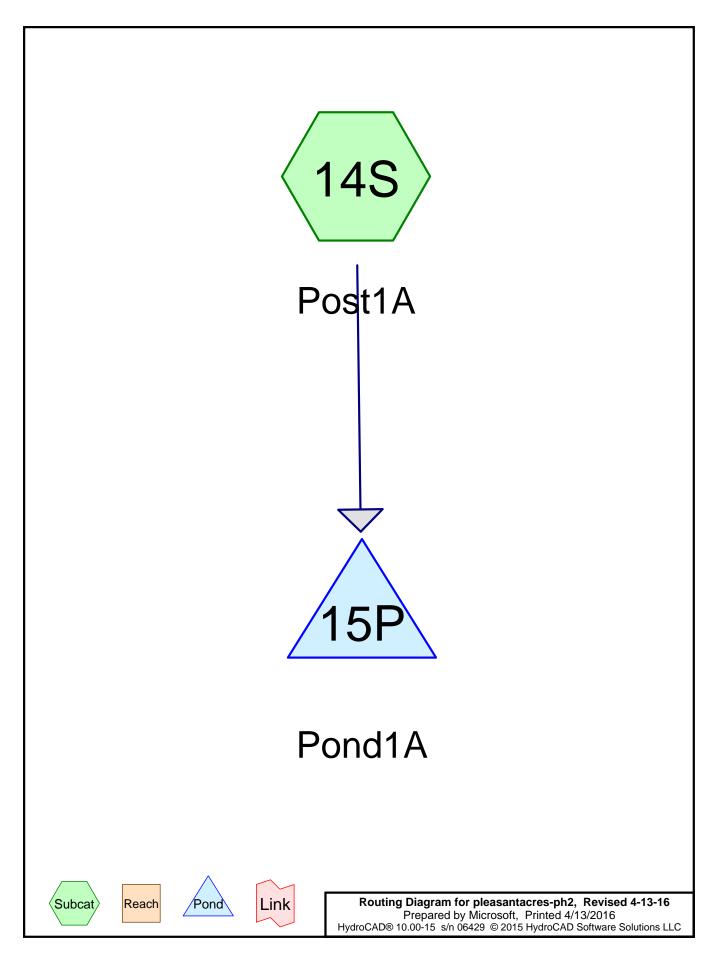
<u>Notes:</u>


- 1. This plan is in no way a boundary survey. Property lines are based on Town of Williston tax maps.
- 2. Underground utilities are approximate and not warranted to be exact or complete. Dig Safe shall be contacted prior to any excavation.
- 3. Elevations are based on the NAVD 88 vertical datum.
- 4. Project Horizontal Coordinates derived from GPS observation using reference frame NAD83 (2011) 2010.00 epoch. Project vertical datum based on NAVD 88 (Geoid 12A).

<u>Stormwater System Maintenance Schedule</u>

- 1. The stormwater system is comprised of any portion of the site that directs or conveys water.
- 2. The trash racks for the pond should be inspected biweekly to ensure they are clear of debris. In addition, the trash rack should be inspected after any rainfall of 0.5 inches or greater.
- *3. The stormwater system must be inspected regularly and repaired as required.* Special attention must be given to winter time ice conditions.
- 4. Twice a year the Stormwater System for the site shall be reviewed including catch basins, forebays, micropools, treatment ponds, swales, vegetation, pavements, etc. and repairs or cleaning will be performed as necessary.
- 5. In the spring all paved surfaces shall be swept. All collected debris shall be disposed of in an upland area and immediately stabilized or disposed as approved by the Owner.
- 6. Catch basin sumps shall be cleaned as required.

Legend

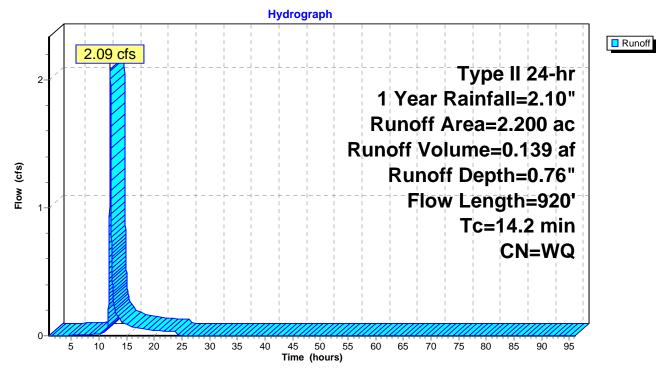

st	— — @— Existing Storm Lin	e/Manhole/Basin
	Existing 5-foot Co	ontour Interval
	Existing 1-foot Co	ontour Interval
150	Finish Grade 5-fo	ot Contour Interval
	Finish Grade 1-fo	ot Contour Interval
	 Sub Watershed de	lineation
· · · ·	S.C.S. Soils delien	ation
	Approximate Prop	erty Line
WL	Existing Wetland	
в	50' wetland buffer	-

CONSTRUCTION NOTES

- See Sheet C-2 for additional notes related to erosion prevention and sediment control.
- 2. The Contractor shall be responsible for repairing all disturbed areas back to original or better condition, including but not limited to curbing, sidewalks, road, parking areas, landscaping, site lighting, electrical, and etc. All asphalt shall be sawcut prior to paving.
- 3. All stumps, rock, and other non-approved trench backfill material discovered during construction is the exclusive property of the Contractor and shall be removed from the site and disposed of in a State approved disposal location.
- 4. The Contractor shall comply with the procedures outlined in the Low Risk Site Handbook for Erosion Prevention and Sediment Control. The Contractor shall be responsible for installing, maintaining and removing all erosion and sediment control devices shown on the plans or details and, to the maximum extent practical, to minimize potential contamination of stormwater runoff from the construction activities.
- The Contractor shall be responsible for all construction barrier/safety fencing required for the project.
- Contractor shall be responsible for importing topsoil as required to complete the project. Contractor shall test topsoil for approval.
- The Contractor shall be responsible for all signage and fencing necessary to providing safe vehicular and pedestrian access through or around the site during construction.
- 8. All storm pipes shall be PVC SDR 35 unless otherwise noted. PVC pipe shall contain no recycled content.
- Temporary groundwater dewatering and stormwater by-pass pumping and/or diversion is the responsibility of the Contractor. The Contractor is responsible for providing all necessary pumps and equipment to perform the work. Overnight pumping is not allowed.
- 10. This project is subject to all erosion prevention and sediment control measures including the monitoring, inspection, and reporting requirements of State of Vermont Construction Stormwater Discharge Permit. The Contractor shall be the Principal Operator for the project.
- 11. Removal of all erosion control matting and inlet protection is the responsibility of the Contractor.

111	F VE		
e. X	N. HO	130 F	E/
The	5. tel	mert	Ĩ
Sin	CMI	s. A	UIII.
3010	AVALE	GIANIN	0
390	WALE 111111	1111	

Date revise	ed	Description	Checked	Date	
Design Drawn	SWH	Overall Site Plan – Stor	mwate	r EFA	
Checked					
Scale	1" = 50'	Pleasant Acr			
Date	<u>April 26, 2016</u>		5		
Project	14220	Pleasant Acres/Mountain View Drive	Willisto	on, Vermont	
	KREBS & LANSING Consulting Engineers, Inc. $\frac{\text{Fle nome}}{\text{Printing date}}$ 164 Main Street, Colchester, Vermont 05446 $C-1$				


pleasantacres-ph2 Prepared by Microsoft Re HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solutions LLC Revised 4-13-16 Printed 4/13/2016 Page 2

Project Notes

Pleasant Acres EFA Phase 2

pleasantacres-ph2 Prepared by Microsoft HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCA	Pleasant Acres EFA <i>Type II 24-hr 1 Year Rainfall=2.10"</i> Revised 4-13-16 Printed 4/13/2016 <u>D Software Solutions LLC</u> Page 3								
Summary for Subcatchment 14S: Post1A									
Runoff = 2.09 cfs @ 12.07 hrs, Vol	ume= 0.139 af, Depth= 0.76"								
Type II 24-hr 1 Year Rainfall=2.10"	hted-Q, Time Span= 1.00-96.00 hrs, dt= 0.01 hrs								
Area (ac) CN Description 0.240 98 Roofs, HSG D									
1.960 80 >75% Grass cover, Good	d, HSG D								
2.200Weighted Average1.96089.09% Pervious Area0.24010.91% Impervious Area									
Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs)	Description								
7.3 50 0.0400 0.11	Sheet Flow, open								
6.9 870 0.0170 2.10	Grass: Dense n= 0.240 P2= 2.30" Shallow Concentrated Flow, grassed Unpaved Kv= 16.1 fps								
14.2 920 Total									

Subcatchment 14S: Post1A

Pleasant Acres EFA Type II 24-hr 1 Year Rainfall=2.10" pleasantacres-ph2 Prepared by Microsoft Revised 4-13-16 Printed 4/13/2016 HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solutions LLC Page 4

Summary for Pond 15P: Pond1A

Inflow Area =	2.200 ac, 10.91% Impervious, Inflow Depth	n = 0.76" for 1 Year event
Inflow =	2.09 cfs @ 12.07 hrs, Volume= 0.1	139 af
Outflow =	0.13 cfs @ 13.68 hrs, Volume= 0.1	139 af, Atten= 94%, Lag= 96.6 min
Primary =	0.13 cfs @ 13.68 hrs, Volume= 0.1	139 af

Routing by Stor-Ind method, Time Span= 1.00-96.00 hrs, dt= 0.01 hrs Peak Elev= 501.63' @ 13.68 hrs Surf.Area= 4,278 sf Storage= 3,268 cf

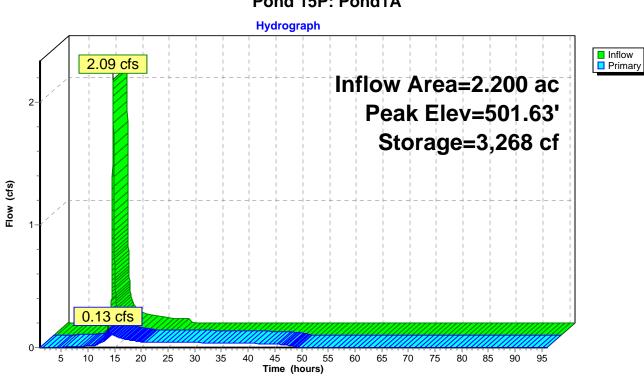
Plug-Flow detention time= 709.2 min calculated for 0.139 af (100% of inflow) Center-of-Mass det. time= 708.0 min (1,552.3 - 844.4)

708 min. = 11.8 hours detention time for CPv

Volume	Inve	ert Avail.Sto	rage	Storage D	escription	
#1	498.7	75' 6,5	67 cf	Custom S	tage Data (Pr	ismatic)Listed below (Recalc)
						-
Elevatio	on	Surf.Area	Inc.S	Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-	-feet)	(cubic-feet)	
498.7	75	37		0	0	
499.0	00	60		12	12	
500.0	00	352		206	218	
501.0	00	1,856	1	,104	1,322	
502.0	00	5,674	3	3,765	5,087	
502.2	25	6,165	1	,480	6,567	
Device	Routing	Invert	Outlet	t Devices		
#1	Primary	498.20'	12.0"	Round C	ulvert	
	,		L= 22	0.0' CPP	, projecting, n	o headwall, Ke= 0.900
			Inlet /	Outlet Inv	ert= 498.20' /	496.00' S= 0.0100 '/' Cc= 0.900
			n= 0.0	013 Corru	gated PE, sm	ooth interior, Flow Area= 0.79 sf
#2	Device 1	499.00'			e/Grate C=	,
#3	Device 1	501.60'	48.0"	W x 4.0"	H Vert. Orific	e/Grate C= 0.600

Primary OutFlow Max=0.12 cfs @ 13.68 hrs HW=501.63' (Free Discharge)

1=Culvert (Passes 0.12 cfs of 4.57 cfs potential flow)

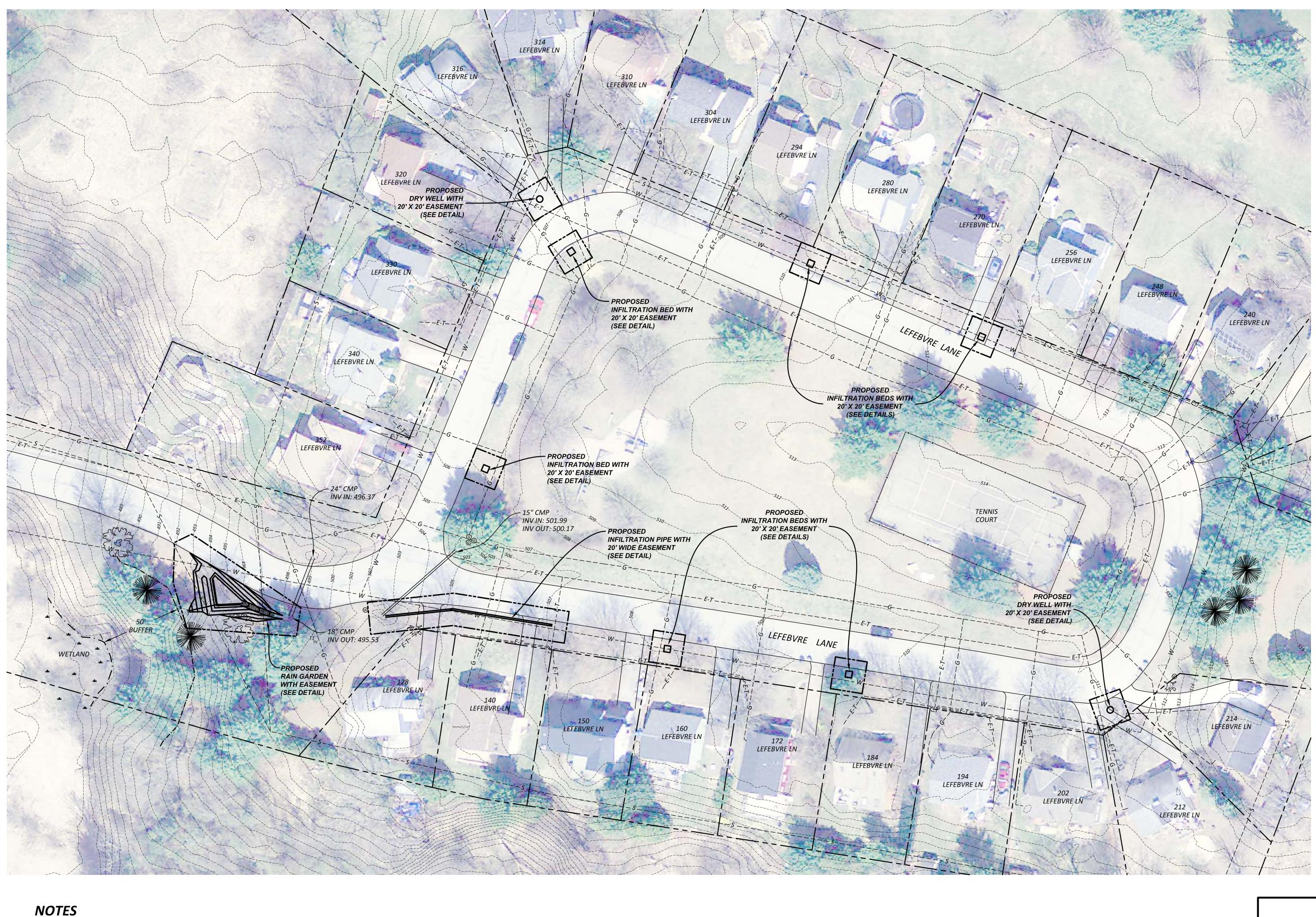

-2=Orifice/Grate (Orifice Controls 0.04 cfs @ 7.75 fps)

-3=Orifice/Grate (Orifice Controls 0.08 cfs @ 0.60 fps)

pleasantacres-ph2

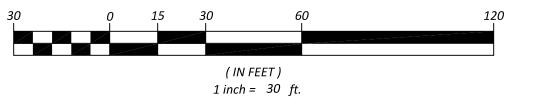
Pleasant Acres EFA Type II 24-hr 1 Year Rainfall=2.10" Revised 4-13-16 Printed 4/13/2016 Page 5

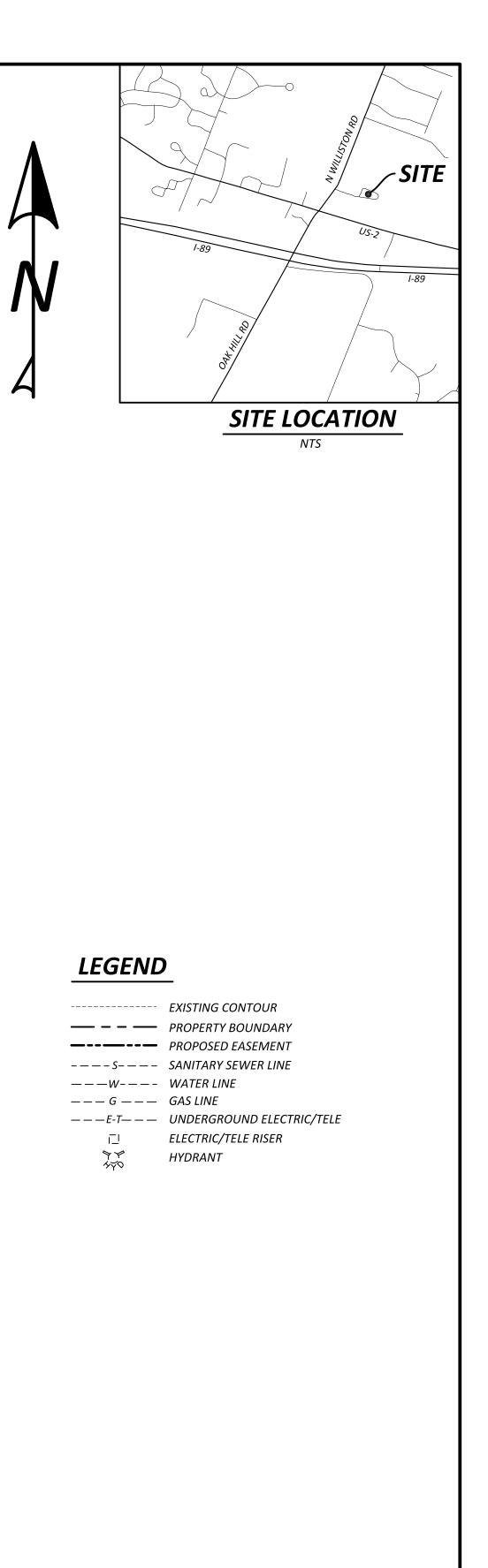
Prepared by Microsoft Re HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solutions LLC



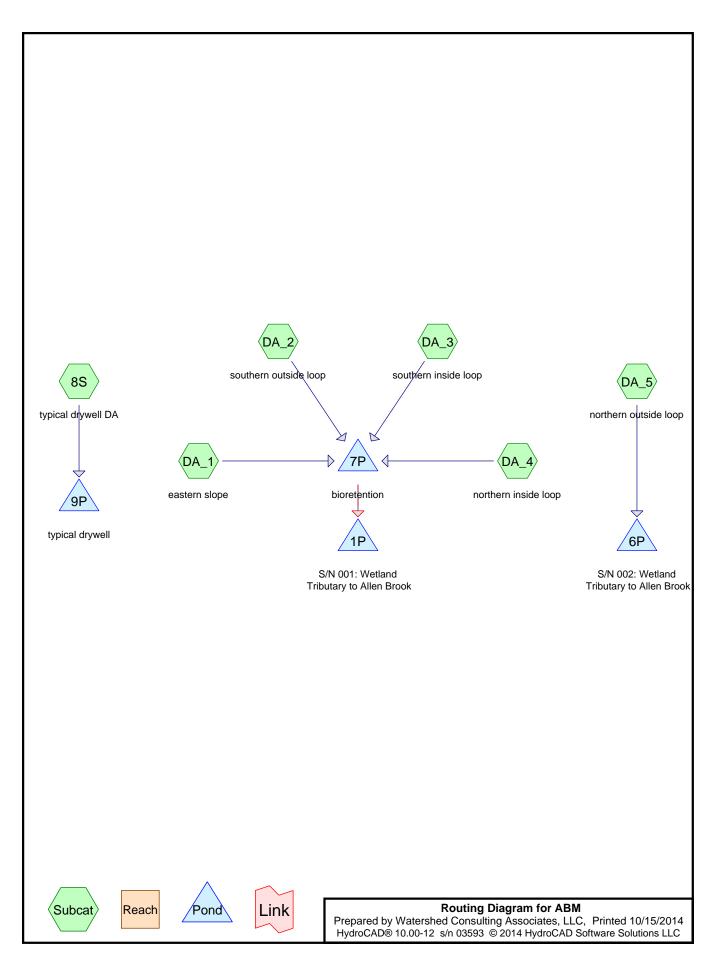
Pond 15P: Pond1A

ALLENBROOK MEADOWS: PERMIT 2-0954





1. THIS IS NOT A BOUNDARY SURVEY. BOUNDARY LINES ARE APPROXIMATED FROM HISTORIC PLANS AND TAX MAPS.


2. EXISTING TOPOGRAPHY AND STORMWATER INFRASTRUCTURE ELEVATIONS ARE FROM TOTAL STATION SURVEY CONDUCTED BY THIS OFFICE ON 4/24/14. SUPPLEMENTAL EXISTING TOPOGRAPHIC INFORMATION GENERATED FROM CHITTENDEN COUNTY LIDAR DATA.

3. UNDERGROUND UTILITIES SHOWN ARE APPROXIMATE FROM VARIOUS SOURCES AND MUST BE VERIFIED PRIOR TO FINAL DESIGN AND BEGINNING CONSTRUCTION.

		N BROOI				
	LEFEB	VRE LANE - WI	LISIC	JN, VEI	RMONT	
STORMW	ATER I	MPROVEM	IENT	rs - 0	VERALI	SITE PLAN
		ERSHE		430 Shelbu Burlington, Mobile: 802	Irne Road P.O. Box	
APPROVED BY:	AT	DRAWN BY:	SMS		SCALE:	NOTED
DATE:	4-28-16	CHECKED BY:	AT		SHEET:	1 OF 2

Area Listing (all nodes)

Area	a CN	Description
(acres)	(subcatchment-numbers)
0.06	9 98	(8S)
3.702	2 39	>75% Grass cover, Good, HSG A (8S, DA_1, DA_2, DA_3, DA_4, DA_5)
0.02	2 61	>75% Grass cover, Good, HSG B (DA_2, DA_5)
1.86	1 98	Paved Parking, HSG A (DA_1, DA_2, DA_3, DA_4, DA_5)
0.01	7 98	Paved Parking, HSG B (DA_2, DA_5)
5.67	1 59	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
5.563	HSG A	8S, DA_1, DA_2, DA_3, DA_4, DA_5
0.039	HSG B	DA_2, DA_5
0.000	HSG C	
0.000	HSG D	
0.069	Other	8S
5.671		TOTAL AREA

Ground Covers (all nodes)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.000	0.000	0.000	0.000	0.069	0.069		8S
3.702	0.022	0.000	0.000	0.000	3.724	>75% Grass cover, Good	8S, DA_1, DA_2,
							DA_3, DA_4, DA_5
1.861	0.017	0.000	0.000	0.000	1.878	Paved Parking	DA_1, DA_2, DA_3,
							DA_4, DA_5
5.563	0.039	0.000	0.000	0.069	5.671	TOTAL AREA	

ABM	
Prepared by Watershed Consulting Associates, LLC	
HydroCAD® 10.00-12 s/n 03593 © 2014 HydroCAD Software Solutions LLC	

Time span=0.00-200.00 hrs, dt=0.05 hrs, 4001 points x 2 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 8S: typical drywell DA	Runoff Area=7,000 sf 42.86% Impervious Runoff Depth=0.11" Tc=15.0 min CN=64 Runoff=0.00 cfs 0.001 af		
Subcatchment DA_1: eastern slope	Runoff Area=0.652 ac 20.71% Impervious Runoff Depth=0.00" Flow Length=227' Tc=13.8 min CN=51 Runoff=0.00 cfs 0.000 af		
Subcatchment DA_2: southern outside loop	Runoff Area=1.296 ac 47.22% Impervious Runoff Depth=0.16" Flow Length=606' Tc=11.5 min CN=67 Runoff=0.14 cfs 0.018 af		
Subcatchment DA_3: southern inside loop	Runoff Area=1.304 ac 26.61% Impervious Runoff Depth=0.01" Flow Length=428' Tc=20.5 min CN=55 Runoff=0.00 cfs 0.001 af		
Subcatchment DA_4: northern inside loop	Runoff Area=0.768 ac 23.05% Impervious Runoff Depth=0.00" Flow Length=407' Tc=37.4 min CN=53 Runoff=0.00 cfs 0.000 af		
Subcatchment DA_5: northern outside loop	Runoff Area=1.490 ac 40.74% Impervious Runoff Depth=0.09" Flow Length=732' Tc=18.4 min CN=63 Runoff=0.03 cfs 0.012 af		
Pond 1P: S/N 001: Wetland Tributary to Allen BrookInflow=0.00 cfs0.000Primary=0.00 cfs0.000			
Pond 6P: S/N 002: Wetland Tributary to Allen BrookInflow=0.03 cfs0.0Primary=0.03 cfs0.0			
Pond 7P: bioretention Discarded=0.01 cfs 0.019 af Primary=0.00 c	Peak Elev=100.83' Storage=356 cf Inflow=0.14 cfs 0.019 af fs 0.000 af Secondary=0.00 cfs 0.000 af Outflow=0.01 cfs 0.019 af		
Pond 9P: typical drywell Discarded=0.00	Peak Elev=1.80' Storage=0.000 af Inflow=0.00 cfs 0.001 af 0 cfs 0.001 af Primary=0.00 cfs 0.000 af Outflow=0.00 cfs 0.001 af		

Total Runoff Area = 5.671 ac Runoff Volume = 0.033 af Average Runoff Depth = 0.07" 65.67% Pervious = 3.724 ac 34.33% Impervious = 1.947 ac

0.002 0.002 0.001 0.001 0.000

0

0

20

40

60

80

Summary for Subcatchment 8S: typical drywell DA

Runoff = 0.00 cfs @ 12.20 hrs, Volume= 0.001 af, Depth= 0.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 1-yr Rainfall=1.97"

	Area (sf)		Description							
	4,000		75% Gras	s cover, Go	ood, HSG A					
*	3,000	98								
	7,000		Veighted A							
	4,000			rvious Area						
	3,000	4	2.86% IM	pervious Ar	ea					
-	C Length	Slope	Velocity	Capacity	Description					
(mi		(ft/ft)	(ft/sec)	(cfs)						
15					Direct Entry,					
					-					
			S	ubcatchr	nent 8S: typ	oical dryv	well D	Α		
				Hydro	ograph					
	0.0 <mark>0.</mark>	00 cf	S					 		Runoff
	0.005			 				Type II	24-hr	
	0.004				- T	1	-yr Ra	ainfall=	-1.97"	
	1		 		-+	Rur	noff A	ea=7,	000 sf	
	0.004		, , 		-+	Runof	f Volu	me=0.	001 af	
s)	0.003							Depth=		
(cfs)	0.003		 	 	-+ 	 		Tc=15.	+	
≷	0.002	/			-+			¦C	CN=64	
Flow	1	, - - -			_ <u>_</u>	 		 	⊥ ⊥	
					1					

120

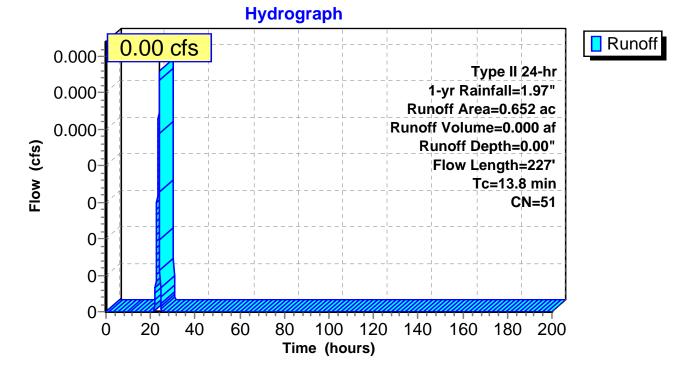
100

Time (hours)

140

160

180 200

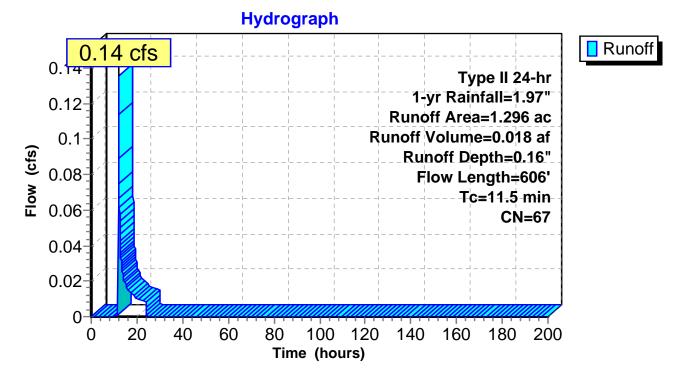

Summary for Subcatchment DA_1: eastern slope

Runoff	=	0.00 cfs @	24.03 hrs, Volume=	0.000 af, Depth= 0.00"
RUNON	=	0.00 015 @	24.05 ms, volume=	0.000 al, Depth= 0.00

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 1-yr Rainfall=1.97"

0.517 39 >75% Grass cover, Good, HSG A	
0.135 98 Paved Parking, HSG A	
0.652 51 Weighted Average	
0.517 79.29% Pervious Area	
0.135 20.71% Impervious Area	
Tc Length Slope Velocity Capacity Description	
(min) (feet) (ft/ft) (ft/sec) (cfs)	
12.6 100 0.0500 0.13 Sheet Flow,	
Grass: Dense n= 0.240 P2= 1.97"	
1.2 127 0.0668 1.81 Shallow Concentrated Flow,	
Short Grass Pasture Kv= 7.0 fps	
13.8 227 Total	

Subcatchment DA_1: eastern slope



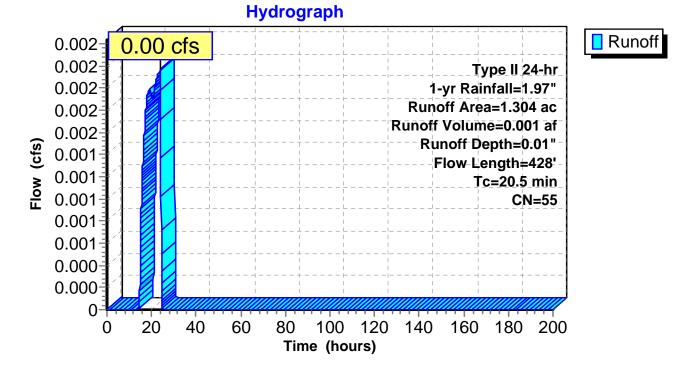
Summary for Subcatchment DA_2: southern outside loop

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 1-yr Rainfall=1.97"

Area	(ac) C	N Des	cription		
0.	665 3	39 >759	% Grass c	over, Good,	HSG A
0.	019 6	61 >759	% Grass c	over, Good,	HSG B
0.	606 9	98 Pave	ed Parking	, HSG A	
0.	006 9	98 Pave	ed Parking	, HSG B	
1.296 67 Weighted Average			phted Aver	age	
0.	684		8% Pervio	•	
0.	612	47.2	2% Imperv	ious Area/	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
7.2	62	0.0802	0.15		Sheet Flow,
					Grass: Dense n= 0.240 P2= 1.97"
0.2	16	0.0617	1.18		Sheet Flow,
					Smooth Surfaces n= 0.011 P2= 1.97"
0.4	21	0.0234	0.84		Sheet Flow,
					Smooth Surfaces n= 0.011 P2= 1.97"
2.8	403	0.0137	2.37		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
0.9	103	0.0680	1.83		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
11.5	606	Total			

Subcatchment DA_2: southern outside loop

287 of 529

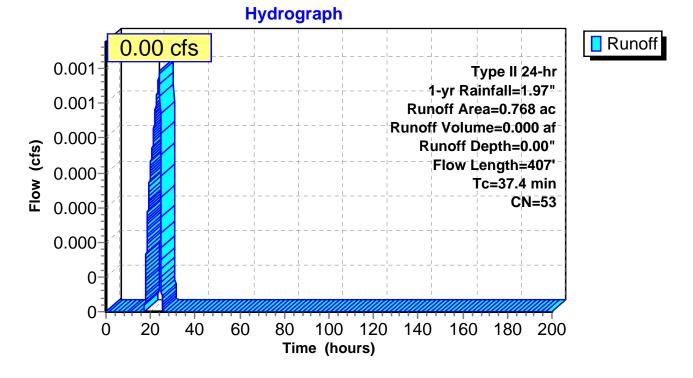

Summary for Subcatchment DA_3: southern inside loop

Runoff = 0.00 cfs @ 23.99 hrs, Volume= 0.001 af, Depth= 0.01"	Runoff	=	0.00 cfs @	23.99 hrs. Volume=	0.001 af, Depth= 0.01"
---	--------	---	------------	--------------------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 1-yr Rainfall=1.97"

Area (ac)	CN	Desc	ription		
0.957	39) >75%	6 Grass co	over, Good,	HSG A
0.347	98	B Pave	ed Parking	, HSG A	
1.304 55 Weighted Average					
0.957		73.3	9% Pervio	us Area	
0.347		26.6 [°]	1% Imperv	vious Area	
				- ·	
	ngth	Slope	Velocity	Capacity	Description
<u>(min)</u> (1	eet)	(ft/ft)	(ft/sec)	(cfs)	
15.5	100	0.0300	0.11		Sheet Flow,
					Grass: Dense n= 0.240 P2= 1.97"
5.0	328	0.0244	1.09		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
20.5	428	Total			

Subcatchment DA_3: southern inside loop


Summary for Subcatchment DA_4: northern inside loop

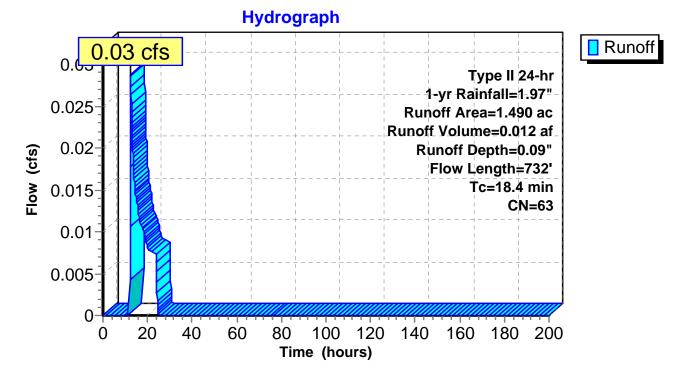
Runoff	=	0.00 cfs @	24.07 hrs, Volume=	0.000 af, Depth= 0.00"
i tunioni				

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 1-yr Rainfall=1.97"

Area ((ac) C	N Desc	cription		
0.5	591 3	9 >75%	6 Grass co	over, Good,	HSG A
0.2	177 9	8 Pave	ed Parking	, HSG A	
0.7	768 5	3 Weig	hted Aver	age	
0.5	591	76.9	5% Pervio	us Area	
0.1	177	23.0	5% Imperv	vious Area	
Тс	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
31.7	100	0.0050	0.05		Sheet Flow,
					Grass: Dense n= 0.240 P2= 1.97"
5.7	307	0.0163	0.89		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
37.4	407	Total			

Subcatchment DA_4: northern inside loop

Summary for Subcatchment DA_5: northern outside loop


Runoff = 0.03 cfs @ 12.45 hrs, Volume= 0.012 af, Depth= 0.09)"
--	----

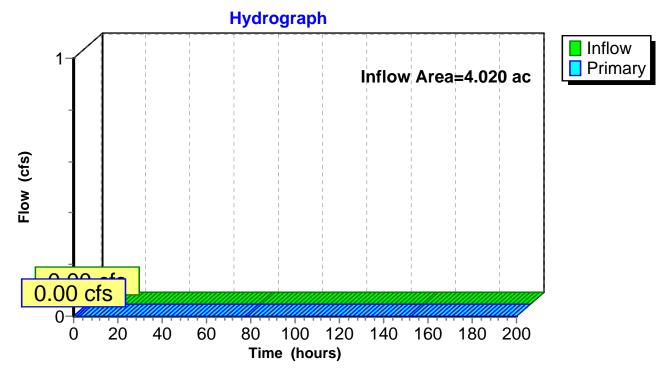
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 1-yr Rainfall=1.97"

_	Area	(ac) C	N Dese	cription		
	0.	880 3	39 >759	% Grass co	over, Good,	, HSG A
	0.	003 6	61 >75 ⁹	% Grass co	over, Good,	, HSG B
	0.	596 9		ed Parking		
_	0.	011 9	8 Pave	ed Parking	, HSG B	
	1.4	490 6	3 Weig	ghted Aver	age	
	0.	883	59.2	6% Pervio	us Area	
	0.	607	40.7	4% Imperv	∕ious Area	
			_		_	
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	12.6	100	0.0500	0.13		Sheet Flow,
						Grass: Dense n= 0.240 P2= 1.97"
	2.2	181	0.0386	1.38		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	2.7	400	0.0150	2.49		Shallow Concentrated Flow,
		-	0.0400	0.00		Paved Kv= 20.3 fps
	0.9	50	0.0198	0.99		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps
	40.4	700	T - 4 - 1			

18.4 732 Total

Subcatchment DA_5: northern outside loop

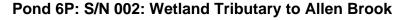
290 of 529

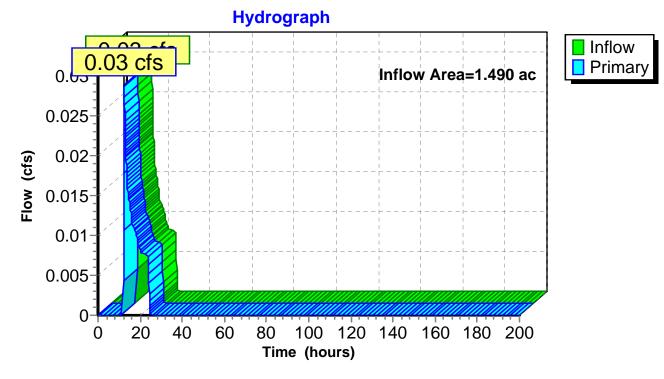

Summary for Pond 1P: S/N 001: Wetland Tributary to Allen Brook

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	4.020 ac, 3	1.62% Impervious, Inflow	Depth = 0.00"	for 1-yr event
Inflow =	0.00 cfs @	0.00 hrs, Volume=	0.000 af	
Primary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs / 2




Summary for Pond 6P: S/N 002: Wetland Tributary to Allen Brook

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	1.490 ac, 40.74% Impervious, Inflow D	epth = 0.09" for 1-yr event
Inflow =	0.03 cfs @ 12.45 hrs, Volume=	0.012 af
Primary =	0.03 cfs @ 12.45 hrs, Volume=	0.012 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs / 2

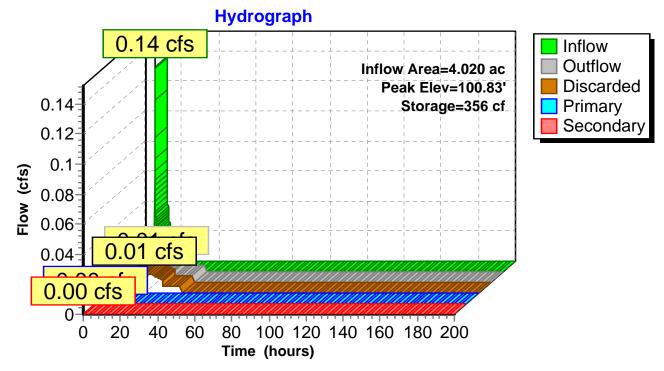
Summary for Pond 7P: bioretention

Inflow Area =	4.020 ac, 31.62% Impervious, Inflow I	Depth = 0.06" for 1-yr event
Inflow =	0.14 cfs @ 12.10 hrs, Volume=	0.019 af
Outflow =	0.01 cfs @ 20.04 hrs, Volume=	0.019 af, Atten= 91%, Lag= 477.0 min
Discarded =	0.01 cfs @ 20.04 hrs, Volume=	0.019 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 100.83' @ 20.04 hrs Surf.Area= 519 sf Storage= 356 cf

Plug-Flow detention time= 417.9 min calculated for 0.019 af (100% of inflow) Center-of-Mass det. time= 418.0 min (1,398.0 - 980.1)

Volume	Invert	Avail.Storage	Storage Description
#1	98.00'	144 c	12.00'W x 15.00'L x 2.00'H Prismatoid
			360 cf Overall x 40.0% Voids
#2	100.00'	493 cl	12.00'W x 15.00'L x 1.50'H Prismatoid Z=3.0
		637 c	Total Available Storage
Device	Routing	Invert Ou	Itlet Devices
#1	Primary	101.00' 12	.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#2	Discarded	98.00' 1.0	000 in/hr Exfiltration over Surface area
	0		


#3 Secondary 101.20' 5.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Discarded OutFlow Max=0.01 cfs @ 20.04 hrs HW=100.83' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=98.00' TW=0.00' (Dynamic Tailwater)

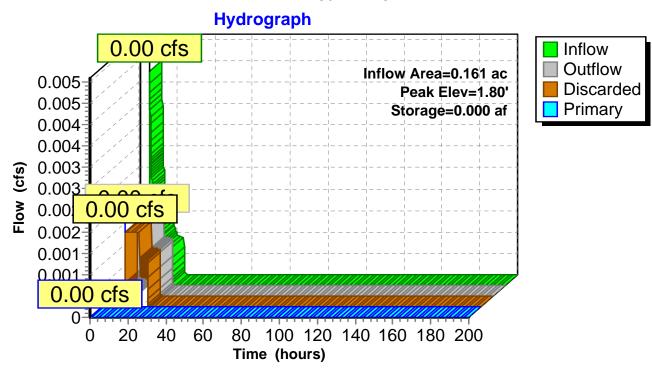
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=98.00' TW=0.00' (Dynamic Tailwater) -3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 9P: typical drywell

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=42)

Inflow Area =	0.161 ac, 42.86% Impervious, Inflow De	epth = 0.11" for 1-yr event
Inflow =	0.00 cfs @ 12.20 hrs, Volume=	0.001 af
Outflow =	0.00 cfs @ 12.10 hrs, Volume=	0.001 af, Atten= 65%, Lag= 0.0 min
Discarded =	0.00 cfs @ 12.10 hrs, Volume=	0.001 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 1.80' @ 14.74 hrs Surf.Area= 0.000 ac Storage= 0.000 af

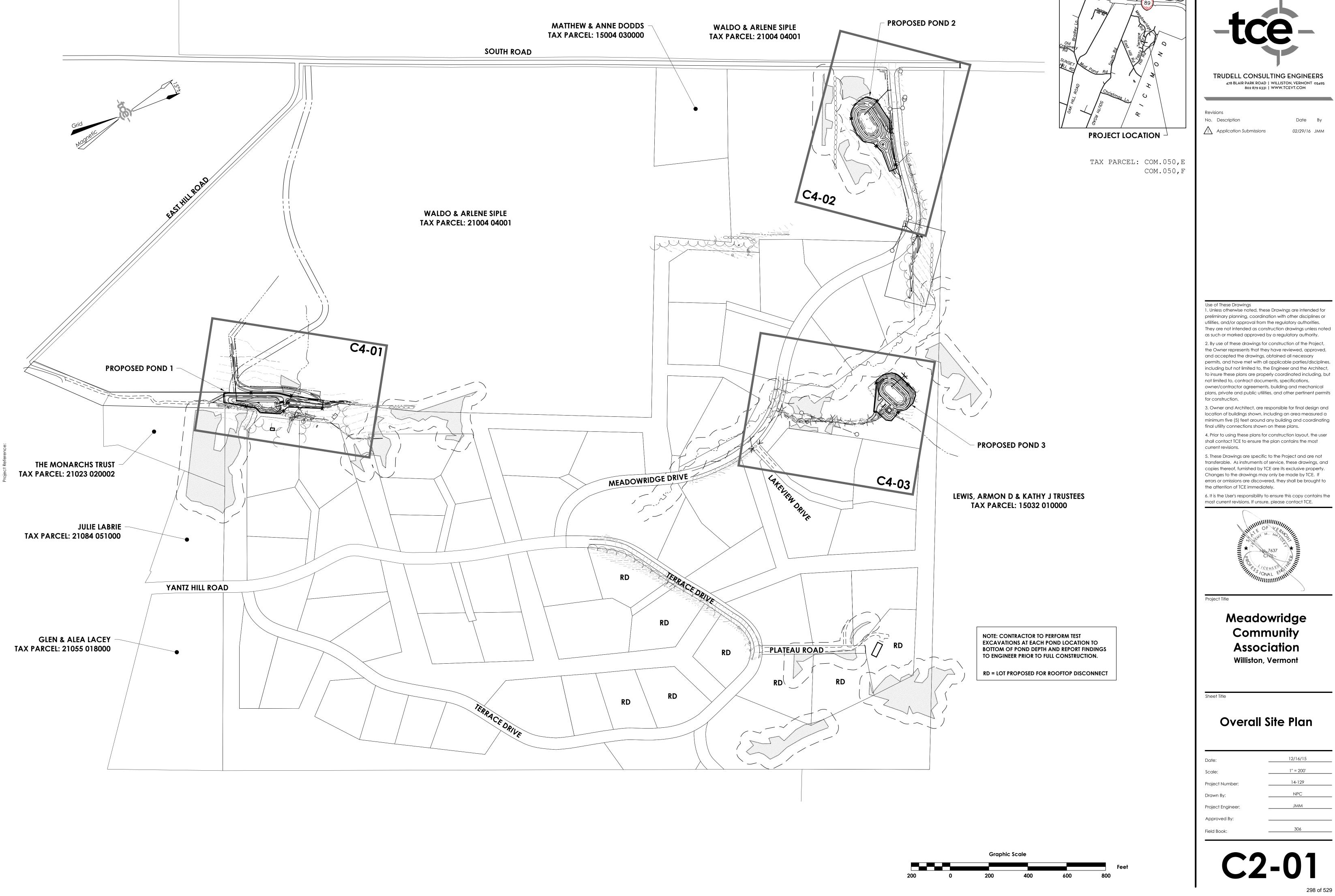

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 46.3 min (1,039.7 - 993.4)

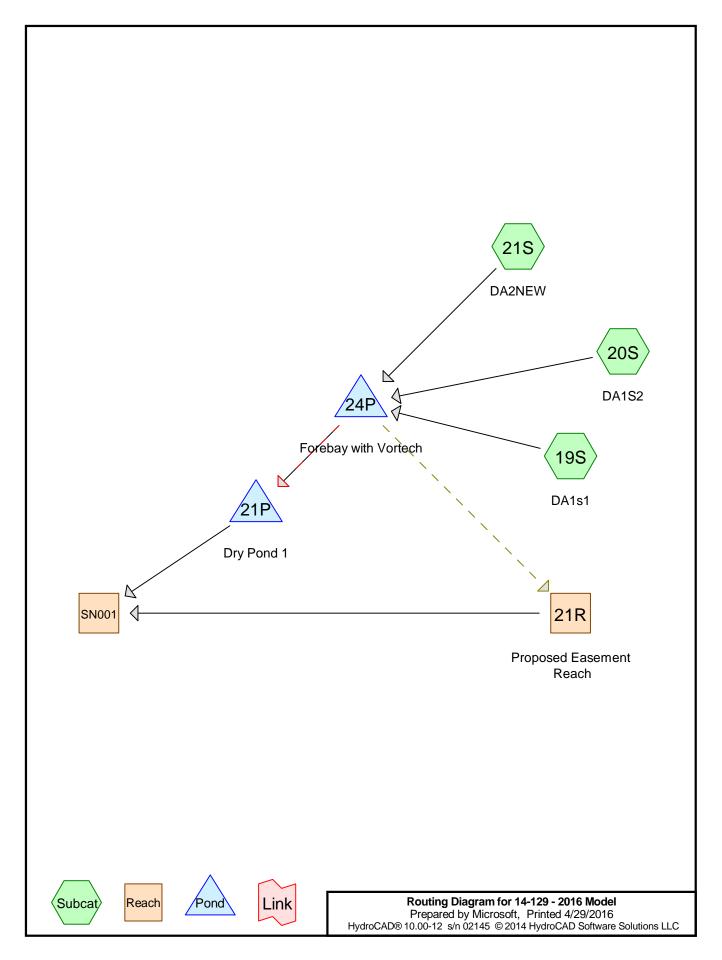
Volume	Invert	Avail.Storage	Storage Description				
#1	0.00'	0.000 af	4.00'D x 4.00'H Vertical Cone/Cylinder 0.001 af Overall x 40.0% Voids				
Device	Routing	Invert O	utlet Devices				
#1	Discarded	0.00' 6.	000 in/hr Exfiltration over Surface area				
#2	Primary	4.00' 4 .	0' Iong Sharp-Crested Rectangular Weir 2 End Contraction(s)				
Discard	Discarded OutFlow Max=0.00 cfs @ 12.10 hrs HW=0.05' (Free Discharge)						

1=Exfiltration (Exfiltration Controls 0.00 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=0.00' (Free Discharge)

Pond 9P: typical drywell




295 of 529

MEADOW RIDGE: PERMIT 2-1107

Area Listing (selected nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
3.920	74.0	>75% Grass cover, Good, HSG C (19S, 20S, 21S)
4.070	80.0	>75% Grass cover, Good, HSG D (19S, 20S, 21S)
4.430	98.0	Paved parking, HSG C (19S, 20S, 21S)
4.280	98.0	Paved parking, HSG D (19S, 20S, 21S)
30.040	70.0	Woods, Good, HSG C (19S, 20S, 21S)
31.690	77.0	Woods, Good, HSG D (19S, 20S, 21S)
78.430	76.7	TOTAL AREA

Soil Listing (selected nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.000	HSG A	
0.000	HSG B	
38.390	HSG C	19S, 20S, 21S
40.040	HSG D	19S, 20S, 21S
0.000	Other	
78.430		TOTAL AREA

Prepared by Microsoft	
HydroCAD® 10.00-12 s/n 02145 © 2014 HydroCAD Software Solutions LLC	

Ground Covers (selected nodes)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.000	0.000	3.920	4.070	0.000	7.990	>75% Grass cover, Good	19S, 20S, 21S
0.000	0.000	4.430	4.280	0.000	8.710	Paved parking	19S, 20S, 21S
0.000	0.000	30.040	31.690	0.000	61.730	Woods, Good	19S, 20S, 21S
0.000	0.000	38.390	40.040	0.000	78.430	TOTAL AREA	

14-129 - 2016 Model

Prepared by Microsoft	
HydroCAD® 10.00-12 s/n 02145	© 2014 HydroCAD Software Solutions LLC

Pipe Listing (selected nodes)

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
 1	21P	752.00	750.00	30.0	0.0667	0.013	36.0	0.0	0.0
2	24P	755.20	754.58	25.0	0.0248	0.013	12.0	0.0	0.0
3	24P	756.00	755.20	32.0	0.0250	0.013	12.0	0.0	0.0
4	24P	755.30	755.00	60.0	0.0050	0.013	36.0	0.0	0.0

Time span=0.00-500.00 hrs, dt=0.01 hrs, 50001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 19S: DA1s1	Runoff Area=4.610 ac 18.00% Impervious Runoff Depth=0.71" Flow Length=1,250' Tc=30.4 min CN=79.5 Runoff=2.45 cfs 0.274 af
Subcatchment 20S: DA1S2	Runoff Area=52.650 ac 10.83% Impervious Runoff Depth=0.58" Flow Length=3,575' Tc=46.9 min CN=77.0 Runoff=16.15 cfs 2.547 af
Subcatchment 21S: DA2NEW	Runoff Area=21.170 ac 10.30% Impervious Runoff Depth=0.51" Flow Length=2,425' Tc=49.1 min CN=75.1 Runoff=5.34 cfs 0.908 af
Reach 21R: Proposed Easement Reach n=0.120	
Reach SN001:	Inflow=17.75 cfs 3.728 af
	Outflow=17.75 cfs 3.728 af
Pond 21P: Dry Pond 1	Peak Elev=759.57' Storage=40,497 cf Inflow=22.80 cfs 3.728 af
	Outflow=17.75 cfs 3.728 af
	Peak Elev=760.15' Storage=10,693 cf Inflow=23.14 cfs 3.729 af
Primary=5.69 cts 2.274 at Secondary=1	8.89 cfs 1.453 af Tertiary=0.00 cfs 0.000 af Outflow=22.80 cfs 3.728 af
Total Runoff Area = 78	3.430 ac Runoff Volume = 3.729 af Average Runoff Depth = 0.57"

unoff Area = 78.430 ac Runoff Volume = 3.729 af Average Runoff Depth = 0.57" 88.89% Pervious = 69.720 ac 11.11% Impervious = 8.710 ac

Summary for Subcatchment 19S: DA1s1

Runoff = 2.45 cfs @ 12.26 hrs, Volume= 0.274 af, Depth= 0.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-500.00 hrs, dt= 0.01 hrs Type II 24-hr 1-year Rainfall=2.10"

_	Area	(ac)	CN	Descr	iption		
	0.	140	98.0	Pavec	d parkin	ig, HSG C	
	1.	060	70.0	Wood	ls, Good	d, HSG C	
	0.	220	74.0	>75%	Grass	cover, Goo	id, HSG C
	0.	690	98.0	Pavec	d parkin	ig, HSG D	
	1.	760	77.0	Wood	ls, Good	d, HSG D	
_	0.	740 8	80.0	>75%	Grass	cover, Goo	d, HSG D
	4.	610	79.5	Weigh	nted Av	erage	
	3.	780		82.00	% Perv	ious Area	
	0.	830		18.00	% Impe	ervious Area	a
	Тс	Length	Slop	be Ve	elocity	Capacity	Description
_	(min)	(feet)	(ft/	ft) (f	ft/sec)	(cfs)	
	17.6	100	0.200	00	0.09		Sheet Flow, 0 - 100' Woods
							Woods: Dense underbrush n= 0.800 P2= 2.30"
	12.8	1,150	0.090	00	1.50		Shallow Concentrated Flow, Woods
_							Woodland Kv= 5.0 fps
	30.4	1 250	Total				

30.4 1,250 Total

Summary for Subcatchment 20S: DA1S2

Runoff	=	16.15 cfs @	12.46 hrs,	Volume=	2.547 af, Depth= 0.58"
--------	---	-------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-500.00 hrs, dt= 0.01 hrs Type II 24-hr 1-year Rainfall=2.10"

Area (ac)	CN	Description
2.830	98.0	Paved parking, HSG C
17.170	70.0	Woods, Good, HSG C
2.240	74.0	>75% Grass cover, Good, HSG C
2.870	98.0	Paved parking, HSG D
24.690	77.0	Woods, Good, HSG D
2.850	80.0	>75% Grass cover, Good, HSG D
52.650	77.0	Weighted Average
46.950		89.17% Pervious Area
5.700		10.83% Impervious Area

14-129 - 2016 Model

Type II 24-hr 1-year Rainfall=2.10" Printed 4/29/2016 Page 8

Prepared by Microsoft HydroCAD® 10.00-12 s/n 02145 © 2014 HydroCAD Software Solutions LLC						
Тс	Length	Slope	Velocity	Capacity	Description	

10	Lengin	Siope	VEIDUILY	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
30.6	100	0.0500	0.05		Sheet Flow, 0 - 100' Woods
					Woods: Dense underbrush n= 0.800 P2= 2.30"
11.3	1,265	0.1400	1.87		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
1.7	760	0.0530	7.34	117.40	Channel Flow, Grass swale
					Area= 16.0 sf Perim= 31.0' r= 0.52'
					n= 0.030 Earth, grassed & winding
3.2	1,400	0.0960	7.41	118.50	
					Area= 16.0 sf Perim= 31.0' r= 0.52'
					n= 0.040 Earth, cobble bottom, clean sides
0.1	50	0.0500	7.13	114.03	
					Area= 16.0 sf Perim= 31.0' r= 0.52'
					n= 0.030 Earth, grassed & winding

46.9 3,575 Total

Summary for Subcatchment 21S: DA2NEW

Runoff =	=	5.34 cfs @	12.50 hrs,	Volume=	0.908 af,	Depth= 0.51"
----------	---	------------	------------	---------	-----------	--------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-500.00 hrs, dt= 0.01 hrs Type II 24-hr 1-year Rainfall=2.10"

_	Area	(ac)	CN De	escription					
*	1.	460 9	98.0 Pa	ved parkir	ng, HSG C				
*	11.	810 7		Voods, Good, HSG C					
*	1.	460 7		75% Grass cover, Good, HSG C					
*	0.	720 9			ng, HSG D				
*	5.	240 7		oods, Goo	0.				
*	0.	480 8			cover, Goo	od, HSG D			
_	21.	170 7	75.1 W	eighted Av	rerage				
		990		.70% Perv					
		180			ervious Are	а			
						-			
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·			
	30.6	100	0.0500	0.05		Sheet Flow, Woods Sheet Flow			
						Woods: Dense underbrush n= 0.800 P2= 2.30"			
	15.5	1,525	0.1080	1.64		Shallow Concentrated Flow, Woods Shallow Concentrated			
		.,				Woodland Kv= 5.0 fps			
	3.0	800	0.0190	4.39	70.29				
						Area= 16.0 sf Perim= 31.0' r= 0.52'			
						n= 0.030 Stream, clean & straight			
_	49.1	2 4 2 5	Total						

49.1 2,425 Total

Summary for Reach 21R: Proposed Easement Reach

Inflow Outflow	= =	0.00 cfs @ 0.00 cfs @			0.000 af 0.000 af,	Atten= 0%,	Lag= 0.0 min		
Routing by Dyn-Stor-Ind method, Time Span= 0.00-500.00 hrs, dt= 0.01 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min									
Average [Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 3.50' Flow Area= 52.5 sf, Capacity= 110.62 cfs								
8.00' x 3.50' deep channel, n= 0.120 Earth, long dense weeds Side Slope Z-value= 2.0 '/' Top Width= 22.00' Length= 600.0' Slope= 0.0100 '/' Inlet Invert= 755.00', Outlet Invert= 749.00'									

Summary for Reach SN001:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	=	78.430 ac, 1	1.11% Imper	rvious, Inflov	v Depth = 0.57"	for 1-year event
Inflow =	=	17.75 cfs @	12.78 hrs, V	/olume=	3.728 af	
Outflow =	=	17.75 cfs @	12.78 hrs, V	/olume=	3.728 af, Atte	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-500.00 hrs, dt= 0.01 hrs

Summary for Pond 21P: Dry Pond 1

Inflow Area =	78.430 ac, 11.11% Impervious, Inflow	w Depth = 0.57" for 1-year event
Inflow =	22.80 cfs @ 12.50 hrs, Volume=	3.728 af
Outflow =	17.75 cfs @ 12.78 hrs, Volume=	3.728 af, Atten= 22%, Lag= 17.1 min
Primary =	17.75 cfs @ 12.78 hrs, Volume=	3.728 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-500.00 hrs, dt= 0.01 hrs Peak Elev= 759.57' @ 12.78 hrs Surf.Area= 13,337 sf Storage= 40,497 cf

Plug-Flow detention time= 738.8 min calculated for 3.728 af (100% of inflow) Center-of-Mass det. time= 738.5 min (1,739.3 - 1,000.7)

	Prepared by Microsoft Printed 4/29/2016							
HydroCAE	D® 10.00-12	s/n 02145 © 2	2014 HydroCAD	Software Solutions	LLC Page 10			
	line i ne mt	Aurali Ota	O teres	Decemination				
Volume	Invert	Avail.Stor	0 0	Description				
#1	754.00'	62,32	21 cf Custom	Stage Data (Pris	smatic) Listed below (Recalc)			
Elevatio	n Su	rf.Area	Inc.Store	Cum.Store				
(feet		(sq-ft)	(cubic-feet)	(cubic-feet)				
754.00	0	2,281	0	0				
756.00	0	5,381	7,662	7,662				
758.00	0	9,528	14,909	22,571				
760.00	0	14,387	23,915	46,486				
761.00	0	17,282	15,835	62,321				
Device	Routing	Invert	Outlet Device	S				
#1	Primary	752.00'	36.0" Round	Culvert				
	,		L= 30.0' CP	P. mitered to con	form to fill, Ke= 0.700			
				,	750.00' S= 0.0667 '/' Cc= 0.900			
			n= 0.013 Co	rrugated PE, smg	ooth interior, Flow Area= 7.07 sf			
#2	Device 1	754.00'		fice/Grate C= 0				
#3	Device 1	759.00'			= 0.600 Limited to weir flow at low heads			
Primary OutFlow Max=17.74 cfs @ 12.78 hrs HW=759.57' TW=0.00' (Dynamic Tailwater) 1=Culvert (Passes 17.74 cfs of 73.98 cfs potential flow) 1-2=Orifice/Grate (Orifice Controls 0.16 cfs @ 11.29 fps)								

Type II 24-hr 1-year Rainfall=2.10"

-2=Orifice/Grate (Orifice Controls 0.16 cfs @ 11.29 fps)

3=Orifice/Grate (Weir Controls 17.58 cfs @ 2.46 fps)

14-129 - 2016 Model

Summary for Pond 24P: Forebay with Vortech

Inflow Area =	78.430 ac, 11.11% Impervious, Inflo	ow Depth = 0.57" for 1-year event
Inflow =	23.14 cfs @ 12.46 hrs, Volume=	3.729 af
Outflow =	22.80 cfs @ 12.50 hrs, Volume=	3.728 af, Atten= 1%, Lag= 2.3 min
Primary =	5.69 cfs @ 12.30 hrs, Volume=	2.274 af
Secondary =	18.89 cfs @ 12.57 hrs, Volume=	1.453 af
Tertiary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-500.00 hrs, dt= 0.01 hrs Peak Elev= 760.15' @ 12.57 hrs Surf.Area= 4,631 sf Storage= 10,693 cf

Plug-Flow detention time= 120.9 min calculated for 3.727 af (100% of inflow) Center-of-Mass det. time= 120.8 min (1,000.7 - 879.9)

Volume	Invert	Avail.Storage	Storage Description
#1	755.20'	370 cf	7.00'W x 11.00'L x 4.80'H Vortechs 5000
#2	756.00'	19,875 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
		20,245 cf	Total Available Storage

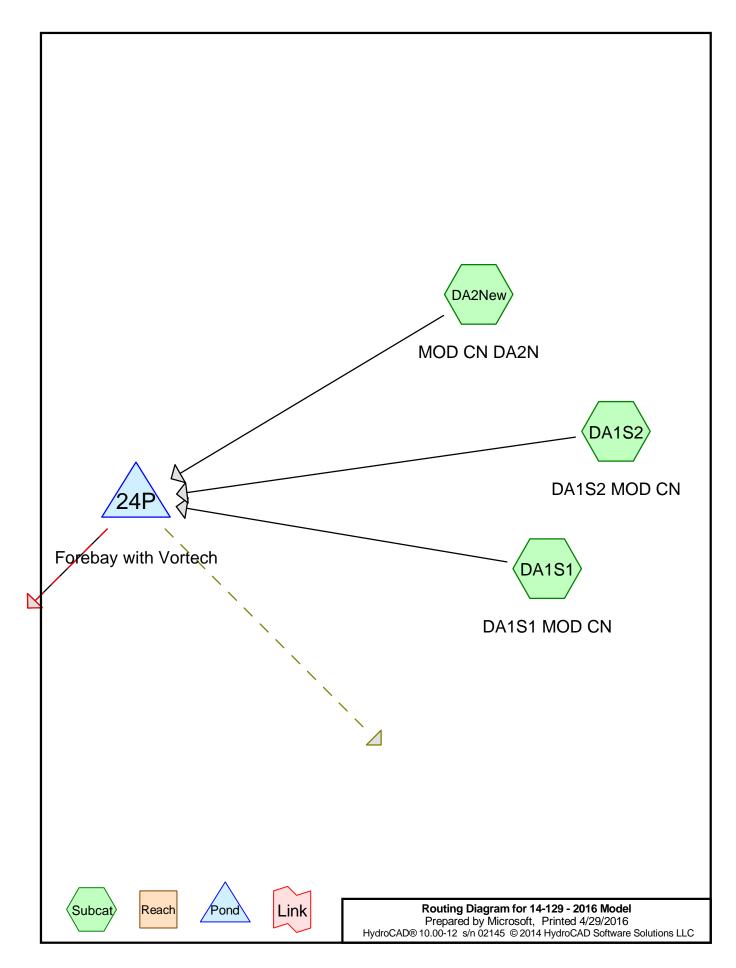
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
756.00	1,500	0	0
758.00	2,100	3,600	3,600
760.00	4,000	6,100	9,700
761.00	7,800	5,900	15,600
761.50	9,300	4,275	19,875

14-129 - 2016 Model

Prepared by Microsoft

Type II 24-hr 1-year Rainfall=2.10" Printed 4/29/2016 Page 11

HydroCAD® 10.00-12 s/n 02145 © 2014 HydroCAD Software Solutions LLC


Device	Routing	Invert	Outlet Devices
#1	Primary	755.20'	12.0" Round Culvert L= 25.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 755.20' / 754.58' S= 0.0248 '/' Cc= 0.900
	.		n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	755.28'	Vortechs Control Wall, Cv= 3.37 (C= 4.21)
			Head (feet) 0.00 0.42 0.42 1.09 1.09 2.16 2.16
			Width (feet) 0.83 1.04 0.00 0.00 0.50 1.58 0.00
#3	Device 2	756.00'	12.0" Round Culvert
			L= 32.0' CPP, mitered to conform to fill, Ke= 0.700
			Inlet / Outlet Invert= 756.00' / 755.20' S= 0.0250 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#4	Secondary	755.30'	36.0" Round Culvert
	-		L= 60.0' CPP, mitered to conform to fill, Ke= 0.700
			Inlet / Outlet Invert= 755.30' / 755.00' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 7.07 sf
#5	Device 4	759.55'	48.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#6	Tertiary	760.33'	30.0' long x 15.0' breadth Broad-Crested Rectangular Weir
	,		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=5.63 cfs @ 12.30 hrs HW=759.88' TW=757.04' (Dynamic Tailwater) **1=Culvert** (Passes 5.63 cfs of 6.38 cfs potential flow)

2=Vortechs Control Wall (Passes 5.63 cfs of 15.82 cfs potential flow)
 3=Culvert (Inlet Controls 5.63 cfs @ 7.17 fps)

Secondary OutFlow Max=18.89 cfs @ 12.57 hrs HW=760.15' TW=759.09' (Dynamic Tailwater) -4=Culvert (Passes 18.89 cfs of 30.89 cfs potential flow) **5=Orifice/Grate** (Weir Controls 18.89 cfs @ 2.52 fps)

Tertiary OutFlow Max=0.00 cfs @ 0.00 hrs HW=755.20' TW=755.00' (Dynamic Tailwater) **6-Broad-Crested Rectangular Weir** (Controls 0.00 cfs)

Area Listing (selected nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
21.170	88.0	(DA2New)
57.260	88.0	modified curve number (DA1S1, DA1S2)
78.430	88.0	TOTAL AREA

Soil Listing (selected nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.000	HSG A	
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
78.430	Other	DA1S1, DA1S2, DA2New
78.430		TOTAL AREA

Prepared by Microsoft	
HydroCAD® 10.00-12 s/n 02145	© 2014 HydroCAD Software Solutions LLC

Ground Covers (selected nodes)

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
 (acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
0.000	0.000	0.000	0.000	21.170	21.170		DA2New
0.000	0.000	0.000	0.000	57.260	57.260	modified curve number	DA1S1, DA1S2
0.000	0.000	0.000	0.000	78.430	78.430	TOTAL AREA	

Prepared by Microsoft	
HydroCAD® 10.00-12 s/n 02145	© 2014 HydroCAD Software Solutions LLC

Pipe Listing (selected nodes)

Li	ine#	Node	In-Invert	Out-Invert	Length	Slope	n	Diam/Width	Height	Inside-Fill
		Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)
	1	24P	755.20	754.58	25.0	0.0248	0.013	12.0	0.0	0.0
	2	24P	756.00	755.20	32.0	0.0250	0.013	12.0	0.0	0.0
	3	24P	755.30	755.00	60.0	0.0050	0.013	36.0	0.0	0.0

14-129 - 2016 Model	Type II 24-hr WQ Rainfall=0.90"
Prepared by Microsoft	Printed 4/29/2016
HydroCAD® 10.00-12 s/n 02145 © 2014 HydroCAD Software Solutions LLC	Page 6
Time span=0.00-500.00 hrs, dt=0.01 hrs, 500	•

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment DA1S1: DA1S1 MOD CN	Runoff Area=4.610 ac 0.00% Impervious Runoff Depth=0.20" Flow Length=1,250' Tc=30.4 min CN=88.0 Runoff=0.64 cfs 0.076 af
Subcatchment DA1S2: DA1S2 MOD CN	Runoff Area=52.650 ac 0.00% Impervious Runoff Depth=0.20" Flow Length=3,575' Tc=46.9 min CN=88.0 Runoff=5.35 cfs 0.867 af
Subcatchment DA2New: MOD CN DA2N	Runoff Area=21.170 ac 0.00% Impervious Runoff Depth=0.20" Flow Length=2,425' Tc=49.1 min CN=88.0 Runoff=2.08 cfs 0.349 af
Pond 24P: Forebay with Vortech Primary=5.46 cfs 1.290 af Secondary=	Peak Elev=759.18' Storage=7,030 cf Inflow=7.84 cfs 1.292 af 0.00 cfs 0.000 af Tertiary=0.00 cfs 0.000 af Outflow=5.46 cfs 1.290 af
Total Pupoff Area - 79	120 ap Runoff Volume - 1 202 of Average Runoff Donth - 0 20"

Total Runoff Area = 78.430 acRunoff Volume = 1.292 afAverage Runoff Depth = 0.20"100.00% Pervious = 78.430 ac0.00% Impervious = 0.000 ac

Summary for Subcatchment DA1S1: DA1S1 MOD CN

Runoff = 0.64 cfs @ 12.29 hrs, Volume= 0.076 af, Depth= 0.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-500.00 hrs, dt= 0.01 hrs Type II 24-hr WQ Rainfall=0.90"

_	Area	(ac)	CN De	escription		
*	4.	610 8	38.0 mo	odified curv	ve number	
	4.	610	10	0.00% Per	vious Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	17.6	100	0.2000	0.09	(013)	Sheet Flow, 0 - 100' Woods
	12.8	1,150	0.0900	1.50		Woods: Dense underbrush n= 0.800 P2= 2.30" Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
	30.4	1,250	Total			

Summary for Subcatchment DA1S2: DA1S2 MOD CN

Runoff = 5.35 cfs @ 12.55 hrs, Volume= 0.867 af, Depth= 0.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-500.00 hrs, dt= 0.01 hrs Type II 24-hr WQ Rainfall=0.90"

_	Area	(ac)	CN De	scription		
*	52.	650 8	8.0 mo	odified curv	/e number	
	52.	650	10	0.00% Per	vious Area	
_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	30.6	100	0.0500	0.05		Sheet Flow, 0 - 100' Woods
						Woods: Dense underbrush n= 0.800 P2= 2.30"
	11.3	1,265	0.1400	1.87		Shallow Concentrated Flow, Woods
	1.7	760	0.0530	7.34	117.40	Woodland Kv= 5.0 fps Channel Flow, Grass swale Area= 16.0 sf Perim= 31.0' r= 0.52' n= 0.030 Earth, grassed & winding
	3.2	1,400	0.0960	7.41	118.50	Channel Flow, Rocky swale
		,				Area= 16.0 sf Perim= 31.0' r= 0.52' n= 0.040 Earth, cobble bottom, clean sides
	0.1	50	0.0500	7.13	114.03	Channel Flow, Grass swale to pond
						Area= 16.0 sf Perim= 31.0' r= 0.52'
_						n= 0.030 Earth, grassed & winding
	16.0	3 575	Total			

46.9 3,575 Total

Summary for Subcatchment DA2New: MOD CN DA2N

Runoff = 2.08 cfs @ 12.55 hrs, Volume= 0.349 af, Depth= 0.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-500.00 hrs, dt= 0.01 hrs Type II 24-hr WQ Rainfall=0.90"

Area	(ac)	CN De	scription		
21.	170 8	38.0			
21.	170	100.00% Pervious Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
30.6	100	0.0500	0.05		Sheet Flow, Woods Sheet Flow
					Woods: Dense underbrush n= 0.800 P2= 2.30"
15.5	1,525	0.1080	1.64		Shallow Concentrated Flow, Woods Shallow Concentrated
3.0	800	0.0190	4.39	70.29	Woodland Kv= 5.0 fps Channel Flow, Channel Flow to Pond Area= 16.0 sf Perim= 31.0' r= 0.52'
					n= 0.030 Stream, clean & straight
	21. 21. Tc (min) 30.6 15.5	21.170 Tc Length (min) (feet) 30.6 100 15.5 1,525	21.170 88.0 21.170 10 Tc Length Slope (min) (feet) (ft/ft) 30.6 100 0.0500 15.5 1,525 0.1080	21.170 88.0 21.170 100.00% Per Tc Length Slope Velocity (min) (feet) (ft/ft) (ft/sec) 30.6 100 0.0500 0.05 15.5 1,525 0.1080 1.64	21.170 88.0 21.170 100.00% Pervious Area Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs) 30.6 100 0.0500 0.05 15.5 1,525 0.1080 1.64

49.1 2,425 Total

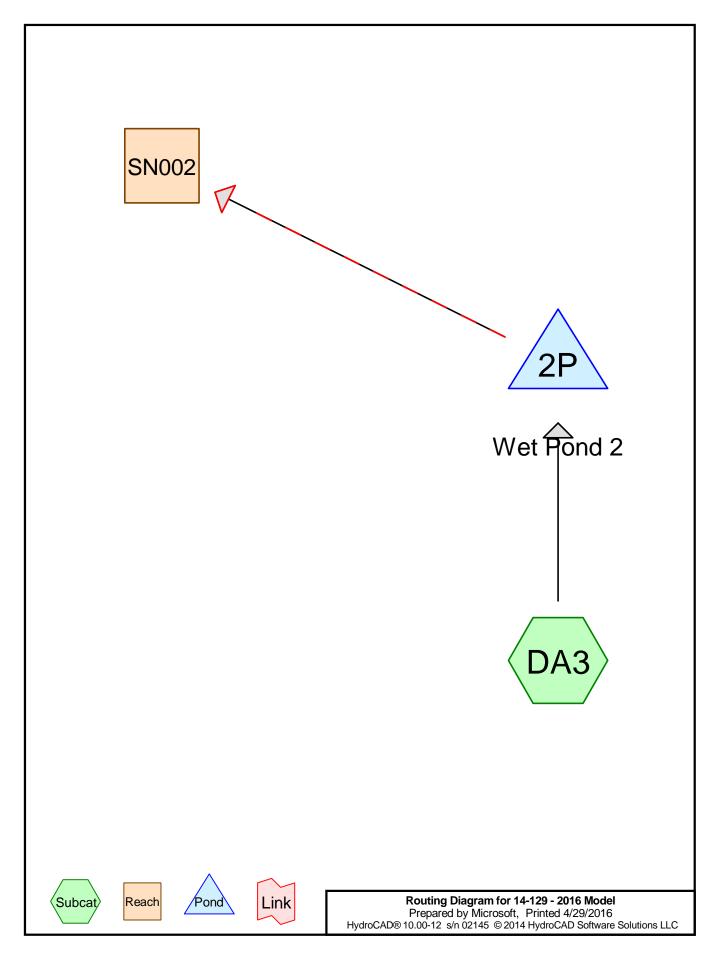
Summary for Pond 24P: Forebay with Vortech

Inflow Area =	78.430 ac,	0.00% Impervious, Inflow	Depth = 0.20" for WQ event
Inflow =	7.84 cfs @	12.51 hrs, Volume=	1.292 af
Outflow =	5.46 cfs @	12.86 hrs, Volume=	1.290 af, Atten= 30%, Lag= 21.1 min
Primary =	5.46 cfs @	12.86 hrs, Volume=	1.290 af
Secondary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af
Tertiary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-500.00 hrs, dt= 0.01 hrs Peak Elev= 759.18' @ 12.86 hrs Surf.Area= 3,294 sf Storage= 7,030 cf

Plug-Flow detention time= 319.5 min calculated for 1.290 af (100% of inflow) Center-of-Mass det. time= 318.7 min (1,239.2 - 920.4)

Volume	Invert	Avail.Stor	rage	Storage D	escription		
#1	755.20'	37	70 cf	7.00'W x 1	1.00'L x 4.80'l	H Vortechs 5000	
#2	756.00'	19,87	75 cf	Custom S	tage Data (Pri	smatic) Listed below (Recalc)	
		20,24			lable Storage		
					0		
Elevatior	n Su	rf.Area	Inc	.Store	Cum.Store		
(feet	:)	(sq-ft)	(cubio	c-feet)	(cubic-feet)		
756.00	D	1,500		0	0		
758.00	0	2,100		3,600	3,600		
760.00	0	4,000		6,100	9,700		
761.00	0	7,800		5,900	15,600		
761.50	C	9,300		4,275	19,875		
			<u> </u>				
-		Invert					
#1	Primary	755.20'					
	D · · · ·	755 001					
#2	Device 1	755.28'					
40	Davias 2						
#3	Device 2	756.00'	-			aform to fill Ko 0.700	
#1	Secondary	755.30'				ootin interior, Tiow Area = 0.79 Si	
π -	Occondary	700.00				oform to fill Ke- 0.700	
#5	Device 4	759.55'			•		
		760.33'			-		
	- · · · ,					•	
						70 2.64 2.63 2.64 2.64 2.63	
#2 #3 #4	#1 Primary 75 #2 Device 1 75 #3 Device 2 75 #4 Secondary 75 #5 Device 4 75		 12.0" Round Culvert L= 25.0' CPP, square edge headwall, Ke= Inlet / Outlet Invert= 755.20' / 754.58' S= 0.0248 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf Vortechs Control Wall, Cv= 3.37 (C= 4.21) Head (feet) 0.00 0.42 0.42 1.09 1.09 2.16 2.16 Width (feet) 0.83 1.04 0.00 0.00 0.50 1.58 0.00 12.0" Round Culvert L= 32.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 756.00' / 755.20' S= 0.0250 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf 36.0" Round Culvert L= 60.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 755.30' / 755.00' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 7.07 sf 48.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low h 				


Primary OutFlow Max=5.46 cfs @ 12.86 hrs HW=759.18' TW=756.49' (Dynamic Tailwater) -1=Culvert (Passes 5.46 cfs of 6.20 cfs potential flow) t

-2=Vortechs Control Wall (Passes 5.46 cfs of 14.41 cfs potential flow) -3=Culvert (Inlet Controls 5.46 cfs @ 6.95 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=755.20' TW=754.00' (Dynamic Tailwater) -4=Culvert (Controls 0.00 cfs)

1-5=Orifice/Grate (Controls 0.00 cfs)

Tertiary OutFlow Max=0.00 cfs @ 0.00 hrs HW=755.20' TW=755.00' (Dynamic Tailwater) **6=Broad-Crested Rectangular Weir** (Controls 0.00 cfs)

Area Listing (selected nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
11.499	74.0	>75% Grass cover, Good, HSG C (DA3)
1.232	80.0	>75% Grass cover, Good, HSG D (DA3)
2.629	98.0	Paved parking, HSG C (DA3)
0.054	98.0	Paved parking, HSG D (DA3)
11.859	70.0	Woods, Good, HSG C (DA3)
2.896	77.0	Woods, Good, HSG D (DA3)
30.169	75.1	TOTAL AREA

Soil Listing (selected nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
25.987	HSG C	DA3
4.182	HSG D	DA3
0.000	Other	
30.169		TOTAL AREA

Prepared by Microsoft	
HydroCAD® 10.00-12 s/n 02145 © 2014 HydroCAD Software Solutions LLC	

Ground Covers (selected nodes)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
 0.000	0.000	11.499	1.232	0.000	12.731	>75% Grass cover, Good	DA3
0.000	0.000	2.629	0.054	0.000	2.683	Paved parking	DA3
0.000	0.000	11.859	2.896	0.000	14.755	Woods, Good	DA3
0.000	0.000	25.987	4.182	0.000	30.169	TOTAL AREA	

14-129 - 2016 Model

Prepared by Microsoft
HydroCAD® 10.00-12 s/n 02145 © 2014 HydroCAD Software Solutions LLC

	Pipe Listing (selected nodes)									
	Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
_	1	2P	610.40	607.00	167.0	0.0204	0.013	24.0	0.0	0.0

Dine Listing (sales **.**

14-129 - 2016 Model	Ту
Prepared by Microsoft	
HvdroCAD® 10.00-12 s/n 02145 © 2014 HvdroCAD Software Solutions LLC	

Time span=0.00-500.00 hrs, dt=0.01 hrs, 50001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

> Runoff Area=30.169 ac 8.89% Impervious Runoff Depth=0.50" Flow Length=2,510' Tc=48.2 min CN=75.1 Runoff=7.46 cfs 1.261 af

Reach SN002:

Inflow=0.74 cfs 1.261 af Outflow=0.74 cfs 1.261 af

Pond 2P: Wet Pond 2

Subcatchment DA3:

Peak Elev=618.13' Storage=53,619 cf Inflow=7.46 cfs 1.261 af Primary=0.74 cfs 1.261 af Secondary=0.00 cfs 0.000 af Outflow=0.74 cfs 1.261 af

Total Runoff Area = 30.169 ac Runoff Volume = 1.261 af Average Runoff Depth = 0.50" 91.11% Pervious = 27.486 ac 8.89% Impervious = 2.683 ac

Summary for Subcatchment DA3:

Runoff = 7.46 cfs @ 12.53 hrs, Volume= 1.261 af, Depth= 0.50"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-500.00 hrs, dt= 0.01 hrs Type II 24-hr 1-year Rainfall=2.10"

	Area	(ac)	CN De	escription		
*	2.	629 9	98.0 Pa	ved parkin	ig, HSG C	
*				oods, Goo	0.	
*					cover, Goo	d. HSG C
*				ved parkin		-,
*				oods, Good		
*					cover, Goo	d, HSG D
				eighted Av	· · · ·	· · · · · · · · · · · · · · · · · · ·
		486		.11% Perv		
		683	-		vious Area	
				, , , , , , , , , , , , , , , , , , ,		
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	'
	23.2	100	0.1000	0.07	<u>, , , , , , , , , , , , , , , , , </u>	Sheet Flow, Woods Sheet Flow
						Woods: Dense underbrush n= 0.800 P2= 2.30"
	2.9	195	0.0510	1.13		Shallow Concentrated Flow, Woods near top of DA
						Woodland Kv= 5.0 fps
	2.5	260	0.0600	1.71		Shallow Concentrated Flow, Grass near top of DA
						Short Grass Pasture Kv= 7.0 fps
	4.3	450	0.1200	1.73		Shallow Concentrated Flow, Woods Shallow Concentrated
						Woodland Kv= 5.0 fps
	3.4	330	0.0550	1.64		Shallow Concentrated Flow, Yards
						Short Grass Pasture Kv= 7.0 fps
	1.6	130	0.0770	1.39		Shallow Concentrated Flow, Woods between yards
						Woodland Kv= 5.0 fps
	0.8	105	0.0950	2.16		Shallow Concentrated Flow, Yard
						Short Grass Pasture Kv= 7.0 fps
	9.2	790	0.0820	1.43		Shallow Concentrated Flow, Long wooded section
	<i>c</i> -					Woodland Kv= 5.0 fps
	0.3	150	0.0700	8.43	134.92	•
						Area= 16.0 sf Perim= 31.0' r= 0.52'
_						n= 0.030 Earth, grassed & winding
	10 0	2 5 1 0	Total			

48.2 2,510 Total

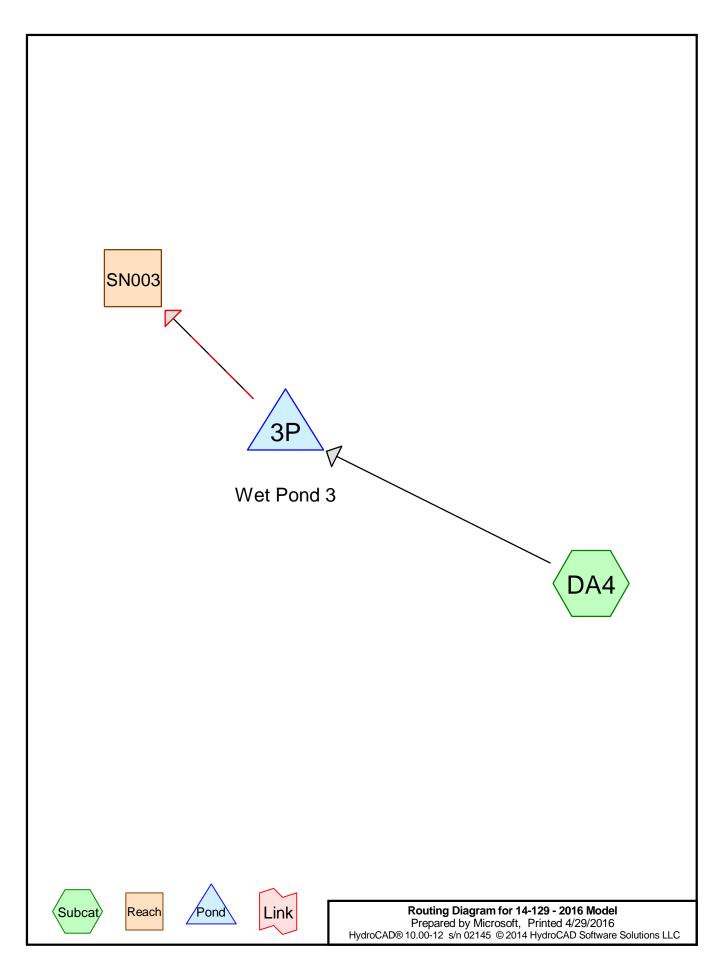
Summary for Reach SN002:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	30.169 ac,	8.89% Impervious, Inflov	w Depth = 0.50"	for 1-year event
Inflow =	0.74 cfs @	16.36 hrs, Volume=	1.261 af	-
Outflow =	0.74 cfs @	16.36 hrs, Volume=	1.261 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-500.00 hrs, dt= 0.01 hrs

Summary for Pond 2P: Wet Pond 2


Inflow Area =	30.169 ac,	8.89% Impervious, Inflow	Depth = 0.50" for 1-year event
Inflow =	7.46 cfs @	12.53 hrs, Volume=	1.261 af
Outflow =	0.74 cfs @	16.36 hrs, Volume=	1.261 af, Atten= 90%, Lag= 229.9 min
Primary =	0.74 cfs @	16.36 hrs, Volume=	1.261 af
Secondary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-500.00 hrs, dt= 0.01 hrs Starting Elev= 615.50' Surf.Area= 18,384 sf Storage= 21,939 cf Peak Elev= 618.13' @ 16.36 hrs Surf.Area= 24,366 sf Storage= 53,619 cf (31,680 cf above start) Flood Elev= 622.40' Surf.Area= 36,567 sf Storage= 133,971 cf (112,032 cf above start)

Plug-Flow detention time= 1,344.6 min calculated for 0.757 af (60% of inflow) Center-of-Mass det. time= 777.8 min (1,668.5 - 890.7)

Volume	Inve	ert Ava	il.Storage	e Storag	e Description						
#1	615.4	10'	16,438 c	cf Forebay (Prismatic) Listed below (Recalc)							
#2	612.4		21,936 c								
#3	615.5		95,598 c								
			33,971 c		Total Available Storage						
			,								
Elevatior	า	Surf.Area		nc.Store	Cum.Store						
(feet))	(sq-ft)	(cu	bic-feet)	(cubic-feet)						
615.40)	25		0	0						
616.00)	90		35	35						
620.00)	3,239		6,658	6,693						
622.00)	6,506		9,745	16,438						
Elevatior		Surf.Area		nc.Store	Cum.Store						
(feet))	(sq-ft)	(cu	bic-feet)	(cubic-feet)						
612.40)	5,113		0	0						
614.00)	7,074		9,750	9,750						
615.50)	9,174		12,186	21,936						
				_							
Elevatior		Surf.Area		nc.Store	Cum.Store						
(feet)		(sq-ft)	(cu	bic-feet)	(cubic-feet)						
615.50		9,174		0	0						
616.00		9,924		4,775	4,775						
618.00		13,176		23,100	27,875						
620.00		16,830		30,006	57,881						
622.00)	20,887		37,717	95,598						
Device	Routing	In	vert O	utlet Devid	ces						
#1	Primary	610).40' 2 4	.0" Roun	d Culvert						
						onform to fill, Ke= 0.700					
						'607.00' S= 0.0204 '/' Cc= 0.900					
						nooth interior, Flow Area= 3.14 sf					
#2	Device 1	615			Pv Orifice C= C						

14-129	- 2016 Model		Type II 24-hr 1-year Rainfall=2.10"					
Prepare	ed by Microsoft		Printed 4/29/2016					
			2014 HydroCAD Software Solutions LLC Page 9					
#3	Device 1	618.00'	18.0" W x 6.0" H Vert. Qp Orifice C= 0.600					
#4	Device 1	619.50'	24.0" Horiz. Overflow Grate C= 0.600					
			Limited to weir flow at low heads					
#5	Secondary	621.00'	17.0' long x 7.0' breadth Overflow Spillway					
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00					
			2.50 3.00 3.50 4.00 4.50 5.00 5.50					
			Coef. (English) 2.40 2.52 2.70 2.68 2.68 2.67 2.66 2.65 2.65 2.65					
			2.66 2.65 2.66 2.68 2.70 2.73 2.78					
Primary	OutFlow Max=	=0.74 cfs @	16.36 hrs HW=618.13' TW=0.00' (Dynamic Tailwater)					
T_1=Ci	Ivert (Passes ().74 cfs of	34.64 cfs potential flow)					
2=	=CPv Orifice (C	rifice Cont	trols 0.51 cfs @ 7.60 fps)					
-3=	=Qp Orifice (Or	ifice Contr	ols 0.24 cfs @ 1.18 fps)					
L_4=	Overflow Grate	e (Control	s 0.00 cfs)					
Second	ary OutFlow M	ax=0.00 cf	s @ 0.00 hrs HW=615.50' TW=0.00' (Dynamic Tailwater)					
⁻_5=0\	erflow Spillway	/ (Control	s 0.00 cfs)					

Area Listing (selected nodes)

Area	CN	Description				
(acres)		(subcatchment-numbers)				
2.589	74.0	>75% Grass cover, Good, HSG C (DA4)				
0.124	80.0	>75% Grass cover, Good, HSG D (DA4)				
2.201	98.0	Paved parking, HSG C (DA4)				
23.759	70.0	Woods, Good, HSG C (DA4)				
0.143	77.0	Woods, Good, HSG D (DA4)				
28.816	72.6	TOTAL AREA				

Soil Listing (selected nodes)

Area (acres)	Soil Group	Subcatchment Numbers
	•	Numbers
0.000	HSG A	
0.000	HSG B	
28.549	HSG C	DA4
0.267	HSG D	DA4
0.000	Other	
28.816		TOTAL AREA

Prepared by Microsoft	
HydroCAD® 10.00-12 s/n 02145 © 2014 HydroCAD Software Solutions LLC	

Ground Covers (selected nodes)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
 0.000	0.000	2.589	0.124	0.000	2.713	>75% Grass cover, Good	DA4
0.000	0.000	2.201	0.000	0.000	2.201	Paved parking	DA4
0.000	0.000	23.759	0.143	0.000	23.902	Woods, Good	DA4
0.000	0.000	28.549	0.267	0.000	28.816	TOTAL AREA	

14-129 - 2016 Model

Prepared by Microsoft
HydroCAD® 10.00-12 s/n 02145 © 2014 HydroCAD Software Solutions LLC

	Pipe Listing (selected nodes)									
	Line#	Node	In-Invert	Out-Invert	Length	Slope	n	Diam/Width	Height	Inside-Fill
_		Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)
	1	3P	676.00	674.00	80.5	0.0248	0.013	30.0	0.0	0.0

. **.**

14-129 - 2016 Model	Ту
Prepared by Microsoft	
HvdroCAD® 10.00-12 s/n 02145 © 2014 HvdroCAD Software Solutions LLC	

Time span=0.00-500.00 hrs, dt=0.01 hrs, 50001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

> Runoff Area=28.816 ac 7.64% Impervious Runoff Depth=0.41" Flow Length=1,570' Tc=31.9 min CN=72.6 Runoff=7.21 cfs 0.995 af

Reach SN003:

Inflow=1.60 cfs 0.994 af Outflow=1.60 cfs 0.994 af

Pond 3P: Wet Pond 3

Subcatchment DA4:

Peak Elev=682.95' Storage=39,186 cf Inflow=7.21 cfs 0.995 af Primary=1.60 cfs 0.994 af Secondary=0.00 cfs 0.000 af Outflow=1.60 cfs 0.994 af

Total Runoff Area = 28.816 ac Runoff Volume = 0.995 af Average Runoff Depth = 0.41" 92.36% Pervious = 26.615 ac 7.64% Impervious = 2.201 ac

Summary for Subcatchment DA4:

Runoff = 7.21 cfs @ 12.30 hrs, Volume= 0.995 af, Depth= 0.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-500.00 hrs, dt= 0.01 hrs Type II 24-hr 1-year Rainfall=2.10"

	Area	(ac)	CN D	escription			
*	2.	201	98.0 P	aved parkir	ng, HSG C		
*	23.	759	70.0 W	Woods, Good, HSG C			
*	2.	589	74.0 >	>75% Grass cover, Good, HSG C			
0.143 77.0 Woods, Good, HSG D							
0.124 80.0 >75% Grass cover, Good, HSG I			75% Grass	cover, Goo	d, HSG D		
	28.	816 [·]	72.6 W	/eighted Av	reage		
	26.615		92	2.36% Perv	rious Area		
	2.201 7.64% Impervious		vious Area				
	Тс	Length	Slope		Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	20.4	100	0.1370	0.08		Sheet Flow, Woods Sheet	
						Woods: Dense underbrush n= 0.800 P2= 2.30"	
	10.9	1,210	0.1370	1.85		Shallow Concentrated Flow, Woods Shallow Concentrated	
						Woodland Kv= 5.0 fps	
	0.6	260	0.0500	7.13	114.03	,	
						Area= 16.0 sf Perim= 31.0' r= 0.52'	
_						n= 0.030 Earth, grassed & winding	
	31.9	1,570	Total				

Summary for Reach SN003:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	28.816 ac,	7.64% Impervious, Inf	low Depth = 0.41"	for 1-year event
Inflow =	1.60 cfs @	13.28 hrs, Volume=	0.994 af	•
Outflow =	1.60 cfs @	13.28 hrs, Volume=	0.994 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-500.00 hrs, dt= 0.01 hrs

Summary for Pond 3P: Wet Pond 3

Inflow Area =	28.816 ac,	7.64% Impervious, Inflow [Depth = 0.41" for 1-year event
Inflow =	7.21 cfs @	12.30 hrs, Volume=	0.995 af
Outflow =	1.60 cfs @	13.28 hrs, Volume=	0.994 af, Atten= 78%, Lag= 58.8 min
Primary =	1.60 cfs @	13.28 hrs, Volume=	0.994 af
Secondary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-500.00 hrs, dt= 0.01 hrs Starting Elev= 681.16' Surf.Area= 17,522 sf Storage= 21,009 cf Peak Elev= 682.95' @ 13.28 hrs Surf.Area= 20,348 sf Storage= 39,186 cf (18,177 cf above start) Flood Elev= 686.50' Surf.Area= 27,225 sf Storage= 84,745 cf (63,736 cf above start)

14-129 - 2016 Model Prepared by Microsoft HydroCAD® 10.00-12 s/n 02145 © 2014 HydroCAD Software Solutions LLC

Plug-Flow detention time= 1,565.5 min calculated for 0.512 af (51% of inflow) Center-of-Mass det. time= 730.0 min (1,614.6 - 884.6)

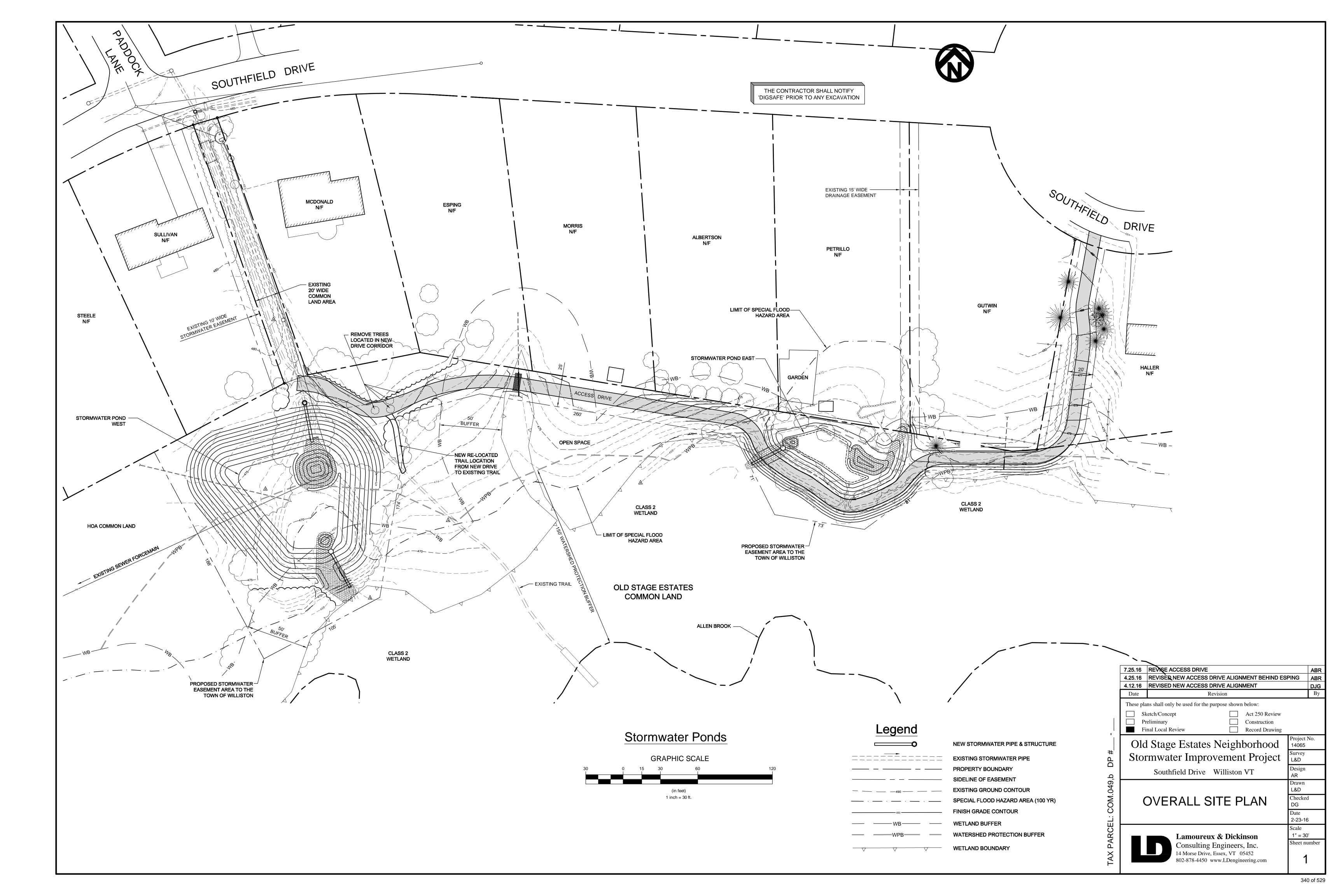
Volume	Invert	Avail.Stora	je Storag	e Description		
#1	683.00'	2,219	cf Foreba	ay (Prismatic) Lis	sted below (Recalc)	
#2	678.00'	21,009	cf ED po	ol (Prismatic) Lis	sted below (Recalc)	
#3	681.16'	61,517	cf Custo	m Stage Data (Pr	ismatic) Listed below (Recalc)	
		84,745	cf Total A	vailable Storage	· · · · · · · · · · · · · · · · · · ·	
				0		
Elevatio	on Surf.	Area	Inc.Store	Cum.Store		
(fee	et) (s	sq-ft) (c	ubic-feet)	(cubic-feet)		
683.0	0	169	0	0		
684.0	0	438	304	304		
686.0	0 1	,477	1,915	2,219		
_						
Elevatio			Inc.Store	Cum.Store		
(fee			ubic-feet)	(cubic-feet)		
678.0		,653	0	0		
680.0		7,136	11,789	11,789		
681.1	6 8	3,761	9,220	21,009		
Elevatio	on Surf.	Area	Inc.Store	Cum.Store		
(fee			ubic-feet)	(cubic-feet)		
681.1	- · · · ·	<u>,761</u>	0	0		
682.0						
),023	7,889	7,889		
684.0		3,309	23,332	31,221		
686.0016,98730,29661,517						
Device	Routing	Invert C	Dutlet Devic	ces		
#1	Primary	676.00' 3	0.0" Roun	d Culvert		
		L	= 80.5' RCP, mitered to conform to fill, Ke= 0.700			
			nlet / Outlet	t Invert= 676.00' /	/ 674.00' S= 0.0248 '/' Cc= 0.900	
		r	= 0.013 C	orrugated PE, sm	nooth interior, Flow Area= 4.91 sf	
#2	Device 1			Pv Orifice C= (
#3	Device 1	682.50' 1	8.0" W x 6.	.0" H Vert. Qp Or	ifice C= 0.600	
#4	Device 1	684.50' 2	4.0" Horiz.	Overflow Grate	X 2.00 C= 0.600	
				eir flow at low he		
#5	Secondary			7.0' breadth Ov		
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00			
				3.50 4.00 4.50 5		
					.70 2.68 2.68 2.67 2.66 2.65 2.65 2.65	
2.66 2.65 2.66 2.68 2.70 2.73 2.78					2.73 2.78	
D '						
	OutFlow Max Ivert (Passes				=0.00' (Dynamic Tailwater)	

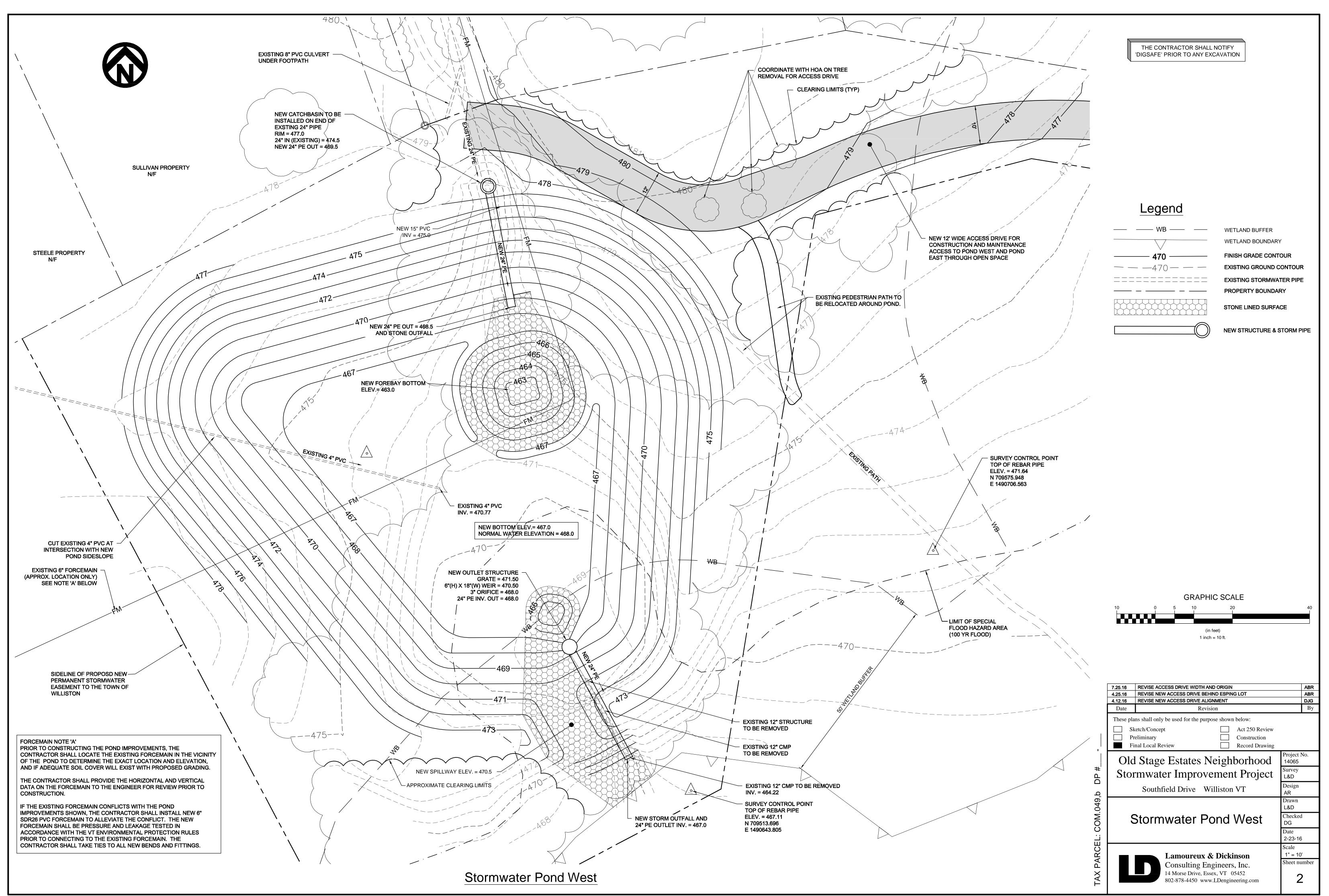
-**1=Culvert** (Passes 1.60 cfs of 49.80 cfs potential flow)

2=CPv Orifice (Orifice Controls 0.14 cfs @ 6.29 fps)

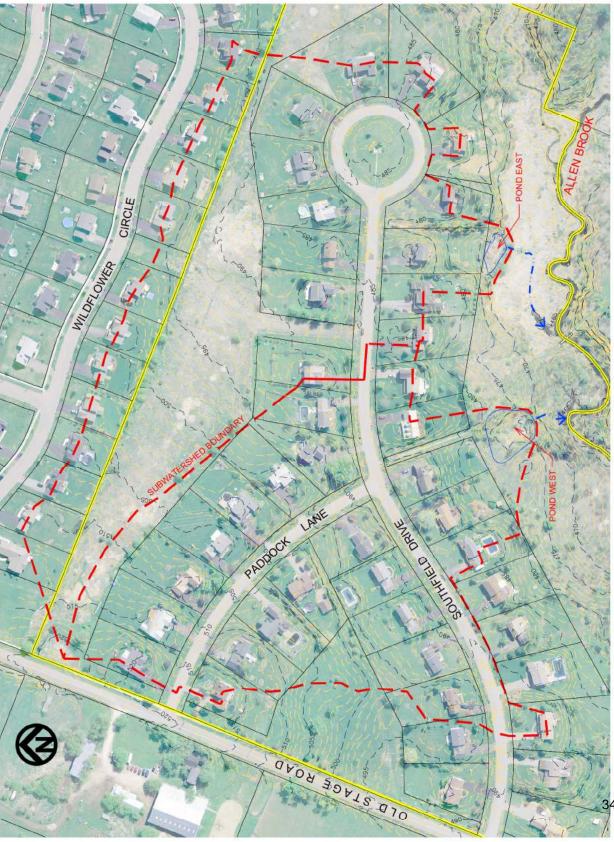
-3=Qp Orifice (Orifice Controls 1.46 cfs @ 2.16 fps)

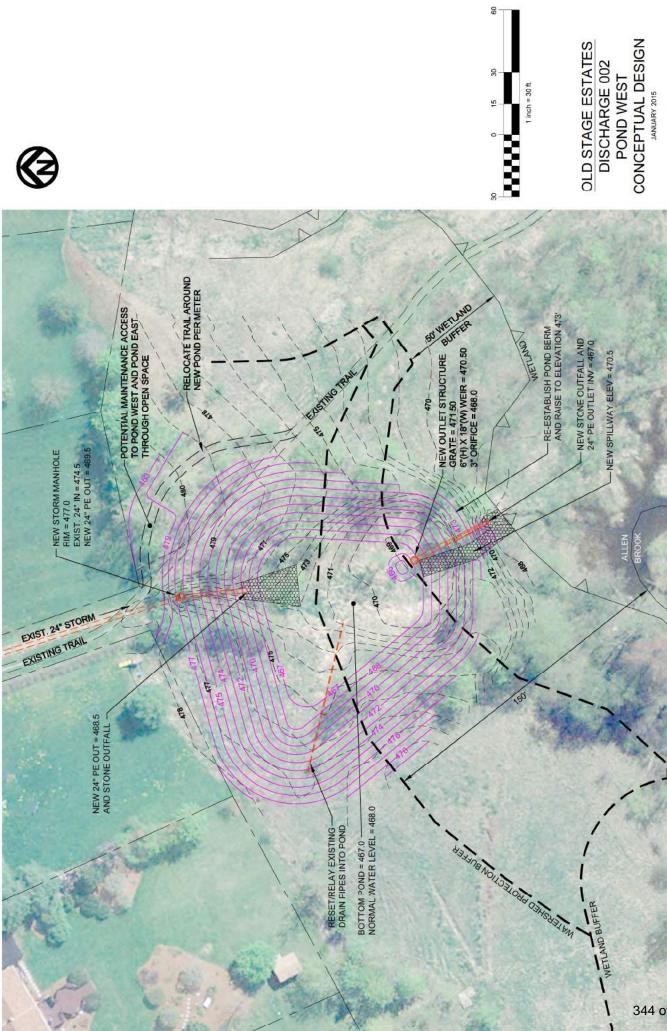
-4=Overflow Grate (Controls 0.00 cfs)

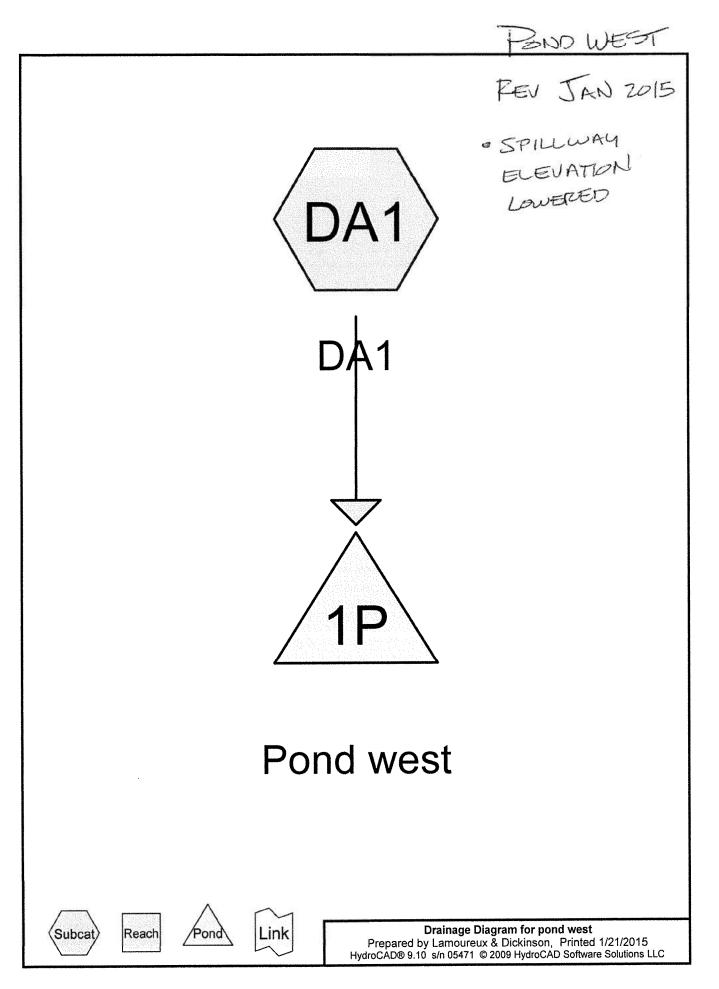

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=681.16' TW=0.00' (Dynamic Tailwater) **1**-5=Overflow Spillway (Controls 0.00 cfs)


Page 8

OLD STAGE ESTATES: PERMIT 2-1146






342 of 529

343 of 529

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.340	71	Meadow, HSG C (DA1)
9.210	74	Lawn, HSG C (DA1)
0.910	78	Meadow, HSG D (DA1)
1.860	80	Lawn, HSG D (DA1)
0.640	98	Drives (DA1)
0.880	98	Paved Roadway (DA1)
0.960	98	Roof (DA1)

Summary for Subcatchment DA1: DA1

Runoff = 11.65 cfs @ 12.05 hrs, Volume= 0.718 af, Depth= 0.58"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 4.00-72.00 hrs, dt= 0.05 hrs Type II 24-hr 1 year Rainfall=2.10"

	Area	(ac)	CN	Des	cription		
*	0.	960	98	Root	F		
*	0.	640	98	Drive	es		
*	9.	210	74	Law	n, HSG C		
*	1.	860	80	Law	n, HSG D		
*	0.	880	98		ed Roadwa		
*		340	71		dow, HSG		
*	0.	<u>910</u>	78	Mea	<u>dow, HSG</u>	D	
	14.	14.800 79 Weighted Average					
	12.	320	75		4% Pervio		
	2.	480	98	16.7	6% Imperv	∕ious Area	
			_				
	Tc	Lengt		lope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	8.8	100	0.0	0400	0.19		Sheet Flow, Sheet flow
							Grass: Short n= 0.150 P2= 2.30"
	3.0	600	0.0	0500	3.35		Shallow Concentrated Flow, Lawn/vegetated swale
							Grassed Waterway Kv= 15.0 fps
	11.8	700) To	tal			

Summary for Pond 1P: Pond west

Inflow Area =	14.800 ac, 16.76% Impervious, Inflow Dept	h = 0.58" for 1 year event
Inflow =		718 af
Outflow =	0.36 cfs @ 17.20 hrs, Volume= 0.	715 af, Atten= 97%, Lag= 309.2 min
Primary =		715 af
Secondary =	0.00 cfs @ 4.00 hrs, Volume= 0.	000 af

Routing by Stor-Ind method, Time Span= 4.00-72.00 hrs, dt= 0.05 hrs Starting Elev= 468.00' Surf.Area= 5,899 sf Storage= 5,318 cf Peak Elev= 470.46' @ 17.20 hrs Surf.Area= 9,127 sf Storage= 23,640 cf (18,322 cf above start)

Plug-Flow detention time= 887.8 min calculated for 0.593 af (83% of inflow) Center-of-Mass det. time= 666.3 min (1,540.1 - 873.8)

Volume	Invert	Avail.Storage	Storage Description
#1	467.00'	51,800 cf	Custom Stage Data (Irregular) Listed below (Recalc)

pond west

Prepared by Lamoureux	& Dickinson
HydroCAD® 9.10 s/n 05471	© 2009 HydroCAD Software Solutions LLC

Page 4

Elevation Surf.Area P		Perim.	Inc.Store	Cum.Store	Wet.Area				
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>			
467.0	00	4,757	272.0	0	0	4,757			
468.0	00	5,899	298.0	5,318	5,318	5,970			
469.0	00	7,141	323.0	6,510	11,828	7,244			
470.0	00	8,484	348.0	7,803	19,631	8,621			
471.0	00	9,927	373.0	9,196	28,827	10,100			
472.0	00	11,471	398.0	10,690	39,517	11,681			
473.0	00	13,115	423.0	12,284	51,800	13,365			
					,				
Device	Routing	Inver	Outlet [Devices					
#1	Primary	468.00	' 3.0" Ve	rt. Orifice1 C= 0	.600				
#2	Primary	470.50		6.0" Horiz. Orifice					
	,			to weir flow at low					
#3	Primary	471.50		2.0" x 2.0" Horiz. Grate X 6.00 columns X 6 rows C= 0.600					
	,			Limited to weir flow at low heads					
#4	Secondar	v 470.50		g x 6.0' breadth E		ctangular Weir			
						0 1.40 1.60 1.80 2.00			
				00 3.50 4.00 4.50					
						2.67 2.65 2.65 2.65			
				66 2.66 2.67 2.69					
Primarv	Primary OutFlow Max=0.36 cfs @ 17.20 hrs HW=470.46' (Free Discharge)								

Primary OutFlow Max=0.36 cfs @ 17.20 hrs HW=470.46' (Free Discharge) -1=Orifice1 (Orifice Controls 0.36 cfs @ 7.35 fps)

-2=Orifice Box (Controls 0.00 cfs)

-3=Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 4.00 hrs HW=468.00' (Free Discharge)

Summary for Subcatchment DA1: DA1

Runoff = 62.67 cfs @ 12.04 hrs, Volume= 3.669 af, Depth= 2.97"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 4.00-72.00 hrs, dt= 0.05 hrs Type II 24-hr 100 year Rainfall=5.20"

	Area	(ac)	CN	Desc	cription		
*	0.	960	98	Root			
*	0.	640	98	Drive	es		
*	9.	210	74	Lawr	n, HSG C		
*	1.	860	80	Lawr	n, HSG D		
*	0.	880	98		ed Roadwa		
*	0.	340	71	Mea	dow, HSG	С	
*	0.	<u>910</u>	78	Mea	<u>dow, HSG</u>	D	
	14.800 79 Weighted Average					age	
	12.	320	75	83.2	4% Pervio	us Area	
	2.	480	98	16.7	6% Imperv	∕ious Area	
			-		. <i>.</i>	.	
	Tc	Length		Slope	Velocity	Capacity	Description
	(min)	(feet		(ft/ft)	(ft/sec)	(cfs)	
	8.8	100) 0.0	0400	0.19		Sheet Flow, Sheet flow
							Grass: Short n= 0.150 P2= 2.30"
	3.0	600	0.0	0500	3.35		Shallow Concentrated Flow, Lawn/vegetated swale
							Grassed Waterway Kv= 15.0 fps
	11.8	700) To	otal			

Summary for Pond 1P: Pond west

Inflow Area =	14.800 ac, 16.76% Impervious,	Inflow Depth = 2.97" for 100 year event
Inflow =	62.67 cfs @ 12.04 hrs, Volume	= 3.669 af
Outflow =	50.59 cfs @ 12.11 hrs, Volume	
Primary =	9.92 cfs @ 12.11 hrs, Volume	= 1.750 af
Secondary =	40.67 cfs @ 12.11 hrs, Volume	= 1.915 af

Routing by Stor-Ind method, Time Span= 4.00-72.00 hrs, dt= 0.05 hrs Starting Elev= 468.00' Surf.Area= 5,899 sf Storage= 5,318 cf Peak Elev= 472.37' @ 12.11 hrs Surf.Area= 12,067 sf Storage= 43,873 cf (38,556 cf above start)

Plug-Flow detention time= 198.5 min calculated for 3.544 af (97% of inflow) Center-of-Mass det. time= 168.0 min (993.1 - 825.0)

Volume	Invert	Avail.Storage	Storage Description
#1	467.00'	51,800 cf	Custom Stage Data (Irregular) Listed below (Recalc)

pond west

Prepared by Lamoureux & Dickinson	
HydroCAD® 9.10 s/n 05471 © 2009 HydroCAD Software Solutions LLC	

Printed 1/21/2015 Page 6

1 1 1 1 1 1 1		0	D					
		Perim.	Inc.Store	Cum.Store	Wet.Area			
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>		
467.0	00	4,757	272.0	0	0	4,757		
468.0	00	5,899	298.0	5,318	5,318	5,970		
469.0	00	7,141	323.0	6,510	11,828	7,244		
470.0	00	8,484	348.0	7,803	19,631	8,621		
471.(00	9,927	373.0	9,196	28,827	10,100		
472.0	00	11,471	398.0	10,690	39,517	11,681		
473.0	00	13,115	423.0	12,284	51,800	13,365		
Device	Routing	Inve	rt Outlet	Devices				
#1	Primary	468.00)' 3.0'' V	ert. Orifice1 C= 0.	600			
#2	Primary	470.50)' 18.0''	18.0" x 6.0" Horiz. Orifice Box C= 0.600				
			Limite	Limited to weir flow at low heads				
#3	Primary	471.50)' 2.0" x	2.0" x 2.0" Horiz. Grate X 6.00 columns X 6 rows C= 0.600				
			Limite	Limited to weir flow at low heads				
#4	Seconda	ry 470.50)' 6.0' lo	ng x 6.0' breadth E	road-Crested Re	ctangular Weir		
						0 1.40 1.60 1.80 2.00		
				3.00 3.50 4.00 4.50				
			Coef.	(English) 2.37 2.51	2.70 2.68 2.68	2.67 2.65 2.65 2.65		
				2.66 2.66 2.67 2.69				

Primary OutFlow Max=9.87 cfs @ 12.11 hrs HW=472.36' (Free Discharge)

-1=Orifice1 (Orifice Controls 0.49 cfs @ 9.91 fps)

-2=Orifice Box (Orifice Controls 4.92 cfs @ 6.56 fps)

-3=Grate (Orifice Controls 4.46 cfs @ 4.46 fps)

Secondary OutFlow Max=40.25 cfs @ 12.11 hrs HW=472.36' (Free Discharge)

Summary for Subcatchment DA1: DA1

Runoff = 0.16 cfs @ 12.16 hrs, Volume= 0.055 af, Depth= 0.04"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 4.00-72.00 hrs, dt= 0.05 hrs Type II 24-hr WQv Rainfall=0.90"

	Area	(ac)	CN	Desc	cription		
*	0.	960	98	Roof			
*	0.	640	98	Drive	es		
*	9.	210	74	Lawr	n, HSG C		
*	1.	860	80	Lawr	n, HSG D		
*	0.	880	98		ed Roadwa	•	
*	0.	340	71		dow, HSG		
*	0.	910	78	Mea	<u>dow, HSG</u>	D	
	14.	800	79	Weig	phted Aver	age	
	12.	320	75		4% Pervio		
	2.	480	98	16.7	6% Imperv	vious Area	
	_						
	Тс	Lengt		Slope	Velocity	Capacity	Description
	<u>(min)</u>	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	8.8	10	0 0.	.0400	0.19		Sheet Flow, Sheet flow
							Grass: Short
	3.0	60	0 0.	.0500	3.35		Shallow Concentrated Flow, Lawn/vegetated swale
							Grassed Waterway Kv= 15.0 fps
	11.8	70	0 T	otal			

Summary for Pond 1P: Pond west

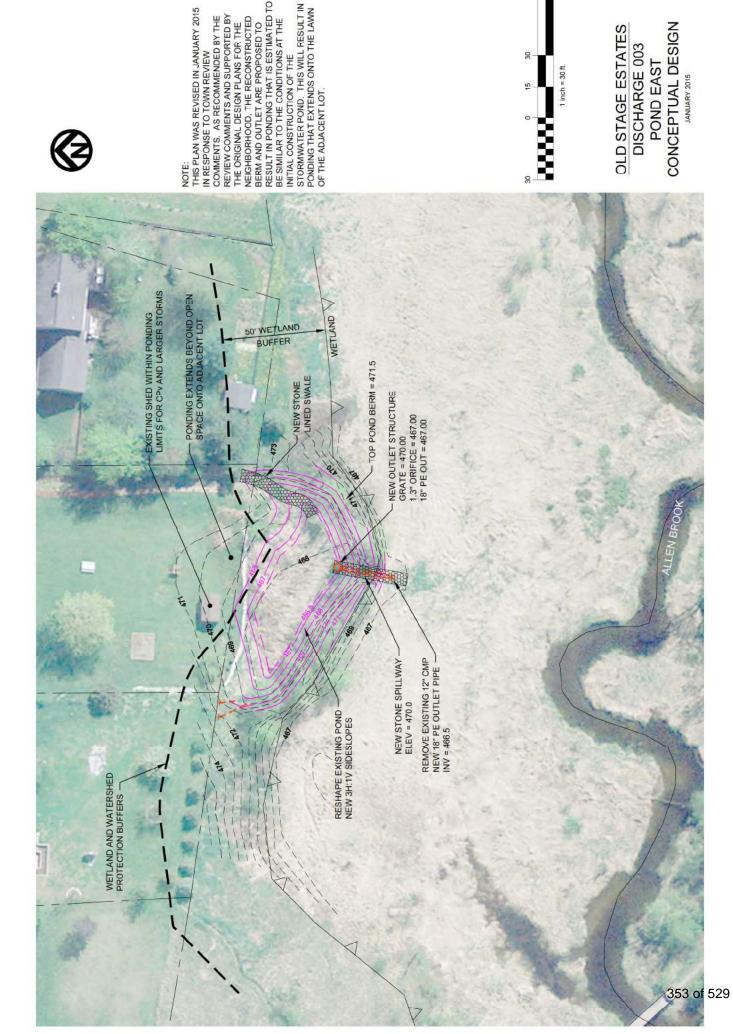
Inflow Area =	14.800 ac, 16.76% Impervious, Inflow E	Depth = 0.04" for WQv event
Inflow =	0.16 cfs @ 12.16 hrs, Volume=	0.055 af
Outflow =	0.04 cfs @ 18.58 hrs, Volume=	0.054 af, Atten= 72%, Lag= 385.0 min
Primary =	0.04 cfs @ 18.58 hrs, Volume=	0.054 af
Secondary =	0.00 cfs @ 4.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 4.00-72.00 hrs, dt= 0.05 hrs Starting Elev= 468.00' Surf.Area= 5,899 sf Storage= 5,318 cf Peak Elev= 468.16' @ 18.58 hrs Surf.Area= 6,087 sf Storage= 6,264 cf (946 cf above start)

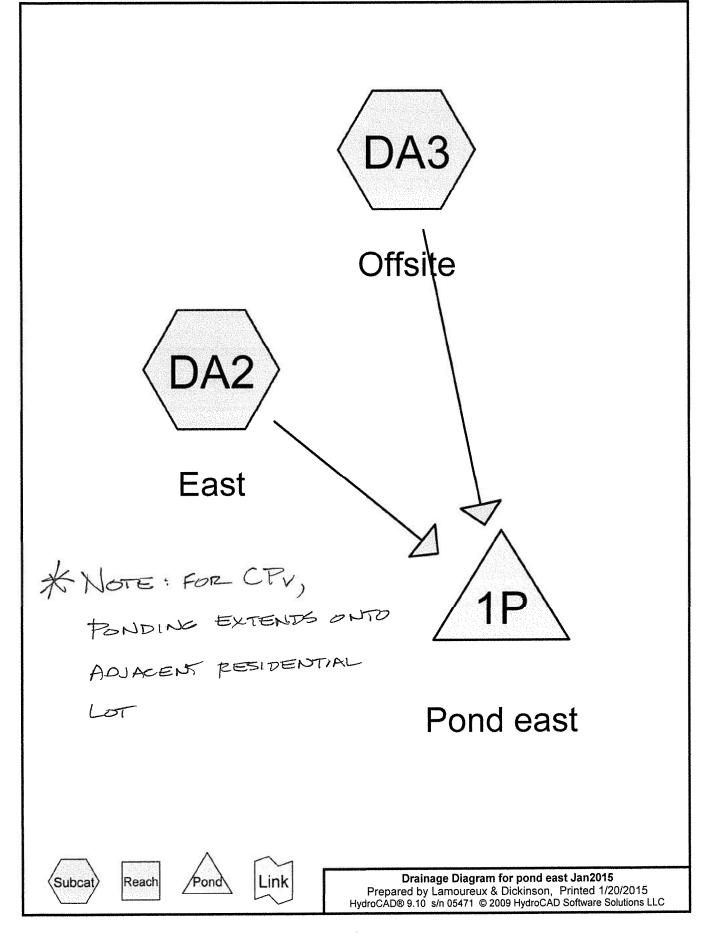
Plug-Flow detention time= (not calculated: initial storage excedes outflow) Center-of-Mass det. time= 407.5 min (1,408.5 - 1,001.0)

Volume	Invert	Avail.Storage	Storage Description
#1	467.00'	51,800 cf	Custom Stage Data (Irregular) Listed below (Recalc)

pond west


Prepared by Lamoureux	& Dickinson
HydroCAD® 9.10 s/n 05471	© 2009 HydroCAD Software Solutions LLC

Page 8


Elevation		Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)			
467.0)0	4,757	272.0	0	0	4,757			
468.0	00	5,899	298.0	5,318	5,318	5,970			
469.0)0	7,141	323.0	6,510	11,828	7,244			
470.0)0	8,484	348.0	7,803	19,631	8,621			
471.0	00	9,927	373.0	9,196	28,827	10,100			
472.0	00	11,471	398.0	10,690	39,517	11,681			
473.0)0	13,115	423.0	12,284	51,800	13,365			
Device	Routing	Inver	t Outle	t Devices					
#1	Primary	468.00	' 3.0" \	Vert. Orifice1 C= 0	.600				
#2	Primary	470.50	' 18.0''	x 6.0" Horiz. Orifice	Box C= 0.600				
	1.0		Limite	ed to weir flow at low	heads				
#3	Primary	471.50	2.0"	2.0" x 2.0" Horiz. Grate X 6.00 columns X 6 rows C= 0.600					
			Limite	ed to weir flow at low	heads				
#4	Seconda	ry 470.50	6.0' 1	ong x 6.0' breadth E	Broad-Crested Re	ctangular Weir			
			Head	(feet) 0.20 0.40 0.	60 0.80 1.00 1.2	0 1.40 1.60 1.80 2.00			
			2.50	3.00 3.50 4.00 4.5	0 5.00 5.50				
			Coef.	(English) 2.37 2.51	2.70 2.68 2.68	2.67 2.65 2.65 2.65			
	2.65 2.66 2.66 2.67 2.69 2.72 2.76 2.83								
Primarv	Primary OutFlow Max=0.04 cfs @ 18.58 hrs HW=468.16' (Free Discharge)								

Primary OutFlow Max=0.04 cfs @ 18.58 hrs HW=468.16' (Free Discharge) -1=Orifice1 (Orifice Controls 0.04 cfs @ 1.35 fps) -2=Orifice Box (Controls 0.00 cfs) -3=Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 4.00 hrs HW=468.00' (Free Discharge) -4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

REVISED JAN 2015

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
0.360	71	Meadow, HSG C (DA2)
1.132	71	Meadow, non-grazed, HSG C (DA3)
2.020	74	Lawn, HSG C (DA2)
4.730	78	Meadow, HSG D (DA2)
1.383	78	Meadow, non-grazed, HSG D (DA3)
4.210	80	Lawn, HSG D (DA2)
0.370	98	Drives (DA2)
0.570	98	Paved Roadway (DA2)
0.791	98	Unconnected roofs (DA2, DA3)

Summary for Subcatchment DA2: East

Runoff = 6.39 cfs @ 12.27 hrs, Volume= 0.662 af, Depth= 0.62"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 1 year Rainfall=2.10"

	Area	(ac)	CN	Des	cription		
*	0.	460	98	Unco	onnected r	oofs	
*	0.	370	98	Drive	es		
*	2.	020	74	Law	n, HSG C		
*		210	80	Lawı	n, HSG D		
*	0.	570	98	Pave	ed Roadwa	ау	
*	0.	360	71	Mea	dow, HSG	С	
*	4.	730	78	Mea	dow, HSG	D	
	12.720 80 Weighted Average					age	
	11.320 78 88.99% Pervious Area				9% Pervio	us Area	
	1.	400	98	11.0	1% Imperv	vious Area	
	0.	460		32.8	6% Uncon	nected	
	Tc	Length		lope	Velocity	Capacity	Description
	(min)	(feet)) (<u>ft/ft)</u>	(ft/sec)	(cfs)	
	12.8	100	0.0)400	0.13		Sheet Flow, Overland meadow
							Grass: Dense n= 0.240 P2= 2.30"
	14.5	1,000	0.0)270	1.15		Shallow Concentrated Flow, Thru meadow
							Short Grass Pasture Kv= 7.0 fps
	2.0	250	0.0)200	2.12		Shallow Concentrated Flow, Thru lawn to DI
							Grassed Waterway Kv= 15.0 fps

29.3 1,350 Total

Summary for Subcatchment DA3: Offsite

Runoff = 0.84 cfs @ 12.38 hrs, Volume= 0.111 af, Depth= 0.47"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 1 year Rainfall=2.10"

	Area (sf)	CN	Description
*	14,400	98	Unconnected roofs
	49,298	71	Meadow, non-grazed, HSG C
	60,253	78	Meadow, non-grazed, HSG D
	123,951	78	Weighted Average, UI Adjusted CN = 76
	109,551	75	88.38% Pervious Area
	14,400	98	11.62% Impervious Area
	14,400		100.00% Unconnected

pond east Jan2015

Type II 24-hr 1 year Rainfall=2.10" Printed 1/20/2015 Page 4

pond east Jan2015	Type I
Prepared by Lamoureux & Dickinson	
HydroCAD® 9.10 s/n 05471 © 2009 HydroCAD Software Solutions LLC	

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	19.8	150	0.0300	0.13		Sheet Flow, Overland lawn Grass: Dense n= 0.240 P2= 2.30"
	13.8	950	0.0270	1.15		Shallow Concentrated Flow, Thru meadow
	2.0	250	0.0200	2.12		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, Thru yard to DI Grassed Waterway Kv= 15.0 fps
-	35.6	1,350	Total			

Summary for Pond 1P: Pond east

Inflow Ar Inflow Outflow Primary Seconda	= 7 = 3 = 2	.16 cfs @ .35 cfs @ .04 cfs @	12.27 hrs, 12.64 hrs, 12.64 hrs,	ervious, Inflow D Volume= Volume= Volume= Volume=	epth = 0.60" for 0.772 af 0.772 af, Atten= 0.665 af 0.108 af	1 year event 53%, Lag= 22.4 min		
Routing by Stor-Ind method, Time Span= 1.00-120.00 hrs, dt= 0.01 hrs / 2 Starting Elev= 467.00' Surf.Area= 1,898 sf Storage= 840 cf Peak Elev= $470.17'$ @ 12.64 hrs Surf.Area= 5,744 sf Storage= 12,258 cf (11,418 cf above start) ABOVE SPICE SPICE APY Plug-Flow detention time= 710.8 min calculated for 0.753 af (98% of inflow) Center-of-Mass det. time= 675.8 min (1,564.9 - 889.1) $I_{1,3} = I_{1,3} = I_{1,3}$ Volume Invert Avail.Storage Storage Description								
#1	466.50'				a (Irregular) Listed	below (Recalc)		
Elevatio (fee 466.5 467.0 468.0 469.0 470.0 471.0 471.5	t) 10 10 10 10 10 10 10	(sq-ft) 1,471 1,898 2,861 3,964 5,509 6,987 8,120	Perim. (feet) 183.0 198.0 231.0 265.0 304.0 333.0 350.0	Inc.Store (cubic-feet) 0 840 2,363 3,398 4,715 6,233 3,773	Cum.Store (cubic-feet) 0 840 3,203 6,601 11,316 17,549 21,323	Wet.Area (sq-ft) 1,471 1,936 3,082 4,447 6,236 7,740 8,680		
Device			t Outlet					
#1 #2	Primary	467.00 470.00		ert. Orifice1 C= (0.600 X 6.00 columns X	(6 rows C = 0.600)		
#2	Primary	470.00		to weir flow at low		010WS C= 0.000		
#3	Secondary	470.00	Head (2.50 3 Coef. (8.0' long x 6.0' breadth Spillway / Broad-Crested Rect Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.37 2.51 2.70 2.68 2.68 2.67 2.65 2.65 2.65 2.65 2.66 2.66 2.67 2.69 2.72 2.76 2.83				

Primary OutFlow Max=2.05 cfs @ 12.64 hrs HW=470.17' (Free Discharge) -1=Orifice1 (Orifice Controls 0.08 cfs @ 8.50 fps) -2=Grate (Orifice Controls 1.97 cfs @ 1.97 fps)

Secondary OutFlow Max=1.30 cfs @ 12.64 hrs HW=470.17' (Free Discharge) —3=Spillway / Broad-Crested Rect Weir (Weir Controls 1.30 cfs @ 0.97 fps) Hydrograph for Pond 1P: Pond east

Time	Inflow	Storage	Elevation	Outflow	Primary	Secondary
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)	(cfs)	<u>(cfs)</u>
1.00	0.00	840	467.00	0.00	0.00	0.00
1.50	0.00	840	467.00	0.00	0.00	0.00
2.00	0.00	840	467.00	0.00	0.00	0.00
2.50	0.00	840	467.00	0.00	0.00	0.00
3.00	0.00	840	467.00	0.00	0.00	0.00
3.50	0.00	840	467.00	0.00	0.00	0.00
4.00	0.00	840	467.00	0.00	0.00	0.00
4.50	0.00	840	467.00	0.00	0.00	0.00
5.00	0.00	840 840	467.00	0.00	0.00	0.00 0.00
5.50 6.00	0.00 0.00	840	467.00 467.00	0.00 0.00	0.00 0.00	0.00
	0.00	840	467.00	0.00	0.00	0.00
6.50 7.00	0.00	840	467.00	0.00	0.00	0.00
7.50	0.00	840	467.00	0.00	0.00	0.00
8.00	0.00	840	467.00	0.00	0.00	0.00
8.50	0.00	840	467.00	0.00	0.00	0.00
9.00	0.00	840	467.00	0.00	0.00	0.00
9.00	0.00	840	467.00	0.00	0.00	0.00
10.00	0.00	840	467.00	0.00	0.00	0.00
10.00	0.00	840	467.00	0.00	0.00	0.00
11.00	0.00	840	467.00	0.00	0.00	0.00
11.50	0.00	850	467.00	0.00	0.00	0.00
12.00	2.23	1,666	467.40	0.03	0.03	0.00
12.50	4.74	11,675	470.06	1.47	1.14	0.32
13.00	1.72	11,817	470.09	1.99	1.47	0.52
13.50	1.05	11,581	470.05	1.12	0.91	0.20
14.00	0.80	11,509	470.03	0.83	0.69	0.15
14.50	0.66	11,468	470.03	0.68	0.56	0.12
15.00	0.59	11,449	470.02	0.60	0.50	0.10
15.50	0.54	11,435	470.02	0.55	0.45	0.09
16.00	0.48	11,421	470.02	0.49	0.41	0.08
16.50	0.43	11,407	470.02	0.43	0.36	0.07
17.00	0.40	11,400	470.02	0.41	0.34	0.06
17.50	0.38	11,395	470.01	0.39	0.33	0.06
18.00	0.36	11,390	470.01	0.37	0.31	0.06
18.50	0.34	11,384	470.01	0.34	0.29	0.05
19.00	0.32	11,379	470.01	0.32	0.28	0.05
19.50	0.30	11,373	470.01	0.30	0.26	0.04
20.00	0.27	11,367	470.01	0.28	0.24	0.04
20.50	0.26	11,362	470.01	0.26	0.22	0.04
21.00	0.25	11,360	470.01	0.25	0.22	0.03
21.50	0.25	11,359	470.01	0.25	0.21	0.03
22.00	0.24	11,358	470.01	0.24	0.21	0.03
22.50	0.24	11,357	470.01	0.24	0.21	0.03
23.00	0.23	11,356	470.01	0.23	0.20	0.03
23.50	0.23	11,355	470.01	0.23	0.20	0.03
24.00	0.23	11,354	470.01	0.23	0.20	0.03
24.50	0.08	11,325	470.00	0.11	0.10	0.01
25.00	0.01	11,237	469.99	0.08	0.08	0.00
25.50	0.00	11,105	469.96	0.08	0.08	0.00 0.00
26.00	0.00	10,969	469.94	0.08	0.08	0.00
26.50	0.00	10,834	469.91	0.08	0.08	0.00

FOR 1.3" ORIFICE

Time	Inflow	Storage	Elevation	Outflow	Primary	Secondary
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)	(cfs)	(cfs)
27.00 27.50	0.00	10,699	469.89	0.07	0.07	0.00
28.00	0.00 0.00	10,565 10,432	469.86 469.84	0.07 0.07	0.07 0.07	0.00 0.00
28.50	0.00	10,432	469.84	0.07	0.07	0.00
29.00	0.00	10,255	469.78	0.07	0.07	0.00
29.50	0.00	10,035	469.76	0.07	0.07	0.00
30.00	0.00	9,904	469.73	0.07	0.07	0.00
30.50	0.00	9,773	469.71	0.07	0.07	0.00
31.00	0.00	9,643	469.68	0.07	0.07	0.00
31.50	0.00	9,514	469.66	0.07	0.07	0.00
32.00	0.00	9,386	469.63	0.07	0.07	0.00
32.50	0.00	9,258	469.60	0.07	0.07	0.00
33.00	0.00	9,131	469.58	0.07	0.07	0.00
33.50	0.00	9,004	469.55	0.07	0.07	0.00
34.00	0.00	8,878	469.52	0.07	0.07	0.00
34.50	0.00	8,753	469.50	0.07	0.07	0.00
35.00	0.00	8,629	469.47	0.07	0.07	0.00
35.50	0.00	8,505	469.44	0.07	0.07	0.00
36.00	0.00	8,382	469.42	0.07	0.07	0.00
36.50	0.00	8,259	469.39	0.07	0.07	0.00
37.00 37.50	0.00 0.00	8,137 8,016	469.36	0.07	0.07	0.00
38.00	0.00	7,896	469.34 469.31	0.07 0.07	0.07 0.07	0.00 0.00
38.50	0.00	7,030	469.28	0.07	0.07	0.00
39.00	0.00	7,657	469.25	0.07	0.07	0.00
39.50	0.00	7,539	469.23	0.07	0.07	0.00
40.00	0.00	7,422	469.20	0.07	0.07	0.00
40.50	0.00	7,305	469.17	0.06	0.06	0.00
41.00	0.00	7,189	469.14	0.06	0.06	0.00
41.50	0.00	7,074	469.12	0.06	0.06	0.00
42.00	0.00	6,960	469.09	0.06	0.06	0.00
42.50	0.00	6,846	469.06	0.06	0.06	0.00
43.00	0.00	6,734	469.03	0.06	0.06	0.00
43.50	0.00	6,622	469.01	0.06	0.06	0.00
44.00	0.00	6,510	468.98	0.06	0.06	0.00
44.50	0.00	6,400	468.95	0.06	0.06	0.00
45.00 45.50	0.00	6,290	468.92	0.06	0.06	0.00
45.50 46.00	0.00 0.00	6,182 6,074	468.89	0.06	0.06	0.00
46.50	0.00	5,967	468.86 468.84	0.06 0.06	0.06 0.06	0.00 0.00
47.00	0.00	5,861	468.81	0.06	0.06	0.00
47.50	0.00	5,755	468.78	0.06	0.00	0.00
48.00	0.00	5,651	468.75	0.06	0.06	0.00
48.50	0.00	5,547	468.72	0.06	0.06	0.00
49.00	0.00	5,444	468.69	0.06	0.06	0.00
49.50	0.00	5,342	468.67	0.06	0.06	0.00
50.00	0.00	5,241	468.64	0.06	0.06	0.00
50.50	0.00	5,141	468.61	0.06	0.06	0.00
51.00	0.00	5,042	468.58	0.05	0.05	0.00
51.50	0.00	4,944	468.55	0.05	0.05	0.00
52.00	0.00	4,847	468.52	0.05	0.05	0.00
52.50	0.00	4,750	468.50	0.05	0.05	0.00

Time	Inflow	Storage	Elevation	Outflow	Primary	Secondary
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)	(cfs)	(cfs)
53.00	0.00	4,655	468.47	0.05	0.05	0.00
53.50	0.00	4,560	468.44	0.05	0.05	0.00
54.00	0.00	4,467	468.41	0.05	0.05	0.00
54.50 55.00	0.00	4,374	468.38	0.05	0.05	0.00
55.50	0.00 0.00	4,283 4,192	468.35	0.05	0.05	0.00
56.00	0.00	4,192	468.33 468.30	0.05 0.05	0.05 0.05	0.00
56.50	0.00	4,102	468.27	0.05	0.05	0.00 0.00
57.00	0.00	3,926	468.24	0.05	0.05	0.00
57.50	0.00	3,840	468.21	0.05	0.05	0.00
58.00	0.00	3,754	468.19	0.05	0.05	0.00
58.50	0.00	3,670	468.16	0.05	0.05	0.00
59.00	0.00	3,586	468.13	0.05	0.05	0.00
59.50	0.00	3,504	468.10	0.05	0.05	0.00
60.00	0.00	3,423	468.08	0.04	0.04	0.00
60.50	0.00	3,342	468.05	0.04	0.04	0.00
61.00	0.00	3,263	468.02	0.04	0.04	0.00
61.50	0.00	3,185	467.99	0.04	0.04	0.00
62.00	0.00	3,109	467.97	0.04	0.04	0.00
62.50	0.00	3,033	467.94	0.04	0.04	0.00
63.00 63.50	0.00 0.00	2,958 2,885	467.91 467.89	0.04	0.04	0.00
64.00	0.00	2,005 2,812	467.89	0.04 0.04	0.04 0.04	0.00
64.50	0.00	2,741	467.83	0.04	0.04	0.00 0.00
65.00	0.00	2,671	467.81	0.04	0.04	0.00
65.50	0.00	2,603	467.78	0.04	0.04	0.00
66.00	0.00	2,535	467.76	0.04	0.04	0.00
66.50	0.00	2,469	467.73	0.04	0.04	0.00
67.00	0.00	2,404	467.70	0.04	0.04	0.00
67.50	0.00	2,340	467.68	0.04	0.04	0.00
68.00	0.00	2,278	467.65	0.03	0.03	0.00
68.50	0.00	2,216	467.63	0.03	0.03	0.00
69.00	0.00	2,156	467.61	0.03	0.03	0.00
69.50	0.00	2,098	467.58	0.03	0.03	0.00
70.00 70.50	0.00 0.00	2,040	467.56	0.03	0.03	0.00
70.50	0.00	1,984 1,929	467.53 467.51	0.03 0.03	0.03	0.00
71.50	0.00	1,876	467.49	0.03	0.03 0.03	0.00 0.00
72.00	0.00	1,824	467.47	0.03	0.03	0.00
72.50	0.00	1,773	467.45	0.03	0.03	0.00
73.00	0.00	1,724	467.42	0.03	0.03	0.00
73.50	0.00	1,676	467.40	0.03	0.03	0.00
74.00	0.00	1,630	467.38	0.03	0.03	0.00
74.50	0.00	1,585	467.36	0.02	0.02	0.00
75.00	0.00	1,541	467.34	0.02	0.02	0.00
75.50	0.00	1,499	467.32	0.02	0.02	0.00
76.00	0.00	1,459	467.30	0.02	0.02	0.00
76.50	0.00	1,419	467.29	0.02	0.02	0.00
77.00	0.00	1,382	467.27	0.02	0.02	0.00
77.50 78.00	0.00 0.00	1,346 1,311	467.25 467.24	0.02 0.02	0.02	0.00
78.50	0.00	1,278	467.24	0.02	0.02 0.02	0.00 0.00
10.00	0.00	1,270	707.22	0.02	0.02	0.00

Time	Inflow	Storage	Elevation	Outflow	Primary	Secondary
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)	(cfs)	(cfs)
79.00	0.00	1,246	467.20	0.02	0.02	0.00
79.50	0.00	1,216	467.19	0.02	0.02	0.00
80.00	0.00	1,187	467.18	0.02	0.02	0.00
80.50	0.00	1,160	467.16	0.01	0.01	0.00
81.00	0.00	1,135	467.15	0.01	0.01	0.00
81.50	0.00	1,111	467.14	0.01	0.01	0.00
82.00	0.00	1,089	467.13	0.01	0.01	0.00
82.50	0.00	1,068	467.12	0.01	0.01	0.00
83.00	0.00	1,049	467.11	0.01	0.01	0.00
83.50	0.00	1,032	467.10	0.01	0.01	0.00
84.00	0.00	1,016	467.09	0.01	0.01	0.00
84.50 85.00	0.00 0.00	1,001 989	467.08 467.08	0.01	0.01	0.00
85.50	0.00	989 978	467.08	0.01 0.01	0.01 0.01	0.00
86.00	0.00	978	467.07	0.01	0.01	0.00 0.00
86.50	0.00	959	467.06	0.00	0.00	0.00
87.00	0.00	951	467.06	0.00	0.00	0.00
87.50	0.00	944	467.05	0.00	0.00	0.00
88.00	0.00	938	467.05	0.00	0.00	0.00
88.50	0.00	932	467.05	0.00	0.00	0.00
89.00	0.00	927	467.05	0.00	0.00	0.00
89.50	0.00	922	467.04	0.00	0.00	0.00
90.00	0.00	917	467.04	0.00	0.00	0.00
90.50	0.00	912	467.04	0.00	0.00	0.00
91.00	0.00	908	467.04	0.00	0.00	0.00
91.50	0.00	904	467.03	0.00	0.00	0.00
92.00	0.00	901	467.03	0.00	0.00	0.00
92.50	0.00	897	467.03	0.00	0.00	0.00
93.00	0.00	894	467.03	0.00	0.00	0.00
93.50	0.00	891	467.03	0.00	0.00	0.00
94.00	0.00	888	467.02	0.00	0.00	0.00
94.50	0.00	885	467.02	0.00	0.00	0.00
95.00	0.00	882	467.02	0.00	0.00	0.00
95.50	0.00	880	467.02	0.00	0.00	0.00
96.00	0.00	878	467.02	0.00	0.00	0.00
96.50 97.00	0.00 0.00	876 874	467.02 467.02	0.00 0.00	0.00 0.00	0.00
97.50 97.50	0.00	874	467.02	0.00	0.00	0.00 0.00
98.00	0.00	870	467.02	0.00	0.00	0.00
98.50	0.00	868	467.02	0.00	0.00	0.00
99.00	0.00	866	467.01	0.00	0.00	0.00
99.50	0.00	865	467.01	0.00	0.00	0.00
100.00	0.00	863	467.01	0.00	0.00	0.00
100.50	0.00	862	467.01	0.00	0.00	0.00
101.00	0.00	861	467.01	0.00	0.00	0.00
101.50	0.00	860	467.01	0.00	0.00	0.00
102.00	0.00	858	467.01	0.00	0.00	0.00
102.50	0.00	857	467.01	0.00	0.00	0.00
103.00	0.00	856	467.01	0.00	0.00	0.00
103.50	0.00	855	467.01	0.00	0.00	0.00
104.00	0.00	855	467.01	0.00	0.00	0.00
104.50	0.00	854	467.01	0.00	0.00	0.00

Time	Inflow	Storage	Elevation	Outflow	Primary	Secondary
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)	(cfs)	(cfs)
105.00	0.00	853	467.01	0.00	0.00	0.00
105.50	0.00	852	467.01	0.00	0.00	0.00
106.00	0.00	852	467.01	0.00	0.00	0.00
106.50	0.00	851	467.01	0.00	0.00	0.00
107.00	0.00	850	467.01	0.00	0.00	0.00
107.50	0.00	850	467.01	0.00	0.00	0.00
108.00	0.00	849	467.00	0.00	0.00	0.00
108.50	0.00	849	467.00	0.00	0.00	0.00
109.00	0.00	848	467.00	0.00	0.00	0.00
109.50	0.00	848	467.00	0.00	0.00	0.00
110.00	0.00	847	467.00	0.00	0.00	0.00
110.50	0.00	847	467.00	0.00	0.00	0.00
111.00	0.00	846	467.00	0.00	0.00	0.00
111.50	0.00	846	467.00	0.00	0.00	0.00
112.00	0.00	846	467.00	0.00	0.00	0.00
112.50	0.00	845	467.00	0.00	0.00	0.00
113.00	0.00	845	467.00	0.00	0.00	0.00
113.50	0.00	845	467.00	0.00	0.00	0.00
114.00	0.00	844	467.00	0.00	0.00	0.00
114.50	0.00	844	467.00	0.00	0.00	0.00
115.00	0.00	844	467.00	0.00	0.00	0.00
115.50	0.00	844	467.00	0.00	0.00	0.00
116.00	0.00	843	467.00	0.00	0.00	0.00
116.50	0.00	843	467.00	0.00	0.00	0.00
117.00	0.00	843	467.00	0.00	0.00	0.00
117.50	0.00	843	467.00	0.00	0.00	0.00
118.00	0.00	843	467.00	0.00	0.00	0.00
118.50	0.00	843	467.00	0.00	0.00	0.00
119.00	0.00	842	467.00	0.00	0.00	0.00
119.50	0.00	842	467.00	0.00	0.00	0.00
120.00	0.00	842	467.00	0.00	0.00	0.00

Summary for Subcatchment DA2: East

Runoff = 34.40 cfs @ 12.24 hrs, Volume= 3.252 af, Depth= 3.07"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 100 year Rainfall=5.20"

	Area	(ac)	CN	Desc	cription		
*	0.	460	98	Unco	onnected r	oofs	
*	0.	370	98	Drive	es		
*	2.	020	74	Lawı	n, HSG C		
*	4.	210	80	Lawı	n, HSG D		
*	0.	570	98	Pave	ed Roadwa	ıy	
*	0.	360	71	Mea	dow, HSG	Ċ	
*	4.	730	78	Mea	dow, HSG	D	
	12.	720	80	Weid	hted Aver	aqe	
	11.	320	78		9% Pervio	•	
	1.	400	98	11.0	1% Imperv	ious Area	
	0.	460		32.8	6% Uncon	nected	
	Tc	Lengtl	n S	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	12.8	10) ().	0400	0.13		Sheet Flow, Overland meadow
							Grass: Dense n= 0.240 P2= 2.30"
	14.5	1,000	0.	0270	1.15		Shallow Concentrated Flow, Thru meadow
							Short Grass Pasture Kv= 7.0 fps
	2.0	25	0.	0200	2.12		Shallow Concentrated Flow, Thru lawn to DI
							Grassed Waterway Kv= 15.0 fps
	29.3	1,350) To	otal			

Summary for Subcatchment DA3: Offsite

Runoff = 5.93 cfs @ 12.30 hrs, Volume= 0.641 af, Depth= 2.70"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 100 year Rainfall=5.20"

	Area (sf)	CN	Description
*	14,400	98	Unconnected roofs
	49,298	71	Meadow, non-grazed, HSG C
	60,253	78	Meadow, non-grazed, HSG D
	123,951	78	Weighted Average, UI Adjusted CN = 76
	109,551	75	88.38% Pervious Area
	14,400	98	11.62% Impervious Area
	14,400		100.00% Unconnected

pond east Jan2015TypePrepared by Lamoureux & DickinsonHydroCAD® 9.10s/n 05471© 2009 HydroCAD Software Solutions LLC

Type II 24-hr 100 year Rainfall=5.20" Printed 1/20/2015 C Page 10

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	19.8	150	0.0300	0.13		Sheet Flow, Overland lawn
	13.8	950	0.0270	1,15		Grass: Dense n= 0.240 P2= 2.30" Shallow Concentrated Flow, Thru meadow
		0.510	1997-1997 - 19			Short Grass Pasture Kv= 7.0 fps
	2.0	250	0.0200	2.12		Shallow Concentrated Flow, Thru yard to Dl Grassed Waterway Kv= 15.0 fps
-	35.6	1,350	Total			

Summary for Pond 1P: Pond east

Inflow Area =	15.566 ac, 11.12% Impervious, Inflow Depth = 3.00" for 100 ye	ar event
Inflow =	39.99 cfs @ 12.24 hrs, Volume= 3.893 af	
Outflow =	38.62 cfs @ 12.30 hrs, Volume= 3.893 af, Atten= 3%, Lag	g= 3.5 min
Primary =	5.67 cfs @ 12.30 hrs, Volume= 1.789 af	
Secondary =	32.95 cfs @ 12.30 hrs, Volume= 2.104 af	

Routing by Stor-Ind method, Time Span= 1.00-120.00 hrs, dt= 0.01 hrs / 2 Starting Elev= 467.00' Surf.Area= 1,898 sf Storage= 840 cf Peak Elev= 471.34' @ 12.30 hrs Surf.Area= 7,748 sf Storage= 20,052 cf (19,212 cf above start)

Plug-Flow detention time= 148.4 min calculated for 3.873 af (99% of inflow) Center-of-Mass det. time= 144.0 min (985.3 - 841.3)

Volume	Invert	Avail.S	torage	Storage Description		
#1	466.50'	21	323 cf	Custom Stage Data	a (Irregular) Listed	below (Recalc)
Elevatio (fee		rf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
466.5		1,471	183.0	0	0	1,471
467.0		1,898	198.0	840	840	1,936
468.0	00	2,861	231.0	2,363	3,203	3,082
469.0	00	3,964	265.0	3,398	6,601	4,447
470.0	00	5,509	304.0	4,715	11,316	6,236
471.0	00	6,987	333.0	6,233	17,549	7,740
471.5	50	8,120	350.0	3,773	21,323	8,680
Device	Routing	Inve	rt Outle	et Devices		
#1	Primary	467.00)' 1.3"	Vert. Orifice1 C= (0.600	
#2	Primary	470.00	D' 2.0''	x 2.0" Horiz. Grate 2	X 6.00 columns X	6 rows C= 0.600
	·		Limi	ted to weir flow at lov	v heads	
#3	Secondary	470.00	Hea 2.50 Coet	3.00 3.50 4.00 4.).60 0.80 1.00 1.2 50 5.00 5.50 1 2.70 2.68 2.68	20 1.40 1.60 1.80 2.00 2.67 2.65 2.65 2.65

Primary OutFlow Max=5.67 cfs @ 12.30 hrs HW=471.34' (Free Discharge) -1=Orifice1 (Orifice Controls 0.09 cfs @ 9.97 fps) -2=Grate (Orifice Controls 5.57 cfs @ 5.57 fps)

Secondary OutFlow Max=32.95 cfs @ 12.30 hrs HW=471.34' (Free Discharge) —3=Spillway / Broad-Crested Rect Weir (Weir Controls 32.95 cfs @ 3.07 fps)

Summary for Subcatchment DA2: East

Runoff = 0.18 cfs @ 12.46 hrs, Volume= 0.058 af, Depth= 0.06"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr WQv Rainfall=0.90"

	•					
	Area	(ac)	<u>CN Des</u>	cription		
*	0.	.460	98 Unc	onnected i	roofs	
*	0.	.370	98 Driv	/es		
*	2.	.020	74 Law	n, HSG C		
*	4.	210		n, HSG D		
*	0.	.570		ed Roadwa	av	
*	0.	.360		adow, HSG		
*	4.	730		dow, HSG		
	12	720		ghted Ave		
		.320		9% Pervio		
		400			vious Area	
		460		36% Uncon		
	0.	400	52.0		mecteu	
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	•	(ft/sec)	(cfs)	Description
					(013)	
	12.8	100	0.0400	0.13		Sheet Flow, Overland meadow
						Grass: Dense n= 0.240 P2= 2.30"
	14.5	1,000	0.0270	1.15		Shallow Concentrated Flow, Thru meadow
						Short Grass Pasture Kv= 7.0 fps
	2.0	250	0.0200	2.12		Shallow Concentrated Flow, Thru lawn to DI
						Grassed Waterway Kv= 15.0 fps
	20.2	1 250	Total			

29.3 1,350 Total

Summary for Subcatchment DA3: Offsite

Runoff = 0.01 cfs @ 14.04 hrs, Volume= 0.005 af, Depth= 0.02"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr WQv Rainfall=0.90"

	Area (sf)	CN	Description
*	14,400	98	Unconnected roofs
	49,298	71	Meadow, non-grazed, HSG C
	60,253	78	Meadow, non-grazed, HSG D
	123,951	78	Weighted Average, UI Adjusted CN = 76
	109,551	75	88.38% Pervious Area
	14,400	98	11.62% Impervious Area
	14,400		100.00% Unconnected

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
19.8	150	0.0300	0.13		Sheet Flow, Overland lawn
					Grass: Dense n= 0.240 P2= 2.30"
13.8	950	0.0270	1.15		Shallow Concentrated Flow, Thru meadow
					Short Grass Pasture Kv= 7.0 fps
2.0	250	0.0200	2.12		Shallow Concentrated Flow, Thru yard to DI
					Grassed Waterway Kv= 15.0 fps

35.6 1,350 Total

Summary for Pond 1P: Pond east

Inflow Area =	15.566 ac, 11.12% Impervious, Inflow Depth = 0.05" for WQv event
Inflow =	0.18 cfs @ 12.46 hrs, Volume= 0.063 af
Outflow =	0.03 cfs @ 24.20 hrs, Volume= 0.063 af, Atten= 80%, Lag= 704.2 min
Primary =	0.03 cfs @ 24.20 hrs, Volume= 0.063 af
Secondary =	0.00 cfs @ 1.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 1.00-120.00 hrs, dt= 0.01 hrs / 2 Starting Elev= 467.00' Surf.Area= 1,898 sf Storage= 840 cf Peak Elev= 467.66' @ 24.20 hrs Surf.Area= 2,508 sf Storage= 2,283 cf (1,443 cf above start)

Plug-Flow detention time= 939.7 min calculated for 0.044 af (70% of inflow) Center-of-Mass det. time= 571.2 min (1,577.6 - 1,006.4)

Volume	Invei	rt Avail.S	Storage	Storage Descripti	on		
#1	466.50	D' 21	,323 cf	Custom Stage D	ata (Irregular) List	ted below (Recalc)	
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
466.5 467.0 468.0 469.0 470.0 471.0 471.5	50 00 00 00 00 00 00	1,471 1,898 2,861 3,964 5,509 6,987 8,120	183.0 198.0 231.0 265.0 304.0 333.0 350.0	0 840 2,363 3,398 4,715 6,233 3,773	0 840 3,203 6,601 11,316 17,549 21,323	1,471 1,936 3,082 4,447 6,236 7,740 8,680	
Device	Routing	Inve		et Devices	21,020	0,000	
#1 #2 #3	Primary Primary Secondary	467.0 470.0 y 470.0	0' 2.0'' Limit 0' 8.0' I Head 2.50 Coef	1.3" Vert. Orifice1 C= 0.600 2.0" x 2.0" Horiz. Grate X 6.00 columns X 6 rows C= 0.600 Limited to weir flow at low heads 8.0' long x 6.0' breadth Spillway / Broad-Crested Rect Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.37 2.51 2.70 2.68 2.68 2.67 2.65 2.65 2.65 2.65 2.66 2.66 2.67 2.69 2.72 2.76 2.83			

Type II 24-hr WQv Rainfall=0.90" Printed 1/21/2015 Page 4 Primary OutFlow Max=0.03 cfs @ 24.20 hrs HW=467.66' (Free Discharge) -1=Orifice1 (Orifice Controls 0.03 cfs @ 3.74 fps) -2=Grate (Controls 0.00 cfs)

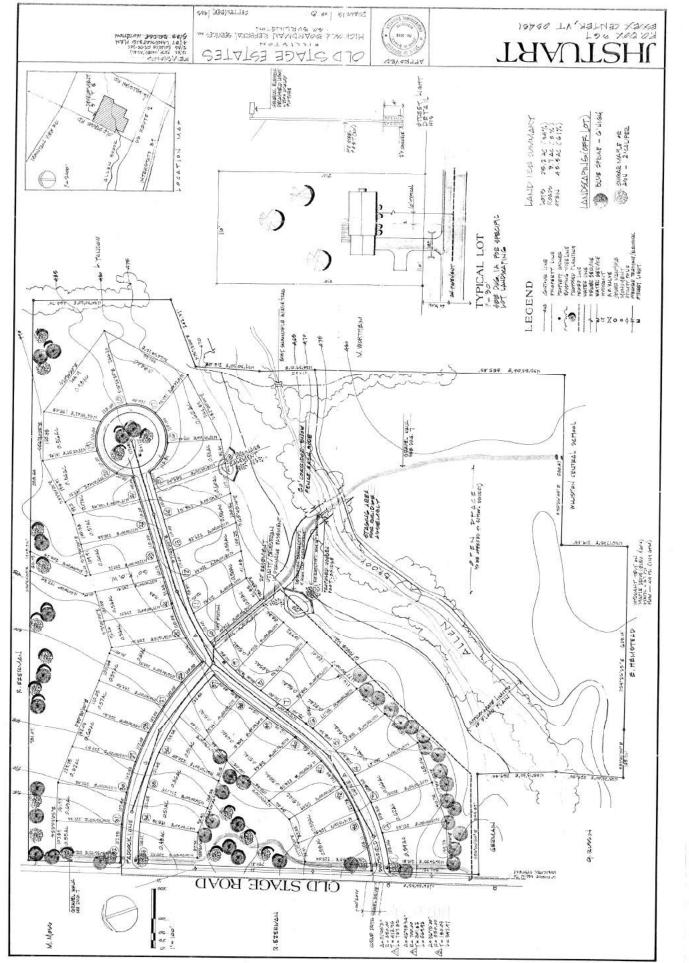
Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=467.00' (Free Discharge) -3=Spillway / Broad-Crested Rect Weir (Controls 0.00 cfs)

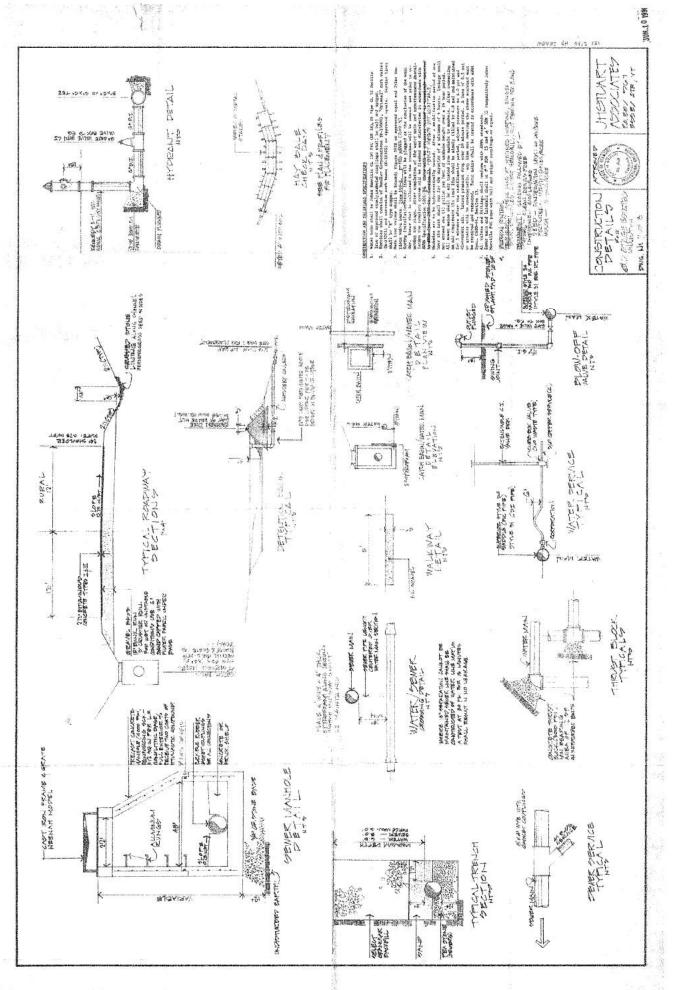
Old Stage Estates

Stormwater Pond East Modeling Results - modified stormwater pond January 2015

		Channel Protection Volume	on Volume	
Orifice size	Routed Peak Q (cfs)	Peak elev. (feet)	Detention (hrs)	Pond drain duration (hr)
1	3.37	470.17	15.5	< 120
1.3"	3.35	470.17	11.3	83.5
1.5"	3.34	470.17	9.4	69.0
2"	3.31	470.16	7.0	50.5
3"	3.22	470.14	4.5	35.0
4"	3.09	470.11	2.7	28.0
6"	2.49	470.04	1.2	26.0
7"	2.08	469.90	0.9	25.50

Notes:

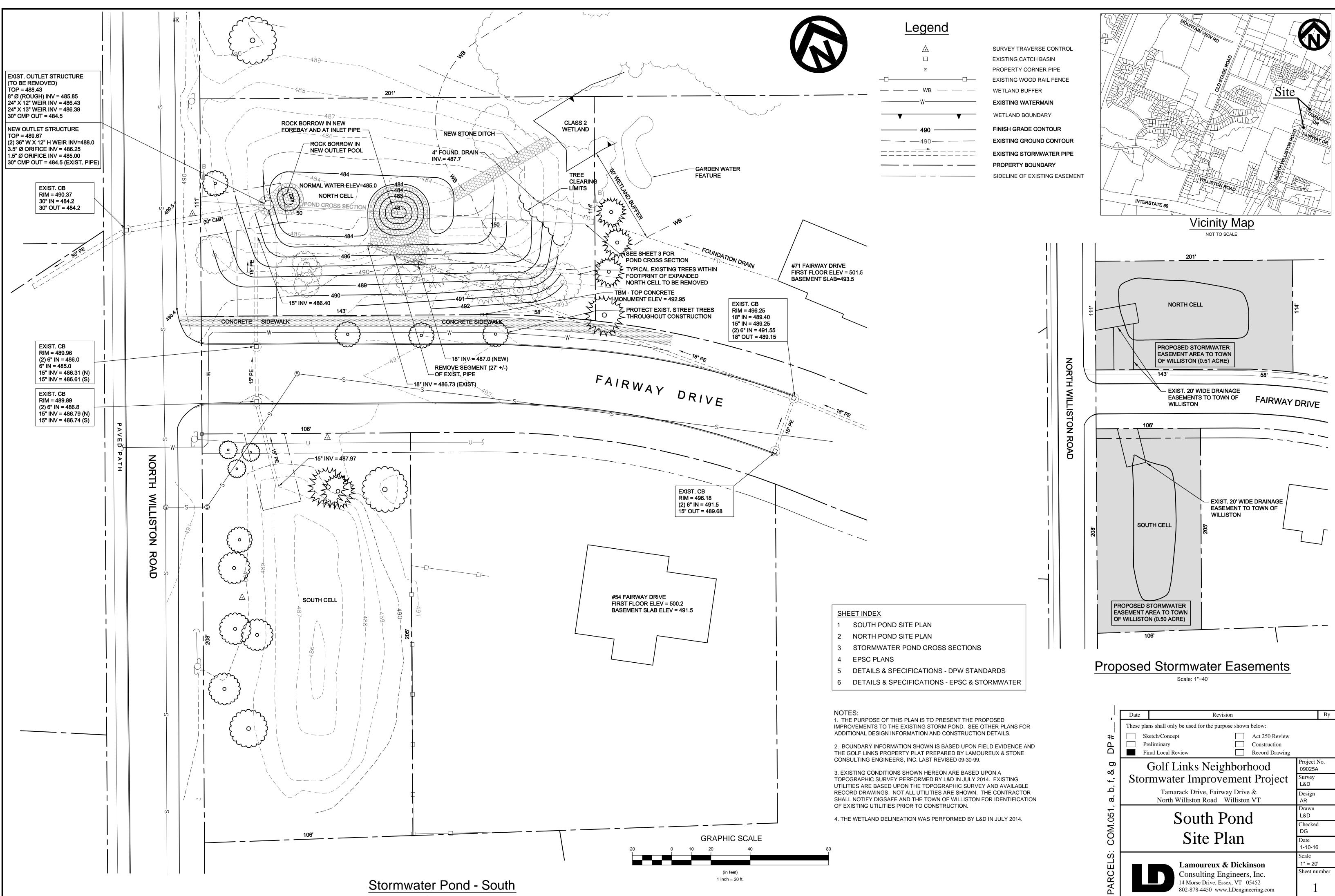

1 I.

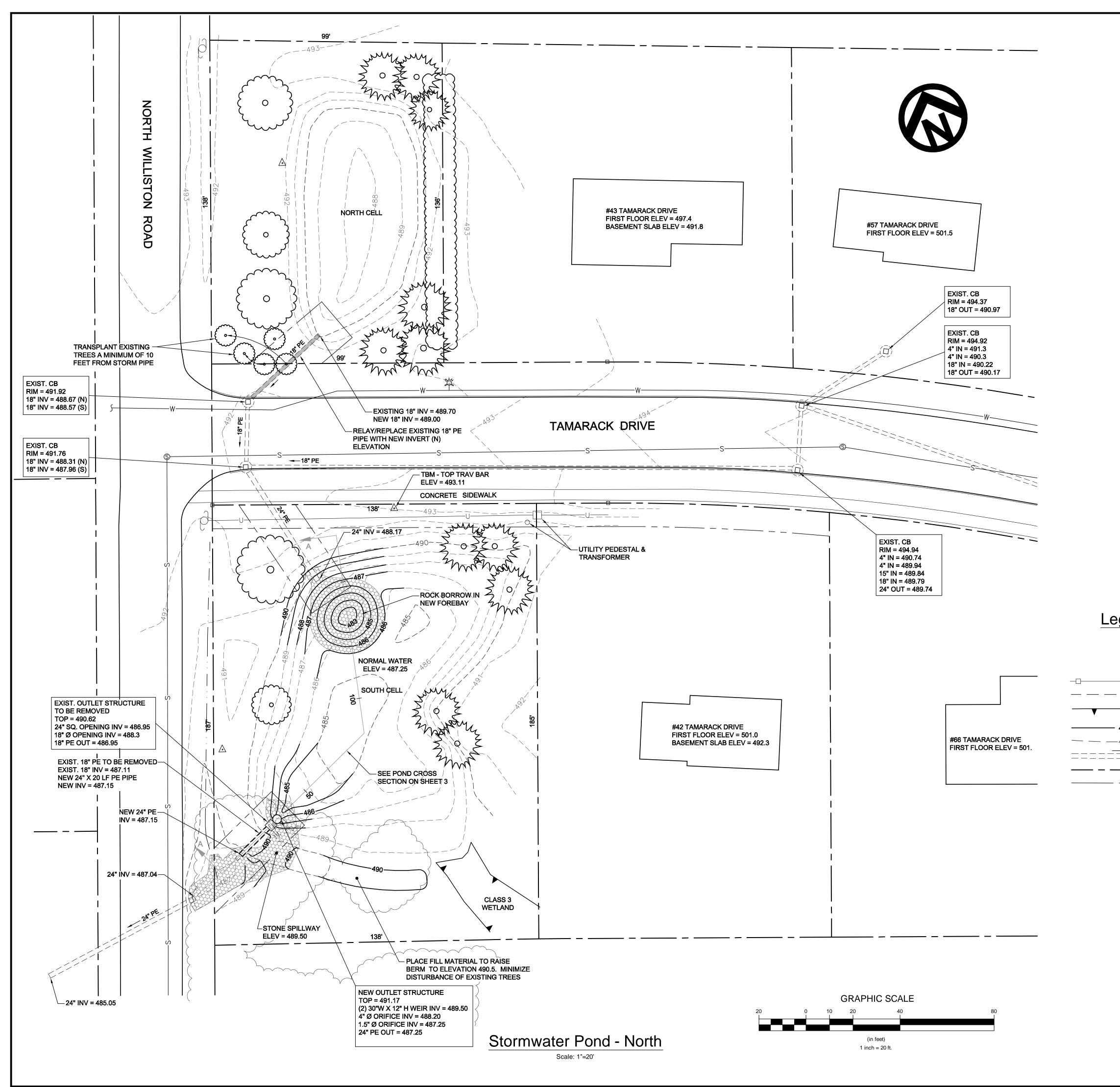

- Detention is the center of mass detention time Pond drain duration is the time in hours for the ponding depth to be less than 0.1' above the lowest outlet

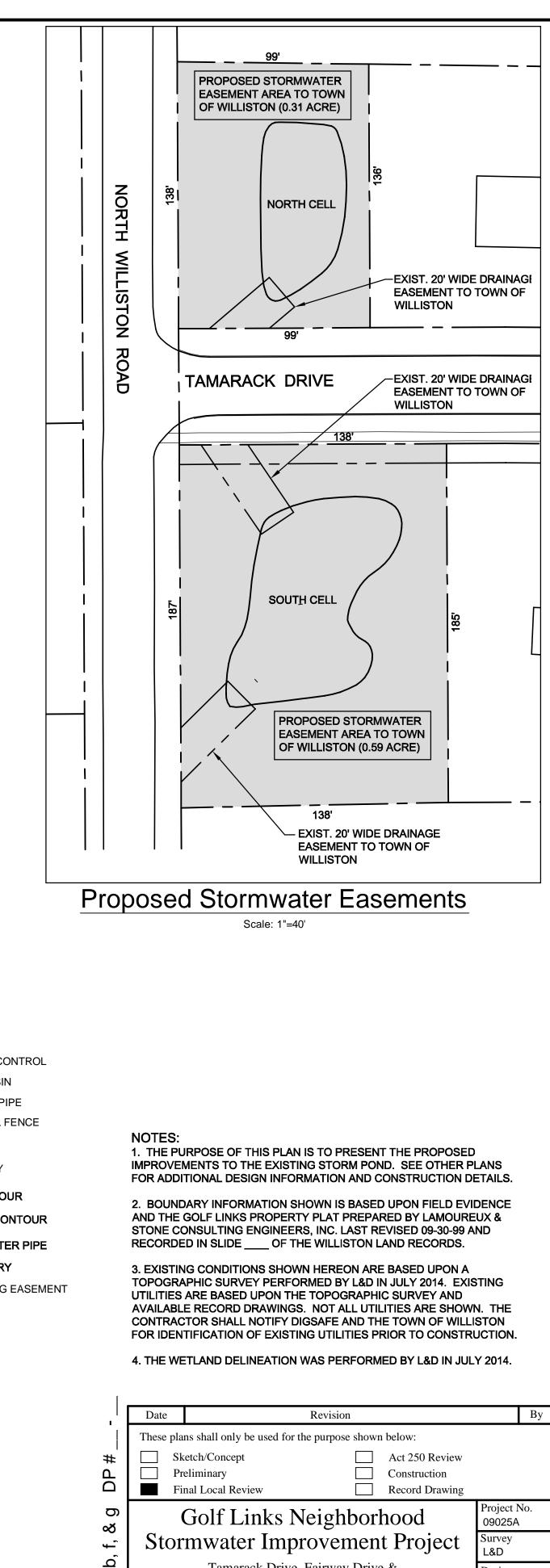
Outlet Summary

467.00	470.00	470.00
Orifice invert	Grate	Spillway

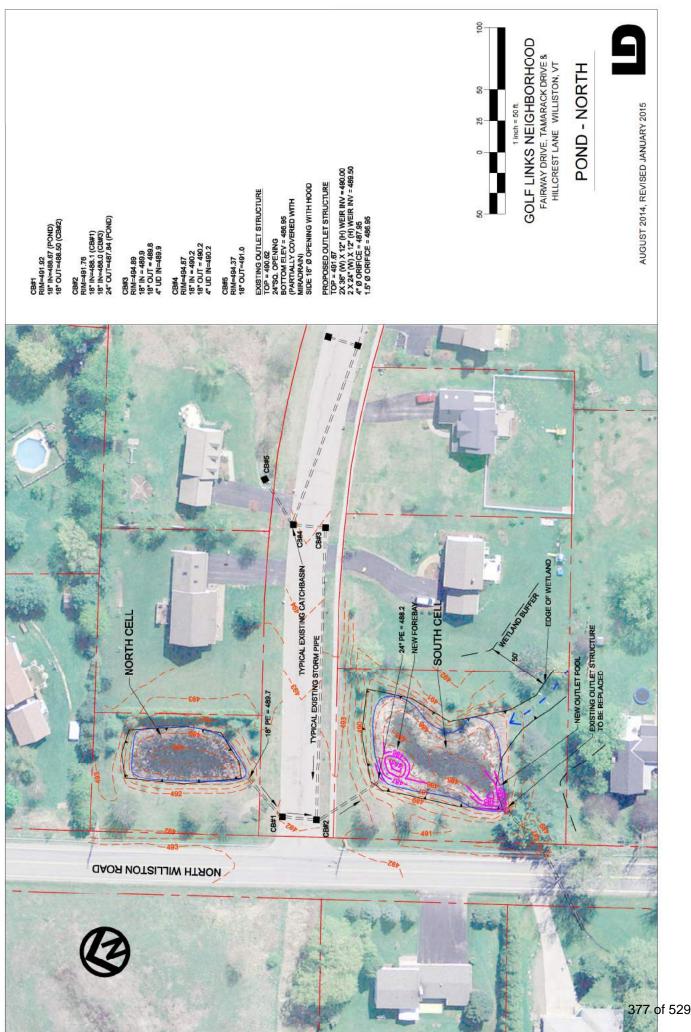
P:\2014\14065\Stormwater\Pond East CPv results.wpd

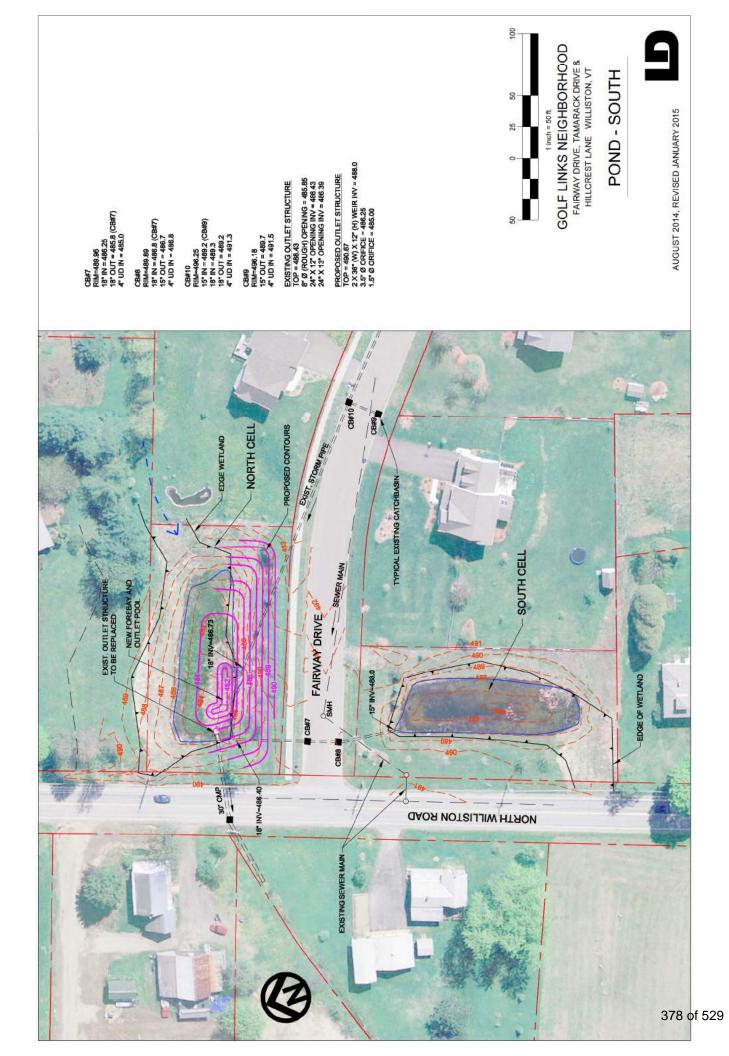





GOLF LINKS: PERMIT 2-1180

Scale: 1"=20'

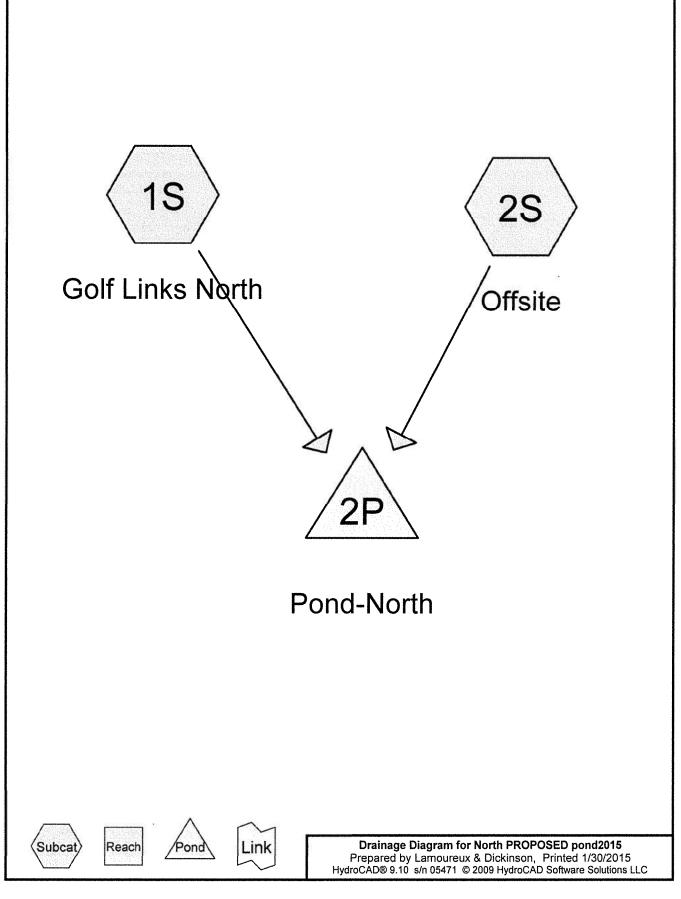

Legend


\triangle		
		<u> </u>
WB	 	·
	 V	
490		
490-	 	

SURVEY TRAVERSE CONTROL EXISTING CATCH BASIN PROPERTY CORNER PIPE EXISTING WOOD RAIL FENCE WETLAND BUFFER WETLAND BOUNDARY FINISH GRADE CONTOUR EXISTING GROUND CONTOUR

PROPERTY BOUNDARY SIDELINE OF EXISTING EASEMENT

•	Date		By
	These plat		
DP	Fin Fin		
PARCELS: COM.051, a, b, f, & g		Project 2 09025A	
	Stor	Survey L&D	
		Design AR	
		Drawn L&D	
		Checked DG	1
		Date 1-10-16	
		Scale 1" = 20'	
	Consulting Engineers, Inc. 14 Morse Drive, Essex, VT 05452 802-878-4450 www.LDengineering.com		



Stormwater Engineering Feasibility Analysis (EFA)

Attachment 7 Pond North - HydroCad calculations

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
0.330	30	Meadow, non-grazed, HSG A (2S)
1.030	58	Meadow, non-grazed, HSG B (2S)
1.380	70	Woods, Good, HSG C (1S)
2.880	71	Meadow, non-grazed, HSG C (2S)
10.880	74	>75% Grass cover, Good, HSG C (1S)
0.850	98	Drives (1S)
1.020	98	Rooftop (1S)
1.590	98	Streets (1S)

Version: 9/06

For the area draining to*: North Pond Located in drainage area for S/N: North

North Pond

WQ Volume Calculation for Volume-Based Practice

Use this worksheet to calculate the water quality volume draining to your volume based STP if you are not using any of the site design credits in section 3 of the 2002 VSWMM. **Do not use** this worksheet to calculate your WQv if you need to determine the Peak Q for the WQ storm (i.e. designing a grass channel, flow-splitter or other flow based practice). See the worksheet "Water Quality Volume and Modified Curve Number Calculation for Water Quality Treatment in a Flow-Based Practice"

e		value/calculation	on units
Site Area (impervious + disturbed pervious)	A=	15.72	acres
Impervious area		3.46	acres
Percent Impervious Area = [(line 2/line 1) * 100] =	I =	22.01	% (whole #)
Precipitation	P =	0.9	inches
Runoff coefficient calculation = (0.05 + (0.009*I))	Rv -	0.248	
WQ Volume (in watershed inches) Calculation =(P	* Rv) =	0.223	Qa (watershed inches, a.k.a. inches of runc
Minimum WQ Volume ¹		0.2	watershed inches
Enter the greater of line 6 or line 7	WQv =	0.223	watershed inches
WQ Volume Calculation = (line 8 *A)/12 =	WQv =	0.293	ac. ft.
WQ Volume Calculation = (line 9 * 43560) =	WQv =	12741	cu. ft.

Notes:

1: Sites with low impervious cover (~19%) but that do not employ a **significant** use of the stormwater design credits in Section 3 of the VSWMM are required to treat the minimum water quality volume of 0.2 watershed inches. Sites that have a **significant** portion of their impervious cover addressed via the stormwater credits (section 3 of the VSWMM) will be able to reduce this WQv and will only be required to treat the volume calculated on the "WQ Volume (with credit reduction)" worksheet which will be less than the 0.2 watershed inches.

WQU TREATMENT ONLY REP'D FOR ONSITE RUNDEF (NOT REP'D FOR OFFSITE RUNDEFF)

WQU = 12,741 CF

PERMANENT POOL VOL = 7324 CF

7324CF = 57% OF WPV 12,741CF

Runoff = 2.57 cfs @ 12.12 hrs, Volume= 0.211 af, Depth= 0.16"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.10 hrs Type II 24-hr WQv Rainfall=0.90"

	Area	(ac)	CN	Desc	ription		
*	1.	590	98	Stree	ets		
*	0.	850	98	Drive	es		
*	1.	020	98	Roof	top		
	1.	380	70		ds, Good,		
	10.	880	74	>75%	6 Grass co	over, Good	, HSG C
	15.	720	79		hted Aver		
	12.260 74		74		9% Pervio		
	3.	460	98	22.0 ⁻	1% Imperv	ious Area	
	Тс	Lengt	n S	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
	12.8	100	0.0	0400	0.13		Sheet Flow, Lawn
							Grass: Dense n= 0.240 P2= 2.30"
	4.7	1,120	0.0	0700	3.97		Shallow Concentrated Flow, Thru yards
							Grassed Waterway Kv= 15.0 fps
	2.1	330	0.0	0300	2.60		Shallow Concentrated Flow, To pond
							Grassed Waterway Kv= 15.0 fps
	106	1 550) To	Iete			

19.6 1,550 Total

Summary for Subcatchment 2S: Offsite

[45] Hint: Runoff=Zero

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.10 hrs Type II 24-hr WQv Rainfall=0.90"

Ar	rea (ac)	CN	Description
	0.330	30	Meadow, non-grazed, HSG A
	1.030	58	Meadow, non-grazed, HSG B
	2.880	71	Meadow, non-grazed, HSG C
	4.240	65	Weighted Average
	4.240	65	100.00% Pervious Area

North PROPOSED pond2015 Prepared by Lamoureux & Dickinson

HydroCAD® 9.10 s/n 05471 © 2009 HydroCAD Software Solutions LLC

	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	17.6	150	0.0400	0.14		Sheet Flow, Thru meadow
						Grass: Dense n= 0.240 P2= 2.30"
	10.1	1,120	0.0700	1.85		Shallow Concentrated Flow, Thru meadow
						Short Grass Pasture Kv= 7.0 fps
	0.8	200	0.0800	4.24		Shallow Concentrated Flow, To street
_						Grassed Waterway Kv= 15.0 fps

28.5 1,470 Total

Summary for Pond 2P: Pond-North

Inflow Area Inflow Outflow Primary	,	 12.12 h 19.74 h 	mpervious, Inflow D rs, Volume= rs, Volume= rs, Volume=	0.211 af	⁻ WQv event 98%, Lag= 457.4 n	nin					
Starting Ele	Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.10 hrs / 2 Starting Elev= 486.95' Surf.Area= 5,766 sf Storage= 7,324 cf Peak Elev= 487.91' @ 19.74 hrs Surf.Area= 8,233 sf Storage= 14,050 cf (6,726 cf above start)										
Center-of-N	Peak Elev= $487.91'$ @ 19.74 hrsSurf.Area= 8,233 sfStorage= 14,050 cf(6,726 cf above start)Plug-Flow detention time= 3,399.5 min calculated for 0.038 af (18% of inflow)I4,050 cFCenter-of-Mass det. time= 1,443.6 min (2,262.2 - 818.6)Center-of-Mass det. time= 1,443.6 min (2,262.2 - 818.6)C 4 HF-SVolume InvertAvail.StorageStorage Description7,324 cF PEFM.#1487.00'9,292 cfNorth cell (Irregular) Listed below (Recalc)Pool										
Volume #1	Invert Avail 487.00'		Storage Description North cell (Irregula			POOL					
#2			South cell (Irregula		ecalc)	,					
			Total Available Stor								
		,									
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area						
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)						
487.00	125	78.0	0	0	125						
488.00	616	141.0	339	339	1,228						
489.00	2,470	205.0	1,440	1,779	2,999						
489.70	3,461	235.0	2,066	3,845	4,061						
490.00	3,886	248.0	1,101	4,947	4,566						
491.00	4,821	268.0	4,345	9,292	5,426						
Elevation	Surf.Area	Darim	Inc. Store	Curra Otomo	Mat Ana a						
		Perim.	Inc.Store	Cum.Store	Wet.Area						
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)						
485.00	1,150	184.0	0	0	1,150						
486.00	4,302	296.0	2,559	2,559	5,435						
487.00	5,849	332.0	5,056	7,614	7,261						
488.00	7,865	376.0	6,832	14,447	9,765						
489.00	9,847	421.0	8,837	23,284	12,647						
490.00	13,446	539.0	11,600	34,884	21,674						

Type II 24-hr WQv Rainfall=0.90" Printed 1/30/2015 Page 11

Fiepared by La	moureux	& DICKINSON	
HydroCAD® 9.10	s/n 05471	© 2009 HydroCAE	O Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	486.95'	1.5" Vert. Orifice C= 0.600
#2	Primary	487.95'	4.0" Vert. Orifice C= 0.600
#3	Primary	489.50'	24.0" W x 12.0" H Vert. Orifice X 2.00 C= 0.600
#4	Primary	490.00'	36.0" W x 12.0" H Vert. Orifice Overflow X 2.00 C= 0.600
	or mad a n a		

Primary OutFlow Max=0.06 cfs @ 19.74 hrs HW=487.91' (Free Discharge)

-1=Orifice (Orifice Controls 0.06 cfs @ 4.57 fps)

-2=Orifice (Controls 0.00 cfs)

-3=Orifice (Controls 0.00 cfs) -4=Orifice Overflow (Controls 0.00 cfs)

Runoff = 10.67 cfs @ 12.13 hrs, Volume= 0.946 af, Depth= 0.72"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.10 hrs Type II 24-hr 1 year Rainfall=2.10"

	Area	(ac)	CN	Desc	ription		
*	1.	590	98	Stree	ets		
*	0.	850	98	Drive	es		
*	1.	020	98	Roof	•		
	1.	380	70		ds, Good,		
	10.	880	74	>75%	6 Grass co	over, Good,	HSG C
	15.	720	79	Weig	phted Aver	age	
	12.	260	74	77.99	9% Pervio	us Area	
	3.	460	98	22.0 [.]	1% Imperv	vious Area	
				~.	N /	0	
	Tc	Lengt		Slope	Velocity	Capacity	Description
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	
	12.8	10	00.	0400	0.13		Sheet Flow, Lawn
							Grass: Dense n= 0.240 P2= 2.30"
	4.7	1,12	00.	0700	3.97		Shallow Concentrated Flow, Thru yards
							Grassed Waterway Kv= 15.0 fps
	2.1	33	00.	0300	2.60		Shallow Concentrated Flow, To pond
							Grassed Waterway Kv= 15.0 fps
	19.6	1,55	0 To	otal			

Summary for Subcatchment 2S: Offsite

Runoff =	0.23 cfs @	12.39 hrs, Volume=	= 0.058 af, Depth= 0.16	3"
----------	------------	--------------------	-------------------------	----

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.10 hrs Type II 24-hr 1 year Rainfall=2.10"

 Area	(ac) C	N Desc	cription		
				grazed, HS	
1.	030 5			grazed, HS	
 2.	880 7	'1 Mea	dow, non-g	grazed, HS	GC
 4.	240 6	5 Weid	ahted Aver	age	
4.	240 E		00% Pervi		
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
 17.6	150	0.0400	0.14		Sheet Flow, Thru meadow
					Grass: Dense n= 0.240 P2= 2.30"
10.1	1,120	0.0700	1.85		Shallow Concentrated Flow, Thru meadow
	,				Short Grass Pasture Kv= 7.0 fps
0.8	200	0.0800	4.24		Shallow Concentrated Flow, To street
					Grassed Waterway Kv= 15.0 fps
 28.5	1,470	Total			

Summary for Pond 2P: Pond-North

Inflow Ar Inflow Outflow Primary	rea = = = =	10.77 cfs (0.69 cfs (@ 12.14 h @ 14.63 h	mpervious, Inflow irs, Volume= irs, Volume= irs, Volume=	Depth = 0.60" 1.004 af 0.995 af, Atter 0.995 af	for 1 year event n= 94%, Lag= 149.4 min					
				= 0.00-96.00 hrs, 6 sf Storage= 7,3							
						f (24,928 cf above start)					
Plug-Flov	Peak Elev= 489.53' @ 14.63 hrs Surf.Area= 14,886 sf Storage= 32,252 cf (24,928 cf above start) Plug-Flow detention time= 1,022.7 min calculated for 0.827 af (82% of inflow) Center-of-Mass det. time= 774.6 min (1,613.9 - 839.3)										
	i mado a			12.9 HR							
Volume	lnv	ert Ava	il.Storage		ion						
#1	487.0				ular) Listed below						
#2	485.0				ular) Listed below	(Recalc)					
			44,176 cf	Total Available S	torage						
Elevatio	n	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area					
(fee		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)					
487.0		125	78.0	0	0	125					
488.0		616	141.0	339	339	1,228					
489.0		2,470	205.0	1,440	1,779	2,999					
489.7		3,461	235.0	2,066	3,845	4,061					
490.0	0	3,886	248.0	1,101	4,947	4,566					
491.0	0	4,821	268.0	4,345	9,292	5,426					
Maratia		Curf Area	Devine	Inc Store	Cum Store	Mot Area					
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)					
485.0		1,150	184.0	0	0	1,150					
485.0		4,302	296.0	2,559	2,559	5,435					
487.0		4,302 5,849	332.0	5,056	7,614	7,261					
488.0		7,865	376.0		14,447	9,765					
489.0		9,847		8,837	23,284	12,647					
490.0		13,446	539.0	11,600	34,884	21,674					
				, ¹	,						
Device	Routing	Ir	vert Outl								
#1	Primary				0.600						
#2	Primary				0.600						
#3	Primary				t. Orifice X 2.00						
#4	Primary	49().00' 36.0	" W x 12.0" H Ver	t. Orifice Overflow	v X 2.00 C= 0.600					
Primary	Primary OutFlow Max=0.66 cfs @ 14.63 hrs HW=489.53' (Free Discharge)										

1=Orifice (Orifice Controls 0.09 cfs @ 7.64 fps)
 2=Orifice (Orifice Controls 0.50 cfs @ 5.72 fps)
 -3=Orifice (Orifice Controls 0.06 cfs @ 0.55 fps)
 -4=Orifice Overflow (Controls 0.00 cfs)

Hydrograph for Pond 2P: Pond-North

Time (hours)	Inflow (cfs)	Storage (cubic-feet)	Elevation (feet)	Primary (cfs)
0.00	0.00	7,324	486.95	0.00
0.50	0.00	7,324	486.95	0.00
1.00 1.50	0.00 0.00	7,324 7,324	486.95 486.95	0.00 0.00
2.00	0.00	7,324	486.95	0.00
2.50	0.01	7,331	486.95	0.00
3.00 3.50	0.02	7,355 7,395	486.96 486.96	0.00
4.00	0.03 0.04	7,395	486.97	0.00 0.00
4.50	0.05	7,522	486.98	0.00
5.00	0.06	7,608	487.00	0.00
5.50 6.00	0.07 0.08	7,708 7,822	487.02 487.03	0.01 0.01
6.50	0.09	7,949	487.06	0.01
7.00	0.10	8,089	487.08	0.01
7.50 8.00	0.11 0.12	8,242 8,408	487.10 487.13	0.02 0.02
8.50	0.12	8,593	487.16	0.02
9.00	0.17	8,824	487.20	0.03
9.50	0.19 0.22	9,106 9,415	487.24 487.29	0.03 0.03
10.00 10.50	0.22	9,415	487.34	0.03
11.00	0.39	10,341	487.42	0.04
11.50	0.61	11,141	487.54	0.04
12.00 12.50	6.94 3.45	14,845 27,382	488.01 489.18	0.07 0.63
13.00	1.44	30,039	489.38	0.68
13.50	1.05	30,976	489.44	0.70
14.00 14.50	0.83 0.70	31,387 31,473	489.47 489.48	0.71 0.71
15.00	0.64	31,406	489.47	0.71
15.50	0.58	31,232	489.46	0.70
16.00 16.50	0.51 0.47	30,953 30,577	489.44 489.41	0.70 0.69
17.00	0.44	30,155	489.38	0.68
17.50	0.42	29,707	489.35	0.68
18.00 18.50	0.40 0.37	29,234 28,736	489.32 489.28	0.67 0.66
19.00	0.35	28,212	489.24	0.65
19.50	0.33	27,664	489.20	0.64
20.00 20.50	0.30 0.28	27,091 26,500	489.16 489.11	0.62 0.61
21.00	0.28	25,916	489.07	0.60
21.50	0.27	25,349	489.02	0.58
22.00 22.50	0.27 0.26	24,798 24,265	488.98 488.93	0.57 0.56
23.00	0.26	23,748	488.89	0.54
23.50	0.26	23,249	488.85	0.53
24.00 24.50	0.25 0.03	22,767 22,129	488.81 488.75	0.51 0.49
25.00	0.00	21,281	488.67	0.43
25.50	0.00	20,470	488.60	0.44

Hydrograph for Pond 2P: Pond-North (continued)

Time (hours)	Inflow (cfs)	Storage (cubic-feet)	Elevation (feet)	Primary (cfs)
26.00	0.00	19,715	488.53	0.40
26.50	0.00	19,016	488.46	0.37
27.00	0.00	18,377	488.39	0.34
27.50 28.00	0.00	17,800 17,285	488.33	0.30 0.27
28.50	0.00 0.00	16,842	488.28 488.23	0.23
29.00	0.00	16,468	488.19	0.19
29.50	0.00	16,154	488.16	0.16
30.00	0.00	15,888	488.13	0.14
30.50 31.00	0.00 0.00	15,660 15,461	488.10 488.08	0.12 0.10
31.50	0.00	15,288	488.06	0.09
32.00	0.00	15,132	488.04	0.08
32.50	0.00	14,990	488.02	0.08
33.00	0.00	14,860	488.01	0.07
33.50 34.00	0.00 0.00	14,741 14,627	487.99 487.98	0.06 0.06
34.50	0.00	14,027	487.98	0.06
35.00	0.00	14,410	487.96	0.06
35.50	0.00	14,307	487.94	0.06
36.00	0.00	14,205	487.93	0.06
36.50 37.00	0.00	14,103 14,002	487.92	0.06
37.50	0.00 0.00	13,902	487.91 487.89	0.06 0.06
38.00	0.00	13,802	487.88	0.06
38.50	0.00	13,704	487.87	0.05
39.00	0.00	13,606	487.86	0.05
39.50	0.00	13,508	487.85	0.05
40.00 40.50	0.00 0.00	13,411 13,315	487.83 487.82	0.05 0.05
41.00	0.00	13,220	487.81	0.05
41.50	0.00	13,126	487.80	0.05
42.00	0.00	13,032	487.79	0.05
42.50 43.00	0.00	12,939	487.77	0.05
43.00 43.50	0.00 0.00	12,846 12,754	487.76 487.75	0.05 0.05
44.00	0.00	12,664	487.74	0.05
44.50	0.00	12,573	487.73	0.05
45.00	0.00	12,484	487.72	0.05
45.50 46.00	0.00	12,395 12,307	487.70 487.69	0.05 0.05
46.50	0.00 0.00	12,307	487.68	0.05
47.00	0.00	12,133	487.67	0.05
47.50	0.00	12,047	487.66	0.05
48.00	0.00	11,962	487.65	0.05
48.50 49.00	0.00	11,878 11,794	487.64	0.05
49.00	0.00 0.00	11,794	487.62 487.61	0.05 0.05
50.00	0.00	11,630	487.60	0.05
50.50	0.00	11,548	487.59	0.04
51.00	0.00	11,468	487.58	0.04
51.50	0.00	11,388	487.57	0.04

Hydrograph for Pond 2P: Pond-North (continued)

Time (hours)	Inflow (cfs)	Storage (cubic-feet)	Elevation (feet)	Primary (cfs)
52.00	0.00	11,309	487.56	0.04
52.50	0.00	11,231	487.55	0.04
53.00	0.00	11,154	487.54	0.04
53.50	0.00	11,077	487.53	0.04
54.00 54.50	0.00 0.00	11,001 10,926	487.52 487.51	0.04 0.04
55.00	0.00	10,852	487.49	0.04
55.50	0.00	10,778	487.48	0.04
56.00	0.00	10,706	487.47	0.04
56.50 57.00	0.00 0.00	10,634 10,563	487.46 487.45	0.04 0.04
57.50	0.00	10,303	487.44	0.04
58.00	0.00	10,423	487.43	0.04
58.50	0.00	10,355	487.42	0.04
59.00	0.00	10,287	487.41	0.04
59.50 60.00	0.00 0.00	10,220 10,153	487.40 487.40	0.04 0.04
60.50	0.00	10,088	487.39	0.04
61.00	0.00	10,024	487.38	0.04
61.50	0.00	9,960	487.37	0.04
62.00	0.00	9,897	487.36	0.03
62.50 63.00	0.00 0.00	9,835 9,774	487.35 487.34	0.03 0.03
63.50	0.00	9,713	487.33	0.03
64.00	0.00	9,654	487.32	0.03
64.50	0.00	9,595	487.31	0.03
65.00 65.50	0.00 0.00	9,537	487.30	0.03
66.00	0.00	9,480 9,424	487.30 487.29	0.03 0.03
66.50	0.00	9,369	487.28	0.03
67.00	0.00	9,314	487.27	0.03
67.50	0.00	9,261	487.26	0.03
68.00 68.50	0.00 0.00	9,208 9,156	487.25 487.25	0.03 0.03
69.00	0.00	9,106	487.24	0.03
69.50	0.00	9,055	487.23	0.03
70.00	0.00	9,006	487.22	0.03
70.50 71.00	0.00 0.00	8,958 8,910	487.22 487.21	0.03 0.03
71.50	0.00	8,864	487.20	0.03
72.00	0.00	8,818	487.19	0.03
72.50	0.00	8,773	487.19	0.02
73.00	0.00	8,729	487.18	0.02
73.50 74.00	0.00 0.00	8,686 8,644	487.17 487.17	0.02 0.02
74.50	0.00	8,603	487.16	0.02
75.00	0.00	8,562	487.15	0.02
75.50	0.00	8,523	487.15	0.02
76.00 76.50	0.00 0.00	8,485 8,447	487.14 487.14	0.02 0.02
77.00	0.00	8,410	487.14	0.02
77.50	0.00	8,375	487.12	0.02

Hydrograph for Pond 2P: Pond-North (continued)

Time	Inflow	Storage	Elevation	Primary
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)
78.00	0.00	8,340	487.12	0.02
78.50	0.00	8,306	487.11	0.02
79.00	0.00	8,273	487.11	0.02
79.50	0.00	8,241	487.10	0.02
80.00	0.00	8,209	487.10	0.02
80.50	0.00	8,179	487.09	0.02
81.00	0.00	8,149	487.09	0.02
81.50	0.00	8,121	487.08	0.02
82.00 82.50	0.00 0.00	8,094 8,068	487.08 487.07	0.01
83.00	0.00	8,068	487.07 487.07	0.01 0.01
83.50	0.00	8,019	487.07	0.01
84.00	0.00	7,996	487.06	0.01
84.50	0.00	7,974	487.06	0.01
85.00	0.00	7,952	487.06	0.01
85.50	0.00	7,931	487.05	0.01
86.00	0.00	7,911	487.05	0.01
86.50	0.00	7,892	487.05	0.01
87.00	0.00	7,874	487.04	0.01
87.50	0.00	7,856	487.04	0.01
88.00	0.00	7,839	487.04	0.01
88.50	0.00	7,823	487.03	0.01
89.00	0.00	7,807	487.03	0.01
89.50 90.00	0.00 0.00	7,792 7,778	487.03	0.01
90.00	0.00	7,765	487.03 487.02	0.01 0.01
91.00	0.00	7,752	487.02	0.01
91.50	0.00	7,739	487.02	0.01
92.00	0.00	7,728	487.02	0.01
92.50	0.00	7,716	487.02	0.01
93.00	0.00	7,706	487.02	0.01
93.50	0.00	7,695	487.01	0.01
94.00	0.00	7,686	487.01	0.01
94.50	0.00	7,676	487.01	0.01
95.00	0.00	7,667	487.01	0.00
95.50	0.00	7,659	487.01	0.00
96.00	0.00	7,651	487.01	0.00

Runoff = 23.34 cfs @ 12.13 hrs, Volume= 1.916 af, Depth= 1.46"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.10 hrs Type II 24-hr 10 year Rainfall=3.20"

	Area	(ac)	CN	Desc	cription		
*	1.	590	98	Stree	ets		
*	0.	850	98	Drive	es		
*	1.	020	98	Roof	top		
	1.	380	70	Woo	ds, Good,	HSG C	
	10.	880	74	>75%	6 Grass co	over, Good	, HSG C
	15.	720	79	Weig	phted Aver	age	
	12.	260	74	77.9	9% Pervio	us Area	
	3.	460	98	22.0	1% Imperv	vious Area	
					·		
	Tc	Lengt	h S	Slope	Velocity	Capacity	Description
	(min)	(fee	:)	(ft/ft)	(ft/sec)	(cfs)	
	12.8	10	0 0.	0400	0.13		Sheet Flow, Lawn
							Grass: Dense n= 0.240 P2= 2.30"
	4.7	1,12	0 0.	0700	3.97		Shallow Concentrated Flow, Thru yards
							Grassed Waterway Kv= 15.0 fps
	2.1	33	0 0.0	0300	2.60		Shallow Concentrated Flow, To pond
							Grassed Waterway Kv= 15.0 fps
	19.6	1,55		otal			

Summary for Subcatchment 2S: Offsite

Runoff = 1.72 cfs @ 12.29 hr	s, Volume= 0.212 a	f, Depth= 0.60"
------------------------------	--------------------	-----------------

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.10 hrs Type II 24-hr 10 year Rainfall=3.20"

	Area	(ac) C	N Dese	cription		
					grazed, HS	
					grazed, HS	
_	2.	<u>880 7</u>	′1 Mea	dow, non-g	grazed, HS	GC
	4.	240 6	5 Weig	ghted Aver	age	
	4.	240 6		00% Pervi		
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	17.6	150	0.0400	0.14		Sheet Flow, Thru meadow
						Grass: Dense n= 0.240 P2= 2.30"
	10.1	1,120	0.0700	1.85		Shallow Concentrated Flow, Thru meadow
						Short Grass Pasture Kv= 7.0 fps
	0.8	200	0.0800	4.24		Shallow Concentrated Flow, To street
						Grassed Waterway Kv= 15.0 fps
	28.5	1,470	Total			

Summary for Pond 2P: Pond-North

 Inflow Area =
 19.960 ac, 17.33% Impervious, Inflow Depth =
 1.28" for 10 year event

 Inflow =
 24.51 cfs @
 12.13 hrs, Volume=
 2.128 af

 Outflow =
 16.27 cfs @
 12.33 hrs, Volume=
 2.127 af, Atten= 34%, Lag= 11.7 min

 Primary =
 16.27 cfs @
 12.33 hrs, Volume=
 2.127 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.10 hrs / 2 Starting Elev= 486.95' Surf.Area= 5,766 sf Storage= 7,324 cf Peak Elev= 490.41' @ 12.33 hrs Surf.Area= 17,702 sf Storage= 41,493 cf (34,169 cf above start)

Plug-Flow detention time= 527.9 min calculated for 1.959 af (92% of inflow) Center-of-Mass det. time= 436.3 min (1,269.2 - 832.9)

Volume	Invert	Avail.Storage	Storage Description
#1	487.00'	9,292 cf	North cell (Irregular) Listed below (Recalc)
#2	485.00'	34,884 cf	South cell (Irregular) Listed below (Recalc)
		44,176 cf	Total Available Storage

Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
487.00	125	78.0	0	0	125
488.00	616	141.0	339	339	1,228
489.00	2,470	205.0	1,440	1,779	2,999
489.70	3,461	235.0	2,066	3,845	4,061
490.00	3,886	248.0	1,101	4,947	4,566
491.00	4,821	268.0	4,345	9,292	5,426
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
(feet) 485.00	<u>(sq-ft)</u> 1,150	(feet) 184.0	(cubic-feet) 0	(cubic-feet) 0	<u>(sq-ft)</u> 1,150
(feet) 485.00 486.00	(sq-ft) 1,150 4,302	(feet) 184.0 296.0	(cubic-feet) 0 2,559	(cubic-feet) 0 2,559	<u>(sq-ft)</u> 1,150 5,435
(feet) 485.00 486.00 487.00	<u>(sq-ft)</u> 1,150 4,302 5,849	(feet) 184.0 296.0 332.0	(cubic-feet) 0 2,559 5,056	(cubic-feet) 0 2,559 7,614	<u>(sq-ft)</u> 1,150 5,435 7,261
(feet) 485.00 486.00 487.00 488.00	(sq-ft) 1,150 4,302 5,849 7,865	(feet) 184.0 296.0 332.0 376.0	(cubic-feet) 0 2,559 5,056 6,832	(cubic-feet) 0 2,559 7,614 14,447	(sq-ft) 1,150 5,435 7,261 9,765

Device	Routing	Invert	Outlet Devices
#1	Primary	486.95'	1.5" Vert. Orifice C= 0.600
#2	Primary	487.95'	4.0" Vert. Orifice C= 0.600
#3	Primary	489.50'	24.0" W x 12.0" H Vert. Orifice X 2.00 C= 0.600
#4	Primary	490.00'	36.0" W x 12.0" H Vert. Orifice Overflow X 2.00 C= 0.600

Primary OutFlow Max=14.65 cfs @ 12.33 hrs HW=490.35' (Free Discharge)

-1=Orifice (Orifice Controls 0.11 cfs @ 8.79 fps)

-2=Orifice (Orifice Controls 0.63 cfs @ 7.19 fps)

-3=Orifice (Orifice Controls 9.99 cfs @ 2.95 fps)

-4=Orifice Overflow (Orifice Controls 3.92 cfs @ 1.89 fps)

Runoff = 37.89 cfs @ 12.12 hrs, Volume= 3.031 af, Depth= 2.31"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.10 hrs Type II 24-hr 100 year Rainfall=4.30"

	Area	(ac)	CN	Desc	ription		
*	1.	590	98	Stree	ets		
*	0.	850	98	Drive	es		
*	1.	020	98	Roof			
		380	70		ds, Good,		
	10.	880	74	>75%	6 Grass co	over, Good,	, HSG C
	15.	720	79	Weig	phted Aver	age	
	12.	260	74	77.9	9% Pervio	us Area	
	3.	460	98	22.0	1% Imperv	ious Area	
	· 	1	I. 1	01		0	Description
	Tc	Lengt		Slope	Velocity	Capacity	Description
	(min)	(feel		(ft/ft)	(ft/sec)	(cfs)	
	12.8	10	0 0.	.0400	0.13		Sheet Flow, Lawn
							Grass: Dense n= 0.240 P2= 2.30"
	4.7	1,12	0 0.	.0700	3.97		Shallow Concentrated Flow, Thru yards
							Grassed Waterway Kv= 15.0 fps
	2.1	33	0 0.	.0300	2.60		Shallow Concentrated Flow, To pond
							Grassed Waterway Kv= 15.0 fps
	19.6	1,55	0 T	otal			

Summary for Subcatchment 2S: Offsite

Runoff = 4 .	.04 cfs @	12.26 hrs,	Volume=	0.426 af,	Depth= 1.21"
----------------	-----------	------------	---------	-----------	--------------

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.10 hrs Type II 24-hr 100 year Rainfall=4.30"

	Area	(ac) C	N Dese	cription					
				Meadow, non-grazed, HSG A					
	1.	030 5	58 Mea	dow, non-g	grazed, HS	G B			
	2.	880 7	'1 Mea	dow, non-g	grazed, HS	GC			
	4.	240 6	5 Weig	ghted Aver	age				
	4.	240 6		00% Pervi					
	Tc	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•			
-	17.6	150	0.0400	0.14		Sheet Flow, Thru meadow			
						Grass: Dense n= 0.240 P2= 2.30"			
	10.1	1,120	0.0700	1.85		Shallow Concentrated Flow, Thru meadow			
						Short Grass Pasture Kv= 7.0 fps			
	0.8	200	0.0800	4.24		Shallow Concentrated Flow, To street			
						Grassed Waterway Kv= 15.0 fps			
	28.5	1,470	Total						

4,061

Summary for Pond 2P: Pond-North

 Inflow Area =
 19.960 ac, 17.33% Impervious, Inflow Depth =
 2.08" for 100 year event

 Inflow =
 41.04 cfs @
 12.13 hrs, Volume=
 3.458 af

 Outflow =
 38.19 cfs @
 12.21 hrs, Volume=
 3.465 af, Atten= 7%, Lag= 4.7 min

 Primary =
 38.19 cfs @
 12.21 hrs, Volume=
 3.465 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.10 hrs / 2 Starting Elev= 486.95' Surf.Area= 5,766 sf Storage= 7,324 cf Peak Elev= 490.98' @ 12.21 hrs Surf.Area= 18,243 sf Storage= 44,059 cf (36,735 cf above start)

Plug-Flow detention time= 334.5 min calculated for 3.297 af (95% of inflow) Center-of-Mass det. time= 285.6 min (1,112.0 - 826.3)

235.0

Volume	Invert Av	ail.Storage	Storage Description					
#1	487.00'	9,292 cf	North cell (Irregul	North cell (Irregular) Listed below (Recalc)				
#2	485.00'	34,884 cf	South cell (Irregu	South cell (Irregular) Listed below (Recalc)				
		44,176 cf	Total Available Sto	orage				
Elevation (feet)	Surf.Area (sq-ft)		Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
487.00	125	78.0	0	0	125			
488.00	616	i 141.0	339	339	1,228			
489.00	2,470	205.0	1,440	1,779	2,999			

2,066

3.845

490.00	3,886	248.0	1,101	4,947	4,566
491.00	4,821	268.0	4,345	9,292	5,426
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
485.00	1,150	184.0	0	0	1,150
486.00	4,302	296.0	2,559	2,559	5,435
487.00	5,849	332.0	5,056	7,614	7,261
488.00	7,865	376.0	6,832	14,447	9,765
489.00	9,847	421.0	8,837	23,284	12,647
490.00	13,446	539.0	11,600	34,884	21,674

Device	Routing	Invert	Outlet Devices
#1	Primary	486.95'	1.5" Vert. Orifice C= 0.600
#2	Primary	487.95'	4.0" Vert. Orifice C= 0.600
#3	Primary	489.50'	24.0" W x 12.0" H Vert. Orifice X 2.00 C= 0.600
#4	Primary	490.00'	36.0" W x 12.0" H Vert. Orifice Overflow X 2.00 C= 0.600

Primary OutFlow Max=37.28 cfs @ 12.21 hrs HW=490.95' (Free Discharge)


-1=Orifice (Orifice Controls 0.12 cfs @ 9.56 fps)

3,461

489.70

-2=Orifice (Orifice Controls 0.71 cfs @ 8.11 fps)

-3=Orifice (Orifice Controls 18.56 cfs @ 4.64 fps)

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.330	30	Meadow, non-grazed, HSG A (2S)
1.030	58	Meadow, non-grazed, HSG B (2S)
1.380	70	Woods, Good, HSG C (1S)
2.880	71	Meadow, non-grazed, HSG C (2S)
10.880	74	>75% Grass cover, Good, HSG C (1S)
0.850	98	Drives (1S)
1.020	98	Rooftop (1S)
1.590	98	Streets (1S)

Runoff = 9.37 cfs @ 12.14 hrs, Volume= 0.762 af, Depth= 0.58"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-84.00 hrs, dt= 0.05 hrs Type II 24-hr 1 year Rainfall=2.10"

	Area	(ac)	CN	Desc	ription		
*	1.	590	98	Stree	ets		
*	0.	850	98	Drive	es		
*		020	98	Roof	top		
		380	70		ds, Good,		
	10.	880	74	>75%	<u>6 Grass co</u>	over, Good,	HSG C
	15.	720	79		phted Aver		
		260			9% Pervio		
	3.	460		22.0	1% Imperv	/ious Area	
						.	–
	Tc	Lengt		lope	Velocity	Capacity	Description
	(min)	(feel		(ft/ft)	(ft/sec)	(cfs)	
	12.8	10	0 0.0	0400	0.13		Sheet Flow, Lawn
							Grass: Dense n= 0.240 P2= 2.30"
	4.7	1,12	0 0.0	0700	3.97		Shallow Concentrated Flow, Thru yards
	• •						Grassed Waterway Kv= 15.0 fps
	2.1	33	0.0	0300	2.60		Shallow Concentrated Flow, To pond
							Grassed Waterway Kv= 15.0 fps
	19.6	1,55	D To	tal			

Summary for Subcatchment 2S: Offsite

Runoff	Ξ	0.23 cfs @	12.38 hrs,	Volume=	0.058 af	, Depth= 0.16"
--------	---	------------	------------	---------	----------	----------------

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-84.00 hrs, dt= 0.05 hrs Type II 24-hr 1 year Rainfall=2.10"

	Area	(ac) C	N Des	cription		
	0.	330 3	30 Mea	dow, non-g	grazed, HS	G A
	1.	030 5			grazed, HS	
	2.	880 7	<u>'1 Mea</u>	dow, non-g	grazed, HS	GC
				ghted Aver		
	4.	240	100.	00% Pervi	ous Area	
	_					
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	17.6	150	0.0400	0.14		Sheet Flow, Thru meadow
						Grass: Dense n= 0.240 P2= 2.30"
	10.1	1,120	0.0700	1.85		Shallow Concentrated Flow, Thru meadow
						Short Grass Pasture Kv= 7.0 fps
	0.8	200	0.0800	4.24		Shallow Concentrated Flow, To street
_						Grassed Waterway Kv= 15.0 fps
	28.5	1,470	Total			

Runoff = 0.15 cfs @ 12.45 hrs, Volume= 0.059 af, Depth= 0.04"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-84.00 hrs, dt= 0.05 hrs Type II 24-hr WQv Rainfall=0.90"

	Area	(ac)	CN [Desc	ription		
*	1.	590	98 3	Stree	ts		
*	0.	850	98 [Drive	s		
*	1.	020	98 F	Rooft	ор		
	1.	380	70 \	Wood	ds, Good,	HSG C	
Sector	10.	880	74 >	<u>>75%</u>	Grass co	over, Good,	HSG C
	15.	720	79 \	Weig	hted Aver	age	
	12.	260	ī	77.99	% Pervio	us Area	
	3.	460	2	22.01% Impervious Area			
						-	
	Tc	Length		ppe	Velocity	Capacity	Description
	(min)	(feet)		t/ft)	(ft/sec)	(cfs)	
	12.8	100	0.04	100	0.13		Sheet Flow, Lawn
							Grass: Dense n= 0.240 P2= 2.30"
	4.7	1,120	0.07	700	3.97		Shallow Concentrated Flow, Thru yards
							Grassed Waterway Kv= 15.0 fps
	2.1	330	0.03	300	2.60		Shallow Concentrated Flow, To pond
							Grassed Waterway Kv= 15.0 fps
	19.6	1,550	Tota	al			

Summary for Subcatchment 2S: Offsite

[45] Hint: Runoff=Zero

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-84.00 hrs, dt= 0.05 hrs Type II 24-hr WQv Rainfall=0.90"

 Area (ac)	CN	Description
0.330	30	Meadow, non-grazed, HSG A
1.030	58	Meadow, non-grazed, HSG B
 2.880	71	Meadow, non-grazed, HSG C
 4.240	65	Weighted Average
4.240		100.00% Pervious Area

North existing pond Prepared by Lamoureux & Dickinson HydroCAD® 9.10 s/n 05471 © 2009 HydroCAD Software Solutions LLC

Type II 24-hr WQv Rainfall=0.90" Printed 8/15/2014 Page 8

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	17.6	150	0.0400	0.14		Sheet Flow, Thru meadow
						Grass: Dense n= 0.240 P2= 2.30"
	10.1	1,120	0.0700	1.85		Shallow Concentrated Flow, Thru meadow
						Short Grass Pasture Kv= 7.0 fps
	0.8	200	0.0800	4.24		Shallow Concentrated Flow, To street
_						Grassed Waterway Kv= 15.0 fps
-	00 F	4 470	T . 1 . 1			

28.5 1,470 Total

Summary for Pond 2P: Pond-North

Inflow Area	a =	19.960 ac, 17.33% Impervious, Inflow Depth = 0.04" for WQv event
Inflow	=	0.15 cfs @ 12.45 hrs, Volume= 0.059 af
Outflow	=	0.09 cfs @ 13.67 hrs, Volume= 0.059 af, Atten= 40%, Lag= 73.5 min
Primary	=	0.09 cfs @ 13.67 hrs, Volume= 0.059 af
-		

Routing by Stor-Ind method, Time Span= 0.00-84.00 hrs, dt= 0.05 hrs Starting Elev= 486.95' Surf.Area= 5,713 sf Storage= 6,483 cf Peak Elev= 487.01' @ 13.67 hrs Surf.Area= 5,862 sf Storage= 6,812 cf (330 cf above start)

Plug-Flow detention time= (not calculated: initial storage excedes outflow) Center-of-Mass det. time= 72.8 min (1,081.0 - 1,008.2)

Volume	Invert	Ava	il.Storage	Storage Description	n		
#1			North cell (Irregu	ar) Listed below	(Recalc)		
#2	485.00'		34,041 cf	South cell (Irregu		· /	
			39,488 cf	Total Available Sto		<u></u>	
					0		
Elevation	Su	ırf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
489.70		3,461	235.0	0	0	3,461	
490.00		3,886	248.0	1,101	1,101	3,966	
491.00		4,821	268.0	4,345	5,447	4,827	
Elevation	Su	ırf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
485.00		1,150	184.0	0	Ó	1,150	
486.00		3,427	280.0	2,187	2,187	4,702	
487.00		5,849	332.0	4,584	6,772	7,253	
488.00		7,865	376.0	6,832	13,604	9,757	
489.00		9,847	421.0	8,837	22,441	12,639	
490.00		13,446	539.0	11,600	34,041	21,666	
Device R	outing	In	vert Outle	et Devices			
#1 P	rimary	486	5.95' 24.0 '	' W x 24.0" H Vert.	24"SQ Orifice	C= 0.600	

Primary OutFlow Max=0.09 cfs @ 13.67 hrs HW=487.01' (Free Discharge) 1=24"SQ Orifice (Orifice Controls 0.09 cfs @ 0.77 fps)

Summary for Pond 2P: Pond-North

Inflow Area =	19.960 ac, 17.33% Impervious, Inflow	v Depth = 0.49" for 1 year event
Inflow =	9.48 cfs @ 12.15 hrs, Volume=	0.820 af
Outflow =	<u>5.85 cfs @</u> 12.32 hrs, Volume=	0.820 af, Atten= 38%, Lag= 10.4 min
Primary =	5.85 cfs @ 12.32 hrs, Volume=	0.820 af

Routing by Stor-Ind method, Time Span= 0.00-84.00 hrs, dt= 0.05 hrs Starting Elev= 486.95' Surf.Area= 5,713 sf Storage= 6,483 cf Peak Elev= 487.89' @ 12.32 hrs Surf.Area= 7,629 sf Storage= 12,753 cf (6,270 cf above start)

Plug-Flow detention time= 153.6 min calculated for 0.671 af (82% of inflow) Center-of-Mass det. time= 29.2 min (917.0 - 887.8) EXIST, DETENTION

		5 AA7 cf		Storage Description			
	485.00			North cell (Irregular) Listed below (Recalc) South cell (Irregular) Listed below (Recalc)			
		39,488 cf	Total Available Stor	rage			
Elevation (feet)	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area		
	<u>(sq-ft)</u>	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>		
489.70	3,461	235.0	0	0	3,461		
490.00	3,886	248.0	1,101	1,101	3,966		
491.00	4,821	268.0	4,345	5,447	4,827		
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area		
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)		
485.00	1,150	184.0	0	0	1,150		
486.00	3,427	280.0	2,187	2,187	4,702		
487.00	5,849	332.0	4,584	6,772	7,253		
488.00	7,865	376.0	6,832	13,604	9,757		
489.00	9,847	421.0	8,837	22,441	12,639		
490.00	13,446	539.0	11,600	34,041	21,666		
Device Rout	ting Ir	nvert Outle	et Devices				
#1 Prim			" W x 24.0" H Vert. 2	24"SQ Orifice C=	= 0.600		

Primary OutFlow Max=5.82 cfs @ 12.32 hrs HW=487.89' (Free Discharge) -1=24"SQ Orifice (Orifice Controls 5.82 cfs @ 3.11 fps)

Runoff = 23.13 cfs @ 12.13 hrs, Volume= 1.751 af, Depth= 1.34"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-84.00 hrs, dt= 0.05 hrs Type II 24-hr 10 year Rainfall=3.20"

	Area	(ac)	CN	Desc	cription		
*	1.	590	98	Stree	ets		
*	0.	850	98	Drive	es		
*	1.	020	98	Roof	top		
	1.	380	70		ds, Good,		
	10.	880	74	>75%	<u>6 Grass co</u>	over, Good,	, HSG C
	15.	720	79		phted Aver		
	12.	260		77.9	9% Pervio	us Area	
	3.	460		22.0	1% Imperv	ious Area	
	Tc	Lengt		Slope	Velocity	Capacity	Description
	(min)	(feet)	<u>(ft/ft)</u>	(ft/sec)	(cfs)	
	12.8	10) O.(0400	0.13		Sheet Flow, Lawn
							Grass: Dense n= 0.240 P2= 2.30"
	4.7	1,12	D.O.C	0700	3.97		Shallow Concentrated Flow, Thru yards
							Grassed Waterway Kv= 15.0 fps
	2.1	33	D 0.0	0300	2.60		Shallow Concentrated Flow, To pond
							Grassed Waterway Kv= 15.0 fps
	19.6	1,55) То	otal			

Summary for Subcatchment 2S: Offsite

Runoff =	1.74 cfs @	12.28 hrs, Volume=	0.212 af	Depth= 0.60"
----------	------------	--------------------	----------	--------------

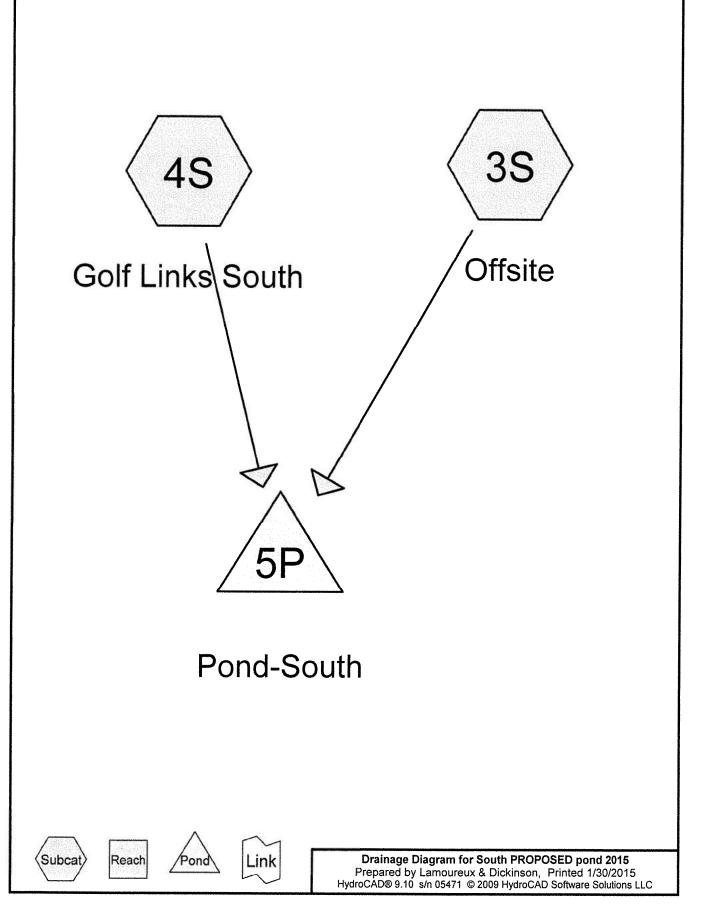
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-84.00 hrs, dt= 0.05 hrs Type II 24-hr 10 year Rainfall=3.20"

Are	a (ac)	С	N Desc	cription		
	0.330	3	30 Mea	dow, non-g	grazed, HS	G A
	1.030	5	58 Mea	dow, non-g	grazed, HS	G B
	2.880	7	'1 Mea	dow, non-g	grazed, HS	GC
	4.240	6	5 Weig	ghted Aver	age	
	4.240		100.	00% Pervi	ous Area	
Т	c Ler	igth	Slope	Velocity	Capacity	Description
(min) (fe	eet)	(ft/ft)	(ft/sec)	(cfs)	
17.	6	150	0.0400	0.14		Sheet Flow, Thru meadow
						Grass: Dense n= 0.240 P2= 2.30"
10.	1 1,	120	0.0700	1.85		Shallow Concentrated Flow, Thru meadow
						Short Grass Pasture Kv= 7.0 fps
0.8	B :	200	0.0800	4.24		Shallow Concentrated Flow, To street
						Grassed Waterway Kv= 15.0 fps
28.	5 1,4	470	Total			

Summary for Pond 2P: Pond-North

Inflow = 24.36 cfs @ 12.14 hrs, Volume= 1.963 af Outflow = 16.99 cfs @ 12.28 hrs, Volume= 1.963 af, Atten= 30%, Lag= 8.7 mi	Inflow Area =	19.960 ac, 17.33% Impervious, I	nflow Depth = 1.18" for 10 year event
Outflow = 16.99 cfs @ 12.28 hrs, Volume= 1.963 af, Atten= 30%, Lag= 8.7 mi	Inflow =	24.36 cfs @ 12.14 hrs, Volume=	1.963 af
	Outflow =	16.99 cfs @ 12.28 hrs, Volume=	1.963 af, Atten= 30%, Lag= 8.7 min
Outflow = 16.99 cfs @ 12.28 hrs, Volume= 1.963 af, Atten= 30%, Lag= 8.7 mi Primary = 16.99 ofs @ 12.28 hrs, Volume= 1.963 af	Primary =		1.963 af

Routing by Stor-Ind method, Time Span= 0.00-84.00 hrs, dt= 0.05 hrs Starting Elev= 486.95' Surf.Area= 5,713 sf Storage= 6,483 cf Peak Elev= 488.86' 2 12.28 hrs Surf.Area= 9,563 sf Storage= 21,117 cf (14,634 cf above start)


Plug-Flow detention time= 76.8 min calculated for 1.813 af (92% of inflow) Center-of-Mass det. time= 22.5 min (884.1 - 861.6)

Surf.Area (sq-ft) 3,461	5,447 cf 34,041 cf 39,488 cf Perim. (feet)	North cell (Irregula South cell (Irregul Total Available Sto Inc.Store (cubic-feet)	<u>ar) Listed below (R</u> rage Cum.Store	ecalc) Wet.Area	
Surf.Area (sq-ft) 3,461	39,488 cf Perim. (feet)	Total Available Sto Inc.Store	rage Cum.Store	Wet.Area	
Surf.Area (sq-ft) 3,461	Perim. (feet)	Inc.Store	Cum.Store		
<u>(sq-ft)</u> 3,461	(feet)				
3,461	(feet)	(cubic-feet)	(aubia fact)		
•	005 0		(cubic-feet)	(sq-ft)	
•	235.0	0	0	3,461	
3,886	248.0	1,101	1,101	3,966	
4,821	268.0	4,345	5,447	4,827	
Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
1,150	184.0	0	0	1,150	
3,427	280.0	2,187	2,187	4,702	
5,849	332.0	4,584	6,772	7,253	
7,865	376.0	6,832	13,604	9,757	
9,847	421.0	8,837	22,441	12,639	
13,446	539.0	11,600	34,041	21,666	
ing Inv	vert Outle	et Devices			
ary 486.	95' 24.0'	"W x 24.0" H Vert.	24"SQ Orifice C=	= 0.600	
2	Surf.Area (sq-ft) 1,150 3,427 5,849 7,865 9,847 13,446 ng Inv ary 486.	Surf.Area Perim. (sq-ft) (feet) 1,150 184.0 3,427 280.0 5,849 332.0 7,865 376.0 9,847 421.0 13,446 539.0 ing Invert Outlet ary 486.95' 24.0'	Surf.Area Perim. Inc.Store (sq-ft) (feet) (cubic-feet) 1,150 184.0 0 3,427 280.0 2,187 5,849 332.0 4,584 7,865 376.0 6,832 9,847 421.0 8,837 13,446 539.0 11,600 ing Invert Outlet Devices ary 486.95' 24.0'' W x 24.0'' H Vert.	Surf.Area Perim. Inc.Store Cum.Store (sq-ft) (feet) (cubic-feet) (cubic-feet) 1,150 184.0 0 0 3,427 280.0 2,187 2,187 5,849 332.0 4,584 6,772 7,865 376.0 6,832 13,604 9,847 421.0 8,837 22,441 13,446 539.0 11,600 34,041	Surf.Area Perim. Inc.Store Cum.Store Wet.Area (sq-ft) (feet) (cubic-feet) (cubic-feet) (sq-ft) 1,150 184.0 0 0 1,150 3,427 280.0 2,187 2,187 4,702 5,849 332.0 4,584 6,772 7,253 7,865 376.0 6,832 13,604 9,757 9,847 421.0 8,837 22,441 12,639 13,446 539.0 11,600 34,041 21,666

Primary OutFlow Max=16.91 cfs @ 12.28 hrs HW=488.86' (Free Discharge) -1=24"SQ Orifice (Orifice Controls 16.91 cfs @ 4.43 fps) Stormwater Engineering Feasibility Analysis (EFA)

Attachment 8 Pond South - HydroCad calculations

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
(acies)		(subcatchinent-humbers)
2.070	30	Meadow, non-grazed, HSG A (3S)
0.580	58	Meadow, non-grazed, HSG B (3S)
2.000	70	Woods, Good, HSG C (3S)
9.170	71	Meadow, non-grazed, HSG C (3S)
18.740	74	>75% Grass cover, Good, HSG C (3S, 4S)
0.260	77	Woods, Good, HSG D (3S)
1.310	80	>75% Grass cover, Good, HSG D (3S)
0.080	98	Drive & rooftop (3S)
0.870	98	Drives (4S)
1.360	98	Rooftop (4S)
1.760	98	Streets (4S)

Version: 9/06

For the area draining to*: South Pond Located in drainage area for S/N: South

South Pond

WQ Volume Calculation for Volume-Based Practice

Use this worksheet to calculate the water quality volume draining to your volume based STP if you are not using any of the site design credits in section 3 of the 2002 VSWMM. **Do not use** this worksheet to calculate your WQv if you need to determine the Peak Q for the WQ storm (i.e. designing a grass channel, flow-splitter or other flow based practice). See the worksheet "Water Quality Volume and Modified Curve Number Calculation for Water Quality Treatment in a Flow-Based Practice"

2		value/calculation	on units
Site Area (impervious + disturbed pervious)	A=	21.00	acres
Impervious area		3.99	acres
Percent Impervious Area = [(line 2/line 1) * 100] =	I =	19.00	% (whole #)
Precipitation	P =	0.9	inches
Runoff coefficient calculation = (0.05 + (0.009*I))	Rv =	0.221	
WQ Volume (in watershed inches) Calculation =(P * 1	Rv) =	0.199	Qa (watershed inches, a.k.a. inches of runof
Minimum WQ Volume ¹		0.2	watershed inches
Enter the greater of line 6 or line 7	WQv =	0.200	watershed inches
WQ Volume Calculation = (line 8 *A)/12 =	WQv =	0.350	ac. ft.
WQ Volume Calculation = (line 9 * 43560) =	WQv =	15246	cu, ft.

Notes:

1: Sites with low impervious cover (~19%) but that do not employ a **significant** use of the stormwater design credits in Section 3 of the VSWMM are required to treat the minimum water quality volume of 0.2 watershed inches. Sites that have a **significant** portion of their impervious cover addressed via the stormwater credits (section 3 of the VSWMM) will be able to reduce this WQv and will only be required to treat the volume calculated on the "WQ Volume (with credit reduction)" worksheet which will be less than the 0.2 watershed inches.

PERMANENT POOL = 8750 CF HORTH CELL = $3704 \, cF$ South CELL = $5046 \, cF$ TOTAL = 8750 CF

8750 CF = 57% 15,246 CF

Summary for Subcatchment 3S: Offsite

Runoff = 0.04 cfs @ 12.32 hrs, Volume= 0.005 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Type II 24-hr WQv Rainfall=0.90"

	Area	(ac)	CN	Desc	ription		
	2.	070	30) Mea	dow, non-g	razed, HS	GA
	0.	580	58	3 Mea	dow, non-g	razed, HS	G B
	9.	170	71	Mea	dow, non-g	grazed, HS	GC
	2.	000	70) Woo	ds, Good,	HSG C	
	0.	260	77	7 Woo	ds, Good,	HSG D	
	1.	310	80) >75%	6 Grass co	over, Good,	, HSG D
	1.	730	74	4 >75%	6 Grass co	over, Good,	, HSG C
*	0.	080	98	B Drive	e & rooftop)	
	17.	200	67	7 Weig	hted Aver	age	
	17.	120	67	7 99.5	3% Pervio	us Area	
	0.	080	98	3 0.47 [°]	% Impervio	ous Area	
					•		
	Tc	Lengt	h	Slope	Velocity	Capacity	Description
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	17.6	15	0	0.0400	0.14		Sheet Flow, Thru meadow
							Grass: Dense n= 0.240 P2= 2.30"

10.1	1,120	0.0700	1.85	Shallow Concentrated Flow, Thru meadow
9.3	530	0.0040	0.95	Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, Diversion
				Grassed Waterway Kv= 15.0 fps

37.0 1,800 Total

Summary for Subcatchment 4S: Golf Links South

Runoff = 3.78 cfs @ 12.03 hrs, Volume= 0.246 af, Depth= 0.14"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Type II 24-hr WQv Rainfall=0.90"

	Area (ac)	CN	Description
*	1.760	98	Streets
*	0.870	98	Drives
*	1.360	98	Rooftop
	17.010	74	>75% Grass cover, Good, HSG C
	21.000	79	Weighted Average
	17.010	74	81.00% Pervious Area
	3.990	98	19.00% Impervious Area

Prepared							Printed 2/1/20
lydroCAD@	® 9.10 s	s/n 05471	© 2009 Hy	droCAD Sc	oftware Solu	Itions LLC	Page
Tc L (min)	_ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descriptio	on	
11.2	100	0.0550	0.15			ow, Lawn ense n= 0.240	D2- 2 30"
0.5	130	0.0850	4.37		Shallow		low, Lawn to street
11.7	230	Total			0100000	ratornay n	
			Sum	mary for	Pond 5P	: Pond-Soutl	ı
nflow Area	a =					Depth = 0.08"	for WQv event
nflow	=		@ 12.03			0.250 af	
Dutflow Primary	=		<pre>@ 20.02 @ 20.02</pre>			0.247 af, Att 0.247 af	en= 98%, Lag= 479.6 min
Starting El	ev= 485	5.00' Sur	f.Area= 4,8	367 sf Sto	orage= 3,7		f (7,985 cf above start)
Plug-Flow	detentio	on time= 2) 195 2 mir	n calculate	d for 0 162	of (CEO/ of infl	
Center-of-I			1,478.2 mii	ר (2,292.9) ו	- 814.7)	ar (65% of Inno	DW)
	Mass de	et. time= 2	1,478.2 mii	n (2,292.9	- 814.7) 24 HRS	·	9W)
/olume	Mass de Inve	et. time= <u>^</u> ert Av	i,478.2 mii ail.Storage	n (2,292.9 Storage	- 814.7) 24 H E - S Descriptio	on	·
	Mass de	et. time= ^ ert Av)0'	1,478.2 mii	n (2,292.9 Storage North c	- 814.7) 24 H E - S 26 Description 26 Description	·	v (Recalc)
/olume #1	Mass de Inve 484.(et. time= ^ ert Av)0'	ail.Storage 67,866 c	Storage	- 814.7) 24 H E - S 26 Description 26 Description	on Iar) Listed belov Ilar) Listed belov	v (Recalc)
/olume #1 #2 Elevation	Mass de Inve 484.(et. time= ert Av 00' 00' Surf.Area	ail.Storage 67,866 ci 18,693 ci 86,559 ci Perim	n (2,292.9 Storage North c South c Total A	- 814.7) 24 H E-S Descriptio cell (Irregu cell (Irregu vailable Sto Inc.Store	on Iar) Listed belov I lar) Listed belov orage Cum.Store	v (Recalc) w (Recalc) e Wet.Area
/olume #1 #2 Elevation (feet)	Mass de Inve 484.(et. time= 2 ert Av 00' 00' Surf.Area (sq-ft)	ail.Storage 67,866 ct 18,693 ct 86,559 ct Perim (feet	n (2,292.9 Storage North c South c Total A n. (cu	- 814.7) 24 HE-S Description cell (Irregu cell (Irregu vailable Store ubic-feet)	on Iar) Listed belov Ilar) Listed belov orage Cum.Store (cubic-feet	v (Recalc) w (Recalc) e Wet.Area) (sq-ft)
/olume #1 #2 Elevation (feet) 484.00	Mass de Inve 484.(et. time= 2 ert Av 00' 00' Surf.Area (sq-ft) 2,653	ail.Storage 67,866 ci 18,693 ci 86,559 ci 9 Perim (feet 221.	(2,292.9 Storage North c South c Total A (cu 0	- 814.7) 24 HE-S Description cell (Irregun vailable Store ubic-feet) 0	on Iar) Listed belov Ilar) Listed belov orage Cum.Store (cubic-feet	v (Recalc) w (Recalc) e Wet.Area) (sq-ft)) 2,653
/olume #1 #2 Elevation (feet) 484.00 485.00	Mass de Inve 484.(et. time= 2 ert Av 00' 00' Surf.Area (sq-ft) 2,653 4,867	ail.Storage 67,866 c 18,693 c 86,559 c Perim (fee 221. 298.	n (2,292.9 Storage North c South c Total A (cu) (cu 0 0	- 814.7) 24 HE-S 20 Description 20 D	on Iar) Listed belov Ilar) Listed belov orage Cum.Store (cubic-feet (3,704	v (Recalc) w (Recalc) e Wet.Area) (sq-ft) 0 2,653 4 5,844
<u>′olume</u> #1 #2 Elevation (feet) 484.00 485.00 486.00	Mass de Inve 484.(et. time= 2 ert Av 00' 00' Surf.Area (sq-ft) 2,653 4,867 7,347	ail.Storage 67,866 ci 18,693 ci 86,559 ci 9 Perim (feel 221. 298. 360.	n (2,292.9 Storage North c South c Total A (cu) (cu)	- 814.7) 24 HE-S 20 Description 20 D	on lar) Listed belov lar) Listed belov orage Cum.Store (cubic-feet (3,704 9,765	v (Recalc) w (Recalc) e Wet.Area) (sq-ft) 0 2,653 4 5,844 9 9,107
/olume #1 #2 Elevation (feet) 484.00 485.00 486.00 487.00	Mass de Inve 484.(et. time= 2 ert Av 00' 00' Surf.Area (sq-ft) 2,653 4,867 7,347 10,506	ail.Storage 67,866 ci 18,693 ci 86,559 ci 86,559 ci 9 Perim (feet 221. 298. 360. 416.	n (2,292.9 Storage North c South c Total A (cu c) (cu c) 0 0	- 814.7) -4 H E-> -24 H E-> -2	on lar) Listed belov llar) Listed belov orage Cum.Store (cubic-feet (3,704 9,768 18,649	v (Recalc) w (Recalc) • Wet.Area • (sq-ft) • 2,653 • 5,844 • 9,107 • 12,587
folume #1 #2 Elevation (feet) 484.00 485.00 486.00 487.00 488.00	Mass de Inve 484.(et. time= ert Av 00' 00' 00' Surf.Area (sq-ft) 2,653 4,867 7,347 10,506 14,060	ail.Storage 67,866 ci 18,693 ci 86,559 ci 86,559 ci 9 Perim (feet 221. 298. 360. 360. 416. 480.	n (2,292.9 Storage North c South c Total A (cu) (cu)))	- 814.7) -4 H E-> -24 H E-> -2	on lar) Listed belov orage Cum.Store (cubic-feet 3,704 9,765 18,645 30,885	v (Recalc) w (Recalc) • Wet.Area • (sq-ft) • 2,653 • 5,844 • 9,107 • 12,587 • 17,172
/olume #1 #2 Elevation (feet) 484.00 485.00 486.00 487.00	Mass de Inve 484.(et. time= 2 ert Av 00' 00' Surf.Area (sq-ft) 2,653 4,867 7,347 10,506	ail.Storage 67,866 ci 18,693 ci 86,559 ci 86,559 ci 9 Perim 0 (fee 3 221. 2 298. 360. 3 416. 0 480. 577.	n (2,292.9 Storage North of South of Total Ar (cu) (cu)))))))))))))	- 814.7) -4 H E-> -24 H E-> -2	on lar) Listed belov llar) Listed belov orage Cum.Store (cubic-feet (3,704 9,768 18,649	v (Recalc) w (Recalc) Wet.Area) (sq-ft)) 2,653 4 5,844 9 9,107 9 12,587 9 17,172 3 25,348
/olume #1 #2 Elevation (feet) 484.00 485.00 485.00 485.00 489.00 489.00 489.00 Elevation	Mass de Inve 484.(et. time= ert Av 00' 00' 00' 2,653 4,867 7,347 10,506 14,060 18,271 23,556 Surf.Area	ail.Storage 67,866 ci 18,693 ci 86,559 ci 86,559 ci 9 Perim (feet 221. 298. 360. 360. 416. 480. 577. 6 682. Perim	n (2,292.9 Storage North c South c Total A (cu) (cu)))))))))))))	- 814.7) -4 H E	on lar) Listed belov lar) Listed belov orage Cum.Store (cubic-feet (3,704 9,768 18,649 30,889 47,008 67,866 Cum.Store	v (Recalc) w (Recalc) w (Recalc) y (sq-ft)) 2,653 4 5,844 9 9,107 9 12,587 9 17,172 3 25,348 5 35,887 w Wet.Area
/olume #1 #2 Elevation (feet) 484.00 485.00 485.00 486.00 487.00 488.00 489.00 490.00 Elevation (feet)	Mass de Inve 484.(et. time= <u>ert Av</u> 00' 00' 00' Surf.Area (sq-ft) 2,653 4,867 7,347 10,506 14,060 18,271 23,556 Surf.Area (sq-ft)	ail.Storage 67,866 ci 18,693 ci 86,559 ci 86,559 ci 9 Perim (feet 221. 298. 360. 416. 480. 577. 6 682. Perim (feet	n (2,292.9 Storage North c South c Total A (cu) (cu) (cu) (cu	- 814.7) - 814.7) - 814.7) - 9 Description - 9 Descri	on lar) Listed belov orage Cum.Store (cubic-feet (3,704 9,765 18,645 30,885 47,008 67,866 Cum.Store (cubic-feet	v (Recalc) w (Recalc) w (Recalc) y (Recalc) y (sq-ft) y 2,653 y 5,844 y 9,107 y 12,587 y 17,172 y 25,348 y 35,887 w Wet.Area y (sq-ft)
/olume #1 #2 Elevation (feet) 484.00 485.00 486.00 487.00 488.00 489.00 490.00 Elevation (feet) 488.00	Mass de Inve 484.(et. time= ert Av 00' 00' 00' 00' 00' 00' 00' 00	ail.Storage 67,866 ci 18,693 ci 86,559 ci 86,559 ci 86,559 ci 9 221. 298. 360. 416. 480. 577. 682. Perim (feet 352.	n (2,292.9 Storage North c South c Total A (cu) (cu) (cu) (cu) (cu	- 814.7) -4 H P-> -24 H P-> -26 H -26 H -	on lar) Listed belov orage Cum.Store (cubic-feet (0 3,704 9,769 18,649 30,889 47,008 67,860 Cum.Store (cubic-feet	v (Recalc) w (Recalc) e Wet.Area) (sq-ft)) 2,653 4 5,844 9 9,107 9 12,587 9 17,172 3 25,348 5 35,887 e Wet.Area) (sq-ft) 0 6,002
/olume #1 #2 Elevation (feet) 484.00 485.00 485.00 486.00 487.00 488.00 489.00 490.00 Elevation (feet)	Mass de Inve 484.(et. time= <u>ert Av</u> 00' 00' 00' Surf.Area (sq-ft) 2,653 4,867 7,347 10,506 14,060 18,271 23,556 Surf.Area (sq-ft)	ail.Storage 67,866 ci 18,693 ci 86,559 ci 86,559 ci 9 Perim (feel 221. 298. 360. 416. 577. 6 682. Perim (feel 2352. 399.	n (2,292.9 Storage North c South c Total A (cu) (cu) (cu) (cu) (cu) (cu) (cu) (cu	- 814.7) - 814.7) - 814.7) - 9 Description - 9 Descri	on lar) Listed belov orage Cum.Store (cubic-feet (3,704 9,765 18,645 30,885 47,008 67,866 Cum.Store (cubic-feet	v (Recalc) w (Recalc) e Wet.Area) (sq-ft)) 2,653 4 5,844 9 9,107 9 12,587 9 17,172 3 25,348 5 35,887 e Wet.Area) (sq-ft) 0 6,002 0 8,836
/olume #1 #2 Elevation (feet) 484.00 485.00 485.00 485.00 489.00 490.00 Elevation (feet) 488.00 489.00 489.00 490.00	Mass de Inve 484.0 488.0	et. time= ert Av 00' 00' 00' Surf.Area (sq-ft) 23,556 Surf.Area (sq-ft) 6,002 8,554 14,621	ail.Storage 67,866 ci 18,693 ci 86,559 ci 86,559 ci 9 Perim (feel 221. 298. 360. 416. 480. 577. 6 682. Perim (feel 352. 399. 520.	n (2,292.9 Storage North c South c Total A (cu) (cu) (cu) (cu) (cu) (cu) (cu) (cu	- 814.7) -4 H E	on lar) Listed below orage Cum.Store (cubic-feet 3,704 9,769 18,649 30,889 47,008 67,866 Cum.Store (cubic-feet	v (Recalc) w (Recalc) e Wet.Area) (sq-ft)) 2,653 4 5,844 9 9,107 9 12,587 9 17,172 3 25,348 5 35,887 e Wet.Area) (sq-ft) 0 6,002 0 8,836
/olume #1 #2 Elevation (feet) 484.00 485.00 485.00 485.00 489.00 490.00 Elevation (feet) 488.00 490.00 2000	Mass de Inve 484.(et. time= ert Av 00' 00' 00' 00' 00' 00' 00' 00	ail.Storage 67,866 ci 18,693 ci 86,559 ci 86,559 ci 86,559 ci 221. 298. 360. 416. 480. 577. 682. Perim (feel 352. 399. 520.	n (2,292.9 Storage North c South c Total A (cu) (cu) (cu	- 814.7) -4 H E	on lar) Listed belov orage Cum.Store (cubic-feet (3,704 9,765 18,645 30,885 47,008 67,866 Cum.Store (cubic-feet (7,240 18,693	v (Recalc) w (Recalc) e Wet.Area) (sq-ft)) 2,653 4 5,844 9 9,107 9 12,587 9 17,172 3 25,348 5 35,887 e Wet.Area) (sq-ft) 0 6,002 0 8,836

Primary OutFlow Max=0.06 cfs @ 20.02 hrs HW=486.25' (Free Discharge) -1=WQv Orifice (Orifice Controls 0.06 cfs @ 5.24 fps) -2=CPv Orifice (Controls 0.00 cfs)

Summary for Subcatchment 3S: Offsite

Runoff = 1.38 cfs @ 12.47 hrs, Volume= 0.306 af, Depth= 0.21"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Type II 24-hr 1 year Rainfall=2.10"

	Area	(ac)	CN	Desc	ription					
	2.	070	30	Mea	dow, non-g	razed, HS	G A			
	0.	580	58	Mead	dow, non-g	razed, HS	G B			
	9.	170	71	71 Meadow, non-grazed, HSG C						
	2.000 70 Woods, Good, HSG C									
	0.	260	77	Woo	ds, Good,	HSG D				
	1.	310	80	>75%	6 Grass co	over, Good	, HSG D			
	1.	730	74	>75%	6 Grass co	over, Good	, HSG C			
*	0.	080	98	Drive	e & rooftop					
	17.	200	67	Weig	hted Aver	age				
	17.	120	67	99.5	3% Pervio	us Area				
	0.	080	98	0.479	% Impervio	ous Area				
	Tc	Lengt	:h	Slope	Velocity	Capacity	Description			
	(min)	(fee	<u>t)</u>	(ft/ft)	(ft/sec)	(cfs)				
	17.6	15	0 0	0.0400	0.14		Sheet Flow, Thru meadow			

	17.0	150	0.0400	0.14	Sneet Flow, I nru meadow	
					Grass: Dense n= 0.240 P2= 2.30"	
	10.1	1,120	0.0700	1.85	Shallow Concentrated Flow, Thru meadow	
					Short Grass Pasture Kv= 7.0 fps	
	9.3	530	0.0040	0.95	Shallow Concentrated Flow, Diversion	
					Grassed Waterway Kv= 15.0 fps	
-						

37.0 1,800 Total

Summary for Subcatchment 4S: Golf Links South

Runoff = 17.64 cfs @ 12.04 hrs, Volume= 1.187 af, Depth= 0.68"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Type II 24-hr 1 year Rainfall=2.10"

	Area (ac)	CN	Description
*	1.760	98	Streets
*	0.870	98	Drives
*	1.360	98	Rooftop
	17.010	74	>75% Grass cover, Good, HSG C
	21.000	79	Weighted Average
	17.010	74	81.00% Pervious Area
	3.990	98	19.00% Impervious Area

iydroCAD	® 9.10 :	5/11 0 0 47 1						Page 4
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descriptic	on		
11.2	100	0.0550	0.15	<u></u>	Sheet Flo			
0.5	400	0.0050	4.07			ense n= 0.240 F		
0.5	130	0.0850	4.37			Vaterway Kv= 1	w, Lawn to street	
11.7	230	Total						
			Sum	mary for	Pond 5P	: Pond-South		
nflow Are	a =	38.200 a	ac. 10.65%		us. Inflow [Depth = 0.47" f	or 1 vear event	
nflow	=		@ 12.05			1.493 af	,	
Dutflow	-	1.95 cfs	@ 13.23	hrs, Volu	ime=	•	= 89%, Lag= 71.4	min
rimary	=	1.95 cfs	@ 13.23	hrs, Volu	ime=	1.482 af		
					6.00 hrs, dt			
					orage= 3,70		(30,776 cf above :	etart)
	- 400. [1 @ 13.2	Sills Sul	I.Alea-ZI	1,100 51 01	Ulaye- 34,400 Cl	(30,770 Cl above :	start)
	Press,					5		5.);
	C	on time= 8	306.1 min (alculated				
lug-Flow	detenti		306.1 min (717.8 min (for 1.397 a	f (94% of inflow)		,
Plug-Flow Center-of-	detenti	et. time=	717.8 min	- 1,574.2 ノン HI	for 1.397 a 856.3) r-S	f (94% of inflow)		
Plug-Flow Center-of- Volume	detentio Mass de Inv	et. time= 7 ert Av	717.8 min ail.Storage	- 1,574.2 「こ Hi Storage	for 1.397 a 856.3) r-S e Descriptio	f (94% of inflow)		
Plug-Flow Center-of- <u>/olume</u> #1	detentio Mass do Invo 484.0	et. time= ert Av 00'	717.8 min ail.Storage 67,866 c	(1,574.2 - 乙 円 Storage f North c	for 1.397 a 856.3) ᢦ e Descriptio cell (Irregul	f (94% of inflow) on l ar) Listed below (Recalc)	
Plug-Flow Center-of- Volume	detentio Mass de Inv	et. time= ert Av 00'	717.8 min vail.Storage 67,866 c 18,693 c	(1,574.2 - [乙 丹] Storage f North o f South o	for 1.397 a 856.3) e S e Descriptio cell (Irregul cell (Irregu	f (94% of inflow) on l ar) Listed below (lar) Listed below (Recalc)	-
Plug-Flow Center-of- <u>/olume</u> #1	detentio Mass do Invo 484.0	et. time= ert Av 00'	717.8 min vail.Storage 67,866 c 18,693 c	(1,574.2 - [乙 丹] Storage f North o f South o	for 1.397 a 856.3) ᢦ e Descriptio cell (Irregul	f (94% of inflow) on l ar) Listed below (lar) Listed below (Recalc)	-
Plug-Flow Center-of- <u>/olume</u> #1	detentio Mass do Invo 484.0 488.0	et. time= ert Av 00'	717.8 min cail.Storage 67,866 c 18,693 c 86,559 c	(1,574.2 - (乙 舟) Storage f North o f South f Total A	for 1.397 a 856.3) e S e Descriptio cell (Irregul cell (Irregu	f (94% of inflow) on l ar) Listed below (lar) Listed below (Recalc)	-
Plug-Flow Center-of- <u>/olume</u> #1 #2	detentio Mass d Inv 484.0 488.0	et. time= ert Av 00' 00'	717.8 min ail.Storage 67,866 c 18,693 c 86,559 c Perim	(1,574.2 - Z + Storage f North o f South f Total A	for 1.397 a 856.3) Descriptio cell (Irregul cell (Irregu vailable Sto	f (94% of inflow) on l ar) Listed below (lar) Listed below (orage	Recalc) (Recalc)	-
Plug-Flow Center-of- <u>/olume</u> #1 #2 Elevation (feet) 484.00	detentio Mass do Invo 484.0 488.0	et. time= 7 ert Av 00' 00' Surf.Area (sq-ft 2,653	717.8 min ail.Storage 67,866 c 18,693 c 86,559 c 86,559 c 9 Perim (fee 3 221.	(1,574.2 - [Z H] Storage f North o f South o f Total A n. (cu 0	for 1.397 a 856.3) P-S e Descriptio cell (Irregul cell (Irregul vailable Sto lnc.Store ubic-feet) 0	f (94% of inflow) on (ar) Listed below (lar) Listed below (orage Cum.Store (cubic-feet) 0	Recalc) (Recalc) Wet.Area (sq-ft) 2,653	
lug-Flow center-of- <u>'olume</u> #1 #2 Elevation (feet) 484.00 485.00	detentio Mass do Invo 484.0 488.0	et. time= 7 ert Av 00' 00' Surf.Area (sq-ft 2,653 4,867	717.8 min eail.Storage 67,866 c 18,693 c 86,559 c 86,559 c 9 Perim (fee 3 221. 7 298.	(1,574.2 - [Z +]] Storage f North o f South o f Total A h. (cu 0 0	for 1.397 a 856.3) b <u>b</u> <u>Descriptio</u> cell (Irregul cell (Irregul vailable Sto unc.Store ubic-feet) 0 3,704	f (94% of inflow) on lar) Listed below (lar) Listed below (orage Cum.Store (cubic-feet) 0 3,704	Recalc) (Recalc) Wet.Area (sq-ft) 2,653 5,844	
Plug-Flow Center-of- #1 #2 Elevation (feet) 484.00 485.00 486.00	detentio Mass do Invo 484.0 488.0	et. time= 7 ert Av 00' 00' Surf.Area (sq-ft 2,653 4,867 7,347	717.8 min eail.Storage 67,866 c 18,693 c 86,559 c 86,559 c 9 Perim (fee 3 221. 7 298. 7 360.	(1,574.2 - Z + Storage f North o f South f Total A n. (cu 0 0 0	for 1.397 a 856.3) b <u>e Descriptio</u> cell (Irregul cell (Irregul vailable Sto vailable Sto ubic-feet) 0 3,704 6,065	f (94% of inflow) on lar) Listed below (lar) Listed below (orage Cum.Store (cubic-feet) 0 3,704 9,769	Recalc) (Recalc) Wet.Area (sq-ft) 2,653 5,844 9,107	-
Plug-Flow Center-of- #1 #2 Elevation (feet) 484.00 485.00 486.00 487.00	detentio Mass di Inv 484.(488.(et. time= 7 ert Av 00' 00' Surf.Area (sq-ft 2,653 4,867 7,347 10,506	717.8 min rail.Storage 67,866 c 18,693 c 86,559 c 86,559 c 9 Perim (fee 3 221. 7 298. 7 360. 5 416.	(1,574.2 - Z + s Storage f North o f Total A f. (ci 0 0 0 0 0	for 1.397 a 856.3) <u>P</u> -S <u>e Descriptio</u> cell (Irregul cell (Irregul vailable Store ubic-feet) 0 3,704 6,065 8,880	f (94% of inflow) on lar) Listed below (lar) Listed below (orage Cum.Store (cubic-feet) 0 3,704 9,769 18,649	Recalc) (Recalc) Wet.Area (sq-ft) 2,653 5,844 9,107 12,587	
Plug-Flow Center-of- #1 #2 Elevation (feet) 484.00 485.00 486.00 487.00 488.00	detentio Mass d Inv 484.0 488.0	et. time= ert Av 00' 00' 00' Surf.Area (sq-ft 2,653 4,867 7,347 10,506 14,060	717.8 min rail.Storage 67,866 c 18,693 c 86,559 c 86,559 c 9 Perim (fee 3 221. 7 298. 7 360. 5 416. 0 480.	(1,574.2 - Z + Storage f North o f South o f Total A n. (cu 0 0 0 0 0 0	for 1.397 a 856.3) <u>P</u> -S <u>e</u> Descriptio cell (Irregul cell (Irregul vailable Sto Inc.Store ubic-feet) 0 3,704 6,065 8,880 12,240	f (94% of inflow) an lar) Listed below (brage Cum.Store (cubic-feet) 0 3,704 9,769 18,649 30,889	Recalc) (Recalc) Wet.Area (sq-ft) 2,653 5,844 9,107 12,587 17,172	
Plug-Flow Center-of- #1 #2 Elevation (feet) 484.00 485.00 485.00 486.00 488.00 489.00	detentio Mass do Invo 484.0 488.0	et. time= ert Av 00' 00' 00' Surf.Area (sq-ft 2,653 4,867 7,347 10,506 14,060 18,271	717.8 min rail.Storage 67,866 c 18,693 c 86,559 c 86,559 c 9 Perim (fee 3 221. 7 298. 7 360. 5 416. 0 480. 1 577.	(1,574.2 - Z + Storage f North o f South o f Total A h. (cu 0 0 0 0 0 0 0 0 0	for 1.397 a 856.3) 	f (94% of inflow) on (ar) Listed below (lar) Listed below (orage Cum.Store (cubic-feet) 0 3,704 9,769 18,649 30,889 47,008	Recalc) (Recalc) Wet.Area (sq-ft) 2,653 5,844 9,107 12,587 17,172 25,348	
Plug-Flow Center-of- #1 #2 Elevation (feet) 484.00 485.00 486.00 487.00 488.00	detentio Mass do Invo 484.0 488.0	et. time= ert Av 00' 00' 00' Surf.Area (sq-ft 2,653 4,867 7,347 10,506 14,060	717.8 min rail.Storage 67,866 c 18,693 c 86,559 c 86,559 c 9 Perim (fee 3 221. 7 298. 7 360. 5 416. 0 480. 1 577.	(1,574.2 - Z + Storage f North o f South o f Total A h. (cu 0 0 0 0 0 0 0 0 0	for 1.397 a 856.3) <u>P</u> -S <u>e</u> Descriptio cell (Irregul cell (Irregul vailable Sto Inc.Store ubic-feet) 0 3,704 6,065 8,880 12,240	f (94% of inflow) an lar) Listed below (brage Cum.Store (cubic-feet) 0 3,704 9,769 18,649 30,889	Recalc) (Recalc) Wet.Area (sq-ft) 2,653 5,844 9,107 12,587 17,172	
Plug-Flow Center-of- #1 #2 Elevation (feet) 484.00 485.00 485.00 486.00 488.00 489.00	detentio Mass di Invo 484.0 488.0	et. time= ert Av 00' 00' 00' Surf.Area (sq-ft 2,653 4,867 7,347 10,506 14,060 18,271	717.8 min ail.Storage 67,866 c 18,693 c 86,559 c 9 Perim (fee 221. 7 298. 7 298. 7 360. 6 416. 9 480. 1 577. 6 682.	(1,574.2 - Z + Storage f North o f South f Total A 1. (cu 0 0 0 0 0 0 0 0 0 0	for 1.397 a 856.3) 	f (94% of inflow) on lar) Listed below (lar) Listed below (orage Cum.Store (cubic-feet) 0 3,704 9,769 18,649 30,889 47,008 67,866 Cum.Store	Recalc) (Recalc) Wet.Area (sq-ft) 2,653 5,844 9,107 12,587 17,172 25,348	
Plug-Flow Center-of- #1 #2 Elevation (feet) 484.00 485.00 485.00 485.00 489.00 489.00 490.00	detentio Mass do Inv 484.0 488.0	et. time= 7 ert Av 00' 00' 00' Surf.Area (sq-ft) 2,653 4,867 7,347 10,506 14,060 18,271 23,556	717.8 min rail.Storage 67,866 c 18,693 c 86,559 c 86,559 c 9 Perim (fee 9 221. 7 298. 7 360. 9 416. 9 480. 1 577. 6 682. 9 Perim	(1,574.2 - Z + storage f North o f Total A f. (cr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	for 1.397 a 856.3) <u>P</u> -S <u>e Descriptio</u> cell (Irregul cell (Irregul vailable Sto Inc.Store ubic-feet) 0 3,704 6,065 8,880 12,240 16,120 20,858	f (94% of inflow) (ar) Listed below (lar) Listed below (orage Cum.Store (cubic-feet) 0 3,704 9,769 18,649 30,889 47,008 67,866	Recalc) (Recalc) (sq-ft) 2,653 5,844 9,107 12,587 17,172 25,348 35,887	
Plug-Flow Center-of- #1 #2 Elevation (feet) 484.00 485.00 485.00 485.00 489.00 489.00 489.00 Elevation	detentio Mass di Inv 484.0 488.0	et. time= 7 ert Av 00' 00' 00' Surf.Area (sq-ft 2,653 4,867 7,347 10,506 14,060 18,271 23,556 Surf.Area	717.8 min rail.Storage 67,866 c 18,693 c 86,559 c 86,559 c 9 Perim (fee 3 221. 7 298. 7 360. 5 416. 0 480. 1 577. 6 682. 9 Perim) (fee	(1,574.2 - Z + Storage f North c f South f Total A n. (cu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	for 1.397 a 856.3) <u>P</u> -S <u>e Descriptio</u> cell (Irregul cell (Irregul vailable Sto Inc.Store ubic-feet) 0 3,704 6,065 8,880 12,240 16,120 20,858 Inc.Store	f (94% of inflow) on lar) Listed below (lar) Listed below (orage Cum.Store (cubic-feet) 0 3,704 9,769 18,649 30,889 47,008 67,866 Cum.Store	Recalc) (Recalc) (sq-ft) 2,653 5,844 9,107 12,587 17,172 25,348 35,887 Wet.Area	
Plug-Flow Center-of- #1 #2 Elevation (feet) 484.00 485.00 486.00 487.00 488.00 489.00 490.00 Elevation (feet)	detentio Mass d 484.0 488.0	et. time= 7 ert Av 00' 00' 00' 00' Surf.Area 10,506 14,060 18,271 23,556 Surf.Area (sq-ft	717.8 min rail.Storage 67,866 c 18,693 c 86,559 c 86,559 c 9 Perim) (fee 3 221. 7 298. 7 298. 7 360. 5 416. 0 480. 1 577. 5 682. 9 Perim) (fee 2 352.	(1,574.2 - Z + Storage f North o f South o f Total A h. (cu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	for 1.397 a 856.3) <u>P</u> -S <u>e Descriptio</u> cell (Irregul cell (Irregul vailable Store ubic-feet) 0 3,704 6,065 8,880 12,240 16,120 20,858 Inc.Store ubic-feet)	f (94% of inflow) ar) Listed below (lar) Listed below (brage Cum.Store (cubic-feet) 0 3,704 9,769 18,649 30,889 47,008 67,866 Cum.Store (cubic-feet)	Recalc) (Recalc) Wet.Area (sq-ft) 2,653 5,844 9,107 12,587 17,172 25,348 35,887 Wet.Area (sq-ft)	
Plug-Flow Center-of- #1 #2 Elevation (feet) 484.00 485.00 485.00 485.00 487.00 488.00 489.00 489.00 50 490.00 Elevation (feet) 488.00	detentio Mass do 1nv 484.0 488.0	et. time= 7 ert Av 00' 00' 00' 00' Surf.Area (sq-ft) 23,556 Surf.Area (sq-ft) 6,002	717.8 min rail.Storage 67,866 c 18,693 c 86,559 c 86,559 c 9 Perim (fee 3 221. 7 298. 7 298. 7 360. 9 416. 9 480. 1 577. 6 682. 9 Ferim (fee 2 352. 4 399.	(1,574.2 - Z + Storage f North o f South o f Total A (cu (cu (cu (cu (cu (cu (cu (cu	for 1.397 at 856.3) <u>P</u> -S <u>e</u> Descriptio cell (Irregul cell (Irregul vailable Sto Inc.Store ubic-feet) 0 3,704 6,065 8,880 12,240 16,120 20,858 Inc.Store ubic-feet) 0	f (94% of inflow) ar) Listed below (lar) Listed below (brage Cum.Store (cubic-feet) 0 3,704 9,769 18,649 30,889 47,008 67,866 Cum.Store (cubic-feet) 0	Recalc) (Recalc) Wet.Area (sq-ft) 2,653 5,844 9,107 12,587 17,172 25,348 35,887 Wet.Area (sq-ft) 6,002	
Plug-Flow Center-of- #1 #2 Elevation (feet) 484.00 485.00 485.00 485.00 489.00 489.00 490.00 Elevation (feet) 488.00 490.00	detentio Mass do 1nv 484.0 488.0	et. time= 7 ert Av 00' 00' 00' Surf.Area (sq-ft' 23,556 Surf.Area (sq-ft' 6,002 8,554 14,621	717.8 min rail.Storage 67,866 c 18,693 c 86,559 c 86,559 c 9 Perim (fee 3 221. 7 298. 7 298. 7 360. 5 416. 0 480. 5 416. 0 480. 5 682. 9 Ferim (fee 2 352. 4 399. 1 520.	(1,574.2 - Z + Storage f North o f South o f Total A (cu (cu (cu (cu (cu (cu (cu (cu	for 1.397 a 856.3) <u>P</u> -S <u>e Descriptio</u> cell (Irregul cell (Irregul cell (Irregul vailable Store ubic-feet) 0 3,704 6,065 8,880 12,240 16,120 20,858 Inc.Store ubic-feet) 0 7,240 11,453	f (94% of inflow) (ar) Listed below ((ar) Listed below ((ar) Listed below ((cubic-feet) 0 3,704 9,769 18,649 30,889 47,008 67,866 Cum.Store (cubic-feet) 0 7,240	Recalc) (Recalc) (Recalc) 2,653 5,844 9,107 12,587 17,172 25,348 35,887 Wet.Area (sq-ft) 6,002 8,836	

Primary OutFlow Max=1.93 cfs @ 13.23 hrs HW=488.17' (Free Discharge) -1=WQv Orifice (Orifice Controls 0.10 cfs @ 8.49 fps) -2=CPv Orifice (Orifice Controls 0.43 cfs @ 6.42 fps) -3=Overflow (Orifice Controls 1.40 cfs @ 1.34 fps)

Hydrograph for Pond 5P: Pond-South

Time	Inflow	Storage	Elevation	Primary
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)
0.00	0.00	3,704	485.00	0.00
0.50	0.00	3,704	485.00	0.00
1.00	0.00	3,704	485.00	0.00
1.50	0.00	3,704	485.00	0.00
2.00	0.00	3,705	485.00	0.00
2.50 3.00	0.01 0.02	3,717 3,750	485.00	0.00
3.50	0.02	3,802	485.01 485.02	0.00 0.00
4.00	0.03	3,802	485.02	0.00
4.50	0.06	3,955	485.05	0.00
5.00	0.07	4,056	485.07	0.01
5.50	0.08	4,174	485.09	0.01
6.00	0.09	4,307	485.12	0.01
6.50	0.10	4,454	485.15	0.02
7.00	0.12	4,618	485.18	0.02
7.50	0.13	4,799	485.21	0.02
8.00	0.14	4,995	485.25	0.03
8.50	0.17	5,219	485.29	0.03
9.00	0.21	5,504	485.34	0.03
9.50	0.23	5,844	485.40	0.03
10.00	0.27	6,219	485.47	0.04
10.50	0.36	6,708	485.55	0.04
11.00	0.50	7,388	485.65	0.05
11.50	0.81	8,436	485.81	0.05
12.00 12.50	16.12	16,206	486.76	0.27
13.00	4.06 2.31	31,408 34,322	488.03 488.17	0.60 1.86
13.50	1.69	34,322 34,374	488.17	1.89
14.00	1.34	33,908	488.15	1.62
14.50	1.15	33,428	488.12	1.38
15.00	1.05	33,069	488.11	1.22
15.50	0.95	32,795	488.09	1.09
16.00	0.84	32,554	488.08	0.97
16.50	0.77	32,323	488.07	0.90
17.00	0.74	32,127	488.06	0.83
17.50	0.70	31,967	488.05	0.78
18.00	0.66	31,826	488.05	0.74
18.50	0.62	31,695	488.04	0.70
19.00	0.58	31,568	488.03	0.65
19.50	0.54	31,442	488.03	0.61
20.00	0.50	31,314	488.02	0.57
20.50	0.48	31,181	488.01	0.55
21.00	0.47	31,056	488.01	0.53
21.50 22.00	0.46 0.45	30,947 30,850	488.00	0.52
22.50	0.45	30,850	488.00 487.99	0.51 0.51
22.50	0.45	30,634	487.99	0.51
23.50	0.44	30,509	487.97	0.50
24.00	0.43	30,374	487.96	0.50
24.50	0.08	29,872	487.93	0.50
25.00	0.01	29,043	487.87	0.49
25.50	0.00	28,179	487.80	0.48
		, -		

E PEAK Q/ELEV

Hydrograph for Pond 5P: Pond-South (continued)

Time	Inflow	Storago	Elevation	Brimony
(hours)	Inflow (cfs)	Storage (cubic-feet)	(feet)	Primary (cfs)
26.00	0.00	27,327	487.74	0.47
26.50	0.00	26,491	487.67	0.46
27.00	0.00	25,674	487.61	0.45
27.50	0.00	24,876	487.54	0.44
28.00	0.00	24,098	487.48	0.43
28.50	0.00	23,339	487.42	0.42
29.00	0.00	22,601	487.36	0.40
29.50	0.00	21,883 21,185	487.29	0.39
30.00 30.50	0.00 0.00	20,510	487.23 487.17	0.38 0.37
31.00	0.00	19,856	487.11	0.36
31.50	0.00	19,225	487.05	0.34
32.00	0.00	18,617	487.00	0.33
32.50	0.00	18,032	486.94	0.32
33.00	0.00	17,471	486.89	0.30
33.50	0.00	16,934	486.83	0.29
34.00	0.00	16,423	486.78	0.28
34.50	0.00	15,938	486.73	0.26
35.00 35.50	0.00 0.00	15,480 15,049	486.68 486.64	0.25 0.23
36.00	0.00	14,646	486.59	0.23
36.50	0.00	14,273	486.55	0.20
37.00	0.00	13,930	486.51	0.18
37.50	0.00	13,623	486.48	0.16
38.00	0.00	13,350	486.45	0.14
38.50	0.00	13,109	486.42	0.13
39.00	0.00	12,897	486.39	0.11
39.50	0.00	12,706	486.37	0.10
40.00 40.50	0.00 0.00	12,535 12,380	486.35 486.33	0.09 0.08
41.00	0.00	12,300	486.32	0.08
41.50	0.00	12,100	486.30	0.07
42.00	0.00	11,973	486.28	0.07
42.50	0.00	11,852	486.27	0.07
43.00	0.00	11,734	486.25	0.06
43.50	0.00	11,619	486.24	0.06
44.00	0.00	11,504	486.23 486.21	0.06
44.50 45.00	0.00 0.00	11,389 11,276	400.21 486.20	0.06 0.06
45.50	0.00	11,163	486.18	0.06
46.00	0.00	11,050	486.17	0.06
46.50	0.00	10,939	486.15	0.06
47.00	0.00	10,828	486.14	0.06
47.50	0.00	10,718	486.13	0.06
48.00	0.00	10,609	486.11	0.06
48.50	0.00	10,500	486.10	0.06
49.00 49.50	0.00	10,392 10,285	486.08 486.07	0.06 0.06
49.50 50.00	0.00 0.00	10,285	486.06	0.06
50.50	0.00	10,073	486.04	0.06
51.00	0.00	9,969	486.03	0.06
51.50	0.00	9,864	486.01	0.06

Hydrograph for Pond 5P: Pond-South (continued)

Time	Inflow	Storage	Elevation	Primary
(hours) 52.00	(cfs) 0.00	(cubic-feet) 9,761	(feet) 486.00	(cfs)
52.50	0.00	9,659	485.98	0.06 0.06
53.00	0.00	9,557	485.97	0.06
53.50	0.00	9,456	485.96	0.06
54.00	0.00	9,356	485.94	0.06
54.50	0.00	9,256	485.93	0.06
55.00	0.00	9,158	485.92	0.05
55.50 56.00	0.00 0.00	9,060	485.90	0.05
56.50	0.00	8,963 8,867	485.89 485.87	0.05 0.05
57.00	0.00	8,771	485.86	0.05
57.50	0.00	8,677	485.85	0.05
58.00	0.00	8,583	485.83	0.05
58.50	0.00	8,490	485.82	0.05
59.00	0.00	8,398	485.81	0.05
59.50	0.00	8,307	485.79	0.05
60.00 60.50	0.00 0.00	8,216 8,126	485.78 485.77	0.05 0.05
61.00	0.00	8,038	485.75	0.05
61.50	0.00	7,950	485.74	0.05
62.00	0.00	7,863	485.73	0.05
62.50	0.00	7,776	485.71	0.05
63.00	0.00	7,691	485.70	0.05
63.50	0.00	7,606	485.69	0.05
64.00 64.50	0.00 0.00	7,523 7,440	485.67 485.66	0.05 0.05
65.00	0.00	7,358	485.65	0.05
65.50	0.00	7,277	485.64	0.04
66.00	0.00	7,197	485.62	0.04
66.50	0.00	7,118	485.61	0.04
67.00	0.00	7,039	485.60	0.04
67.50	0.00	6,962	485.59	0.04
68.00	0.00	6,885	485.57	0.04
68.50 69.00	0.00 0.00	6,810 6,735	485.56 485.55	0.04 0.04
69.50	0.00	6,661	485.54	0.04
70.00	0.00	6,588	485.53	0.04
70.50	0.00	6,516	485.51	0.04
71.00	0.00	6,445	485.50	0.04
71.50	0.00	6,375	485.49	0.04
72.00	0.00	6,306	485.48	0.04
72.50 73.00	0.00 0.00	6,238 6,171	485.47 485.46	0.04 0.04
73.50	0.00	6,104	485.45	0.04
74.00	0.00	6,039	485.43	0.04
74.50	0.00	5,975	485.42	0.04
75.00	0.00	5,911	485.41	0.03
75.50	0.00	5,849	485.40	0.03
76.00	0.00	5,787	485.39	0.03
76.50 77.00	0.00	5,727	485.38 485.37	0.03 0.03
77.50	0.00 0.00	5,667 5,609	485.36	0.03
11.00	0.00	0,000	-00.00	0.00

Hydrograph for Pond 5P: Pond-South (continued)

Time	Inflow	Storage	Elevation	Primary
(hours)	(cfs)	(cubic-feet)	(feet)	(Cfs)
78.00	0.00	5,551	485.35	0.03
78.50	0.00	5,495	485.34	0.03
79.00	0.00	5,439	485.33	0.03
79.50	0.00	5,385	485.32	0.03
80.00	0.00	5,331	485.31	0.03
80.50	0.00	5,279	485.30	0.03
81.00	0.00	5,227	485.29	0.03
81.50	0.00	5,177	485.28	0.03
82.00	0.00	5,127	485.27	0.03
82.50	0.00	5,079	485.27	0.03
83.00	0.00	5,032	485.26	0.03
83.50	0.00	4,985	485.25	0.03
84.00	0.00	4,940	485.24	0.02
84.50	0.00	4,896	485.23	0.02
85.00	0.00	4,853	485.22	0.02
85.50	0.00	4,811	485.22	0.02
86.00	0.00	4,770	485.21	0.02
86.50	0.00	4,730	485.20	0.02
87.00	0.00	4,691	485.19	0.02
87.50	0.00	4,653	485.19	0.02
88.00	0.00	4,616	485.18	0.02
88.50	0.00	4,580	485.17	0.02
89.00	0.00	4,546	485.17	0.02
89.50	0.00	4,513	485.16	0.02
90.00	0.00	4,480	485.15	0.02
90.50	0.00	4,449	485.15	0.02
91.00	0.00	4,418	485.14	0.02
91.50	0.00	4,389	485.14	0.02
92.00	0.00	4,361	485.13	0.02
92.50	0.00	4,334	485.13	0.01
93.00	0.00	4,309	485.12	0.01
93.50	0.00	4,285	485.12	0.01
94.00	0.00	4,262	485.11	0.01
94.50	0.00	4,240	485.11	0.01
95.00 95.50	0.00	4,220	485.10	0.01
95.50 96.00	0.00 0.00	4,200	485.10	0.01
90.00	0.00	4,181	485.10	0.01

Summary for Subcatchment 3S: Offsite

Runoff = 7.25 cfs @ 12.39 hrs, Volume= 1.000 af, Depth= 0.70"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Type II 24-hr 10 year Rainfall=3.20"

	Area	(ac)	CN	Desc	cription		
	2.	070	30	Mea	dow, non-g	grazed, HS	G A
	0.	580	58	Mea	dow, non-g	grazed, HS	G B
	9.	170	71	Mea	dow, non-g	grazed, HS	GC
	2.	000	70	Woo	ds, Good,	HSG C	
	0.	260	77	Woo	ds, Good,	HSG D	
	1.	310	80	>75%	% Grass co	over, Good	, HSG D
	1.	730	74	>75%	% Grass co	over, Good	, HSG C
*	0.	080	98	Drive	e & rooftop)	
	17.	200	67	Weig	phted Aver	age	
	17.	120	67	99.5	3% Pervio	us Area	
	0.	080	98	0.47	% Impervi	ous Area	
					•		
	Tc	Lengtl	٦	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•
	17.6	15) ()	.0400	0.14		Sheet Flow, Thru meadow
							Grass: Dense n= 0.240 P2= 2.30"
	10.1	1,120	0 0	.0700	1.85		Shallow Concentrated Flow, Thru meadow
							Short Grass Pasture Kv= 7.0 fps

37.0 1,800 Total

530 0.0040

9.3

Summary for Subcatchment 4S: Golf Links South

Shallow Concentrated Flow, Diversion Grassed Waterway Kv= 15.0 fps

Runoff = 39.34 cfs @ 12.04 hrs, Volume= 2.457 af, Depth= 1.40"

0.95

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Type II 24-hr 10 year Rainfall=3.20"

	Area (ac)	CN	Description
*	1.760	98	Streets
*	0.870	98	Drives
*	1.360	98	Rooftop
	17.010	74	>75% Grass cover, Good, HSG C
	21.000	79	Weighted Average
	17.010	74	81.00% Pervious Area
	3.990	98	19.00% Impervious Area

ydroCA	D® 9.10	s/n 05471	© 2009 H	ydroCAD Sc	oftware Solutions LLC	Page
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
11.2	100	0.0550	0.15		Sheet Flow, Lawn	
0.5	130	0.0850	4.37		Grass: Dense n= 0.240 P2= 2.30" Shallow Concentrated Flow, Lawn to street Grassed Waterway Kv= 15.0 fps	
11.7	230	Total				
			Sum	mary for	Pond 5P: Pond-South	

Inflow Area =	38.200 ac, 10.65% Impervious, Inflow	Depth = 1.09" for 10 year event
Inflow =	41.00 cfs @ 12.04 hrs, Volume=	3.457 af
Outflow =	15.81 cfs @ 12.32 hrs, Volume=	3.446 af, Atten= 61%, Lag= 16.6 min
Primary =	15.81 cfs @ 12.32 hrs, Volume=	3.446 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Starting Elev= 485.00' Surf.Area= 4,867 sf Storage= 3,704 cf Peak Elev= 488.85' @ 12.32 hrs Surf.Area= 25,772 sf Storage= 50,397 cf (46,693 cf above start)

Plug-Flow detention time= 368.5 min calculated for 3.359 af (97% of inflow) Center-of-Mass det. time= 340.7 min (1,187.9 - 847.1)

Volume	Inv	ert Ava	il.Storage	Storage Description	on				
#1	484.0		67,866 cf	· •	North cell (Irregular) Listed below (Recalc)				
#2	488.0	00'	18,693 cf	South cell (Irregu	lar) Listed below (Recalc)			
			86,559 cf	Total Available Sto	orage				
Elevatio		Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
(fee	et)	<u>(sq-ft)</u>	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)			
484.0	00	2,653	221.0	0	0	2,653			
485.0	00	4,867	298.0	3,704	3,704	5,844			
486.0)0	7,347	360.0	6,065	9,769	9,107			
487.0	0	10,506	416.0	8,880	18,649	12,587			
488.0	0	14,060	480.0	12,240	30,889	17,172			
489.0	0	18,271	577.0	16,120	47,008	25,348			
490.0	00	23,556	682.0	20,858	67,866	35,887			
 , ,,		.			• • • •				
Elevatio		Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>			
488.0)0	6,002	352.0	0	0	6,002			
489.0	0	8,554	399.0	7,240	7,240	8,836			
490.0	0	14,621	520.0	11,453	18,693	17,697			
Dovico	Douting	1		at Daviaca					
Device	Routing			et Devices					
#1	Primary			Vert. WQv Orifice	C= 0.600				
#2	Primary			Vert. CPv Orifice	C= 0.600				
#3	Primary	488	3.00' 36.0	" W x 12.0" H Vert.	Overflow X 2.00	C= 0.600			

Prepared by Lamoureux & Dickinson HydroCAD® 9.10 s/n 05471 © 2009 HydroCAD Software Solutions I Type II 24-hr 10 year Rainfall=3.20" Printed 2/1/2015 Primary OutFlow Max=15.77 cfs @ 12.32 hrs HW=488.85' (Free Discharge)

-1=WQv Orifice (Orifice Controls 0.12 cfs @ 9.37 fps) -2=CPv Orifice (Orifice Controls 0.50 cfs @ 7.55 fps)

-3=Overflow (Orifice Controls 15.15 cfs @ 2.96 fps)

Summary for Subcatchment 3S: Offsite

Runoff = 15.92 cfs @ 12.36 hrs, Volume= 1.930 af, Depth= 1.35"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Type II 24-hr 100 year Rainfall=4.30"

	Area	(ac)	CN	Desc	ription		
	2.	070	30	Mead	dow, non-g	grazed, HS	G A
	0.	580	58	Mead	dow, non-g	razed, HS	G B
	9.	170	71	Mead	dow, non-g	razed, HS	GC
	2.	000	70	Woo	ds, Good,	HSG C	
	0.1	260	77	Woo	ds, Good,	HSG D	
	1.	310	80	>75%	6 Grass co	over, Good,	, HSG D
	1.	730	74	>75%	6 Grass co	over, Good,	, HSG C
*	0.	080	98	Drive	e & rooftop	•	
	17.	200	67	Weig	hted Aver	age	
	17.	120	67	99.53	3% Pervio	us Area	
	0.	080	98	0.479	% Impervio	ous Area	
	Tc (min)	Lengti (feet		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	17.6	15	0.	0400	0.14		Sheet Flow, Thru meadow

				Grass: Dense n= 0.240 P2= 2.30"
10.1	1,120	0.0700	1.85	Shallow Concentrated Flow, Thru meadow Short Grass Pasture Kv= 7.0 fps
 9.3	530	0.0040	0.95	Shallow Concentrated Flow, Diversion Grassed Waterway Kv= 15.0 fps

37.0 1,800 Total

Summary for Subcatchment 4S: Golf Links South

Runoff = 64.22 cfs @ 12.04 hrs, Volume= 3.931 af, Depth= 2.25"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Type II 24-hr 100 year Rainfall=4.30"

	Area (ac)	CN	Description
*	1.760	98	Streets
*	0.870	98	Drives
*	1.360	98	Rooftop
	17.010	74	>75% Grass cover, Good, HSG C
	21.000	79	Weighted Average
	17.010	74	81.00% Pervious Area
	3.990	98	19.00% Impervious Area

South PROPOSED pond 2015

Prepared by Lamoureux & Dickinson HydroCAD® 9.10 s/n 05471 © 2009 HydroCAD Software Solutions LLC

Type II 24-hr 100 year Rainfall=4.30" Printed 2/1/2015

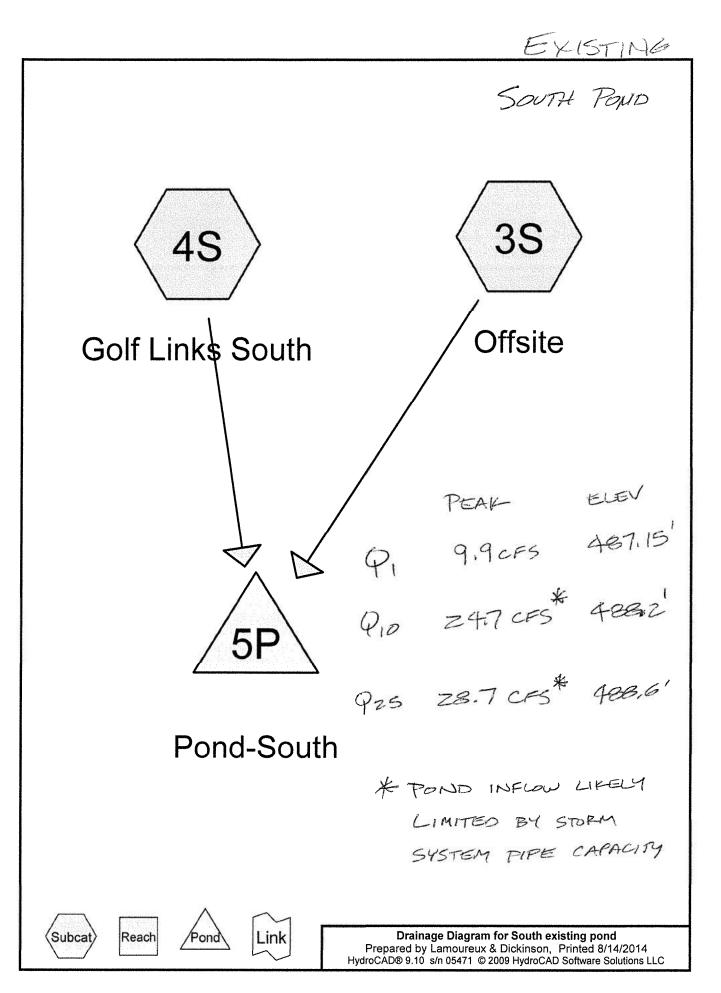
Page 10

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	11.2	100	0.0550	0.15		Sheet Flow, Lawn
						Grass: Dense n= 0.240 P2= 2.30"
	0.5	130	0.0850	4.37		Shallow Concentrated Flow, Lawn to street
_						Grassed Waterway Kv= 15.0 fps
	11.7	230	Total			

Summary for Pond 5P: Pond-South

Inflow Area =	38.200 ac, 10.65% Impervious, Inflow Depth = 1.84" for 100 year event
Inflow =	69.38 cfs @ 12.04 hrs, Volume= 5.861 af
Outflow =	31.15 cfs @ 12.29 hrs, Volume= 5.849 af, Atten= 55%, Lag= 14.6 min
Primary =	31.15 cfs @ 12.29 hrs, Volume= 5.849 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Starting Elev= 485.00' Surf.Area= 4,867 sf Storage= 3,704 cf Peak Elev= 489.63' @ 12.29 hrs Surf.Area= 33,712 sf Storage= 73,273 cf (69,569 cf above start)


Plug-Flow detention time= 232.4 min calculated for 5.764 af (98% of inflow) Center-of-Mass det. time= 215.9 min (1,054.7 - 838.8)

Volume	Inv	ert Ava	il.Storage	Storage Description	on		
#1	484.		67,866 cf		lar) Listed below (I		
#2	488.	00'	18,693 cf	South cell (Irregu	Ilar) Listed below (Recalc)	
			86,559 cf	Total Available Sto	orage		
Elevatio	n	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(fee		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
484.0		2,653	221.0	0	0		
485.0		4,867	298.0	3,704	3,704	2,653 5,844	
486.0		7,347	360.0	6,065		•	
480.0				•	9,769	9,107	
		10,506	416.0	8,880	18,649	12,587	
488.0		14,060	480.0	12,240	30,889	17,172	
489.0		18,271	577.0	16,120	47,008	25,348	
490.0	00	23,556	682.0	20,858	67,866	35,887	
Elevatio	n	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(fee		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
488.0		6,002	352.0	0	0	6,002	
489.0		8,554	399.0	7,240	7,240	8,836	
490.0		14,621	520.0	11,453	18,693	17,697	
	•		020.0	11,100	10,000	11,001	
Device	Routing	lr	vert Outle	et Devices			
#1	Primary	48	5.00' 1.5''	Vert. WQv Orifice	C= 0.600		
#2	Primary			Vert. CPv Orifice	C= 0.600		
#3	Primary			" W x 12.0" H Vert.		C= 0.600	

Primary OutFlow Max=31.14 cfs @ 12.29 hrs HW=489.63' (Free Discharge) -1=WQv Orifice (Orifice Controls 0.13 cfs @ 10.29 fps)

-2=CPv Orifice (Orifice Controls 0.58 cfs @ 8.66 fps)

-3=Overflow (Orifice Controls 30.43 cfs @ 5.07 fps)

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
2.070	30	Meadow, non-grazed, HSG A (3S)
0.580	58	Meadow, non-grazed, HSG B (3S)
2.000	70	Woods, Good, HSG C (3S)
9.170	71	Meadow, non-grazed, HSG C (3S)
18.740	74	>75% Grass cover, Good, HSG C (3S, 4S)
0.260	77	Woods, Good, HSG D (3S)
1.310	80	>75% Grass cover, Good, HSG D (3S)
0.080	98	Drive & rooftop (3S)
0.870	98	Drives (4S)
1.360	98	Rooftop (4S)
1.760	98	Streets (4S)

Summary for Subcatchment 3S: Offsite

Runoff = 1.30 cfs @ 12.48 hrs, Volume= 0.295 af, Depth= 0.21"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-84.00 hrs, dt= 0.05 hrs Type II 24-hr 1 year Rainfall=2.10"

	Area	(ac)	CN De	scription							
	2.	070	30 Me	Meadow, non-grazed, HSG A							
	0.	580	58 Me	/leadow, non-grazed, HSG B							
		170		leadow, non-grazed, HSG C							
		000		Voods, Good, HSG C							
		260		ods, Good,							
		310			over, Good						
		730			over, Good	, HSG C					
*	0.	080	<u>98 Dri</u>	ve & rooftor	0						
		200		ighted Ave							
		120		53% Pervic							
	0.	080	0.4	7% Impervi	ous Area						
		1	0		• •						
	Tc	Length	•		Capacity	Description					
	(min)	(feet)	(ft/ft)		(cfs)						
	17.6	150	0.0400	0.14		Sheet Flow, Thru meadow					
						Grass: Dense n= 0.240 P2= 2.30"					
	10.1	1,120	0.0700	1.85		Shallow Concentrated Flow, Thru meadow					
	~ ~	500				Short Grass Pasture Kv= 7.0 fps					
	9.3	530	0.0040	0.95		Shallow Concentrated Flow, Diversion					
						Grassed Waterway Kv= 15.0 fps					

37.0 1,800 Total

Summary for Subcatchment 4S: Golf Links South

Runoff = 16.59 cfs @ 12.05 hrs, Volume= 1.018 af, Depth= 0.58"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-84.00 hrs, dt= 0.05 hrs Type II 24-hr 1 year Rainfall=2.10"

	Area (ac)	CN	Description
*	1.760	98	Streets
*	0.870	98	Drives
*	1.360	98	Rooftop
	17.010	74	>75% Grass cover, Good, HSG C
	21.000	79	Weighted Average
	17.010		81.00% Pervious Area
	3.990		19.00% Impervious Area

	D® 9.10	<u>s/n 05471</u>	© 2009 Hyd	IroCAD Sof	ftware Solu	utions LLC			Page 4
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descripti	on			
11.2	100	0.0550	0.15		Sheet Fl	ow, Lawn			
0.5	130	0.0850	4.37		Shallow	ense n= 0.24 Concentrated	Flow, Law		:
11.7	230	Total			Grassed	Waterway K	/= 15.0 fps		
			Sumr	nary for	Pond 5F	P: Pond-Sou	th		
Inflow Ar	ea =	38,200 a	c. 10 65%	Imperviou	s Inflow	Depth = 0.41	" for 1 ve	ar event	
Inflow	=		@ 12.05			1.313 af			
Outflow	=	9.92 cfs	@ 12.17	hrs, Volur	ne=	1.313 af, A	tten= 41%,	Lag= 7.2	min
Primary	=	9.92 cfs	@ 12.17	hrs, Volur	ne=	1.313 af			
Plug-Flov Center-o	w detenti f-Mass d	on time= 1 et. time= 5	35.7 min c 55.1 min (9	alculated f 49.8 - 894 < 1 H	or 1.174 a .8) R DET	orage= 15,646 af (89% of inflc モーンTiのト	W)	of above st	tart)
Volume	Inv	ort Δv	ail Storado						
			ail.Storage		Descripti				
#1	484.0	00'	38,692 cf	Custom	Stage Da	ata (Irregular)	Listed below		
		00'	38,692 cf	Custom Custom	Stage Da	ata (Irregular) ata (Irregular)	Listed below		
#1 #2 Elevatio	484.(488.(00' 00' Surf.Area	38,692 cf 7,240 cf 45,933 cf Perim.	Custom Custom Total Av	Stage Da Stage Da ailable St	ata (Irregular) ata (Irregular) orage Cum.Sto	Listed below Listed below re W	v (Recalc) Vet.Area	
#1 #2 Elevatio	484.(488.(n	00' 00' Surf.Area (sq-ft)	38,692 cf 7,240 cf 45,933 cf Perim. (feet)	Custom Custom Total Av Ir (cul	Stage Da Stage Da ailable St nc.Store bic-feet)	ata (Irregular) ata (Irregular) orage	Listed below Listed below re V et)	v (Recalc) Vet.Area (sq-ft)	
#1 #2 Elevation (feet 484.0	484.0 488.0 n :) 0	00' 00' Surf.Area (sq-ft) 1,203	38,692 cf 7,240 cf 45,933 cf Perim. (feet) 197.0	Custom Custom Total Av	Stage Da Stage Da ailable St nc.Store bic-feet) 0	ata (Irregular) ata (Irregular) orage Cum.Sto (cubic-fee	Listed below Listed below re V et) 0	v (Recalc) Vet.Area (sq-ft) 1,203	
#1 #2 Elevation (feet 484.00 485.00	484.0 488.0 n :) 0 0	00' 00' Surf.Area (sq-ft) 1,203 3,502	38,692 cf 7,240 cf 45,933 cf Perim. (feet) 197.0 286.0	Custom Custom Total Av ir (cul	Stage Da Stage Da ailable St nc.Store bic-feet) 0 2,253	ata (Irregular) ata (Irregular) orage Cum.Sto (cubic-fee 2,2	Listed below Listed below re V et) 0 53	v (Recalc) Vet.Area (sq-ft) 1,203 4,632	
#1 #2 Elevation (feet 484.0 485.0 486.0	484.0 488.0 () () () () () () () () () () () () ()	00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988	38,692 cf 7,240 cf 45,933 cf Perim. (feet) 197.0 286.0 352.0	Custom Custom Total Av Ir (cul	Stage Da Stage Da cailable St nc.Store bic-feet) 0 2,253 4,690	ata (Irregular) ata (Irregular) orage Cum.Sto (cubic-fee 2,2 6,94	Listed below Listed below re V et) 0 53 42	v (Recalc) Vet.Area (sq-ft) 1,203 4,632 7,998	
#1 #2 Elevation (feet 484.00 485.00	484.(488.(1990) 488.(1990) 19900 1990) 19900 19900 19900 19900 19900 19900 19900 19900 19900	00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790	38,692 cf 7,240 cf 45,933 cf Perim. (feet) 197.0 286.0 352.0 399.0	Custom Custom Total Av Ir (cul	Stage Da Stage Da Pailable St nc.Store bic-feet) 0 2,253 4,690 7,344	ata (Irregular) ata (Irregular) orage Cum.Sto (cubic-fee 2,2 6,9 14,2	Listed below Listed below re V et) 0 53 42 37	v (Recalc) Vet.Area (sq-ft) 1,203 4,632 7,998 10,832	
#1 #2 Elevation (feet 484.00 485.00 486.00 486.00	484.(488.(1) 0 0 0 0 0 0 0	00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988	38,692 cf 7,240 cf 45,933 cf Perim. (feet) 197.0 286.0 352.0 399.0 459.0	Custom Custom Total Av Ir (cul	Stage Da Stage Da cailable St nc.Store bic-feet) 0 2,253 4,690	ata (Irregular) ata (Irregular) orage Cum.Sto (cubic-fee 2,2 6,94	Listed below Listed below re V et) 0 53 42 37 52	v (Recalc) Vet.Area (sq-ft) 1,203 4,632 7,998	
#1 #2 Elevation (feet 484.00 485.00 485.00 485.00 486.00 489.00 Elevation	484.0 488.0 0 0 0 0 0 0 0 0 0 0 0 0 0	00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790 12,046 16,113 Surf.Area	38,692 cf 7,240 cf 45,933 cf Perim. (feet) 197.0 286.0 352.0 399.0 459.0 564.0 Perim.	Custom Custom Total Av Ir (cul	Stage Da Stage Da ailable St nc.Store bic-feet) 0 2,253 4,690 7,344 10,375 14,030 nc.Store	ata (Irregular) ata (Irregular) orage Cum.Sto (cubic-fee 2,24 6,94 14,28 24,66 38,69 Cum.Sto	Listed below Listed below re V et) 0 53 42 37 52 37 52 92 re V	v (Recalc) Vet.Area (sq-ft) 1,203 4,632 7,998 10,832 14,951 23,514 Vet.Area	
#1 #2 Elevation (feet 484.00 485.00 485.00 485.00 487.00 488.00 489.00 Elevation (feet	484.(488.(1000 1000 1000 1000 1000 1000 1000 10	00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790 12,046 16,113 Surf.Area (sq-ft)	38,692 cf 7,240 cf 45,933 cf Perim. (feet) 197.0 286.0 352.0 399.0 459.0 564.0 Perim. (feet)	Custom Custom Total Av Ir (cul	Stage Da Stage Da railable St nc.Store bic-feet) 0 2,253 4,690 7,344 10,375 14,030 nc.Store bic-feet)	ata (Irregular) ata (Irregular) orage Cum.Sto (cubic-fee 2,29 6,94 14,28 24,66 38,69	Listed below Listed below re V et) 0 53 42 53 42 53 52 52 52 52 52 52 52 52 52 52 52 52 52	v (Recalc) Vet.Area (sq-ft) 1,203 4,632 7,998 10,832 14,951 23,514 Vet.Area (sq-ft)	
#1 #2 Elevation (feet 484.00 485.00 485.00 486.00 488.00 489.00 Elevation	484.(488.(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790 12,046 16,113 Surf.Area	38,692 cf 7,240 cf 45,933 cf Perim. (feet) 197.0 286.0 352.0 399.0 564.0 Perim. (feet) 352.0	Custom Custom Total Av Ir (cul	Stage Da Stage Da ailable St nc.Store bic-feet) 0 2,253 4,690 7,344 10,375 14,030 nc.Store	ata (Irregular) ata (Irregular) orage Cum.Sto (cubic-fee 2,24 6,94 14,28 24,66 38,69 Cum.Sto	Listed below Listed below re V et) 0 53 42 53 42 53 52 52 52 52 52 52 52 52 52 52 52 52 52	v (Recalc) Vet.Area (sq-ft) 1,203 4,632 7,998 10,832 14,951 23,514 Vet.Area	
#1 #2 Elevation (feet 484.00 485.00 485.00 485.00 488.00 489.00 Elevation (feet 488.00 489.00 Device	484.0 488.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790 12,046 16,113 Surf.Area (sq-ft) 6,002 8,554	38,692 cf 7,240 cf 45,933 cf Perim. (feet) 197.0 286.0 352.0 399.0 459.0 564.0 Perim. (feet) 352.0 399.0 Nvert Out	Custom Custom Total Av Ir (cul	Stage Da Stage Da ailable St nc.Store bic-feet) 0 2,253 4,690 7,344 10,375 14,030 nc.Store bic-feet) 0 7,240 s	ata (Irregular) ata (Irregular) orage Cum.Sto (cubic-fee 2,24 6,94 14,28 24,66 38,69 Cum.Sto (cubic-fee 7,24	Listed below Listed below re V et) 0 53 42 53 42 53 52 52 52 52 52 52 52 52 52 52 52 52 52	Vet.Area (sq-ft) 1,203 4,632 7,998 10,832 14,951 23,514 Vet.Area (sq-ft) 6,002	
#1 #2 Elevation (feet 484.00 485.00 485.00 485.00 489.00 Elevation (feet ✓ 488.00 489.00 Device → #1	484.0 488.0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790 12,046 16,113 Surf.Area (sq-ft) 6,002 8,554	38,692 cf 7,240 cf 45,933 cf Perim. (feet) 197.0 286.0 352.0 399.0 564.0 Perim. (feet) 352.0 399.0 564.0 Nert Out 5.85' 8.0 '	Custom Custom Total Av ir (cul cut cut let Device: Vert. Orit	Stage Da Stage Da ailable St nc.Store bic-feet) 0 2,253 4,690 7,344 10,375 14,030 nc.Store bic-feet) 0 7,240 s fice C=	ata (Irregular) ata (Irregular) orage Cum.Sto (cubic-fee 2,24 6,94 14,25 24,66 38,65 Cum.Sto (cubic-fee 7,24	Listed below Listed below re V 0 53 42 37 52 92 re V et) 0 40	v (Recalc) Vet.Area (sq-ft) 1,203 4,632 7,998 10,832 14,951 23,514 Vet.Area (sq-ft) 6,002 8,836	
#1 #2 Elevation (feel 484.00 485.00 485.00 485.00 487.00 488.00 489.00 Elevation (feet 488.00 489.00	484.0 488.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790 12,046 16,113 Surf.Area (sq-ft) 6,002 8,554 I	38,692 cf 7,240 cf 45,933 cf Perim. (feet) 197.0 286.0 352.0 399.0 564.0 Perim. (feet) 352.0 399.0 564.0 99.0 564.0 99.0 0 99.0 90.0 90.0 90.0 90.0 90.0	Custom Custom Total Av Ir (cul (cul Cul Cul Cul Cul Cul Cul Cul Cul Cul C	Stage Da Stage Da ailable St nc.Store bic-feet) 0 2,253 4,690 7,344 10,375 14,030 nc.Store bic-feet) 0 7,240 s fice C= 0'' H Vert	ata (Irregular) ata (Irregular) orage Cum.Sto (cubic-fee 2,24 6,94 14,28 24,66 38,69 Cum.Sto (cubic-fee 7,24	Listed below Listed below re V 0 53 42 37 52 92 re V et) 0 40	v (Recalc) Vet.Area (sq-ft) 1,203 4,632 7,998 10,832 14,951 23,514 Vet.Area (sq-ft) 6,002 8,836	EXIST OUTUR STRUC

-3=Orifice 24"x13" (Orifice Controls 4.27 cfs @ 2.80 fps)

Summary for Subcatchment 3S: Offsite

Runoff = 7.13 cfs @ 12.39 hrs, Volume= 0.985 af, Depth= 0.69"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-84.00 hrs, dt= 0.05 hrs Type II 24-hr 10 year Rainfall=3.20"

	Area	(ac) (CN Des	cription							
	2.	070		Aeadow, non-grazed, HSG A							
			58 Mea	leadow, non-grazed, HSG B							
				leadow, non-grazed, HSG C							
				Noods, Good, HSG C							
				ods, Good,	HSG D						
					over, Good	·					
					over, Good	, HSG C					
*	0.	080	<u>98 Driv</u>	e & rooftor)						
				ighted Avei							
		120		53% Pervio							
	0.	080	0.47	7% Impervi	ous Area						
	Tc	Length	•		Capacity	Description					
	<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	17.6	150	0.0400	0.14		Sheet Flow, Thru meadow					
						Grass: Dense n= 0.240 P2= 2.30"					
	10.1	1,120	0.0700	1.85		Shallow Concentrated Flow, Thru meadow					
						Short Grass Pasture Kv= 7.0 fps					
	9.3	530	0.0040	0.95		Shallow Concentrated Flow, Diversion					
						Grassed Waterway Kv= 15.0 fps					

37.0 1,800 Total

Summary for Subcatchment 4S: Golf Links South

Runoff = 40.06 cfs @ 12.04 hrs, Volume= 2.339 af, Depth= 1.34"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-84.00 hrs, dt= 0.05 hrs Type II 24-hr 10 year Rainfall=3.20"

	Area (ac)	CN	Description
*	1.760	98	Streets
*	0.870	98	Drives
*	1.360	98	Rooftop
	17.010	74	>75% Grass cover, Good, HSG C
	21.000	79	Weighted Average
	17.010		81.00% Pervious Area
	3.990		19.00% Impervious Area

HydroCA								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descriptio	n		
11.2	100	0.0550	0.15		Sheet Flo			
						nse n= 0.240 F		
0.5	130	0.0850	4.37				w, Lawn to street	
44 7		Tatal			Grassed	Vaterway Kv= 1	5.0 fps	
11.7	230	Total						
			Sum	mary for	Pond 5P	Pond-South		
nflow A							for 10 year event	
nflow	=			ihrs, Volu		3.324 af	- 449/	
Outflow Primary		24.68 cfs		3 hrs, Volu 3 hrs, Volu		3.324 af, Atten 3.324 af	= 41%, Lag= 7.8 r	nin
mary	- (24.00 015	12.10	5 m 5, voiu	e-	5.524 di		
Routina	by Stor-Ir	nd method	Time Sp	an= 0 00-8	4.00 hrs, dt	= 0.05 hrs		
					orage= 6,07			
							(21,944 cf above	start)
Cur cr		0 0 12.1		1.741Ca- 10	,100 31 00	51 age- 20,013 Ci	(21,344 01 80006	startj
	w dotopti	on timo- 6	27 min o	algulated f	or 2 102 of	96% of inflow)		
				899.9 - 86				
Center-o	of-Mass d	et. time= 3	32.6 min (899.9 - 86	7.2)			
Center-o	of-Mass d Inv	et. time= 3 ert Av	32.6 min (ail.Storage	899.9 - 86 • Storage	7.2) e Descriptio	n		
Center-o <u>/olume</u> #1	of-Mass d Inv 484.0	et. time= 3 <u>ert Av</u> 00'	32.6 min (<u>ail.Storage</u> 38,692 c	899.9 - 86 ⁻ e Storage f Custon	7.2) e Descriptio n Stage Dat	n :a (Irregular) Liste	ed below (Recalc)	
Center-o	of-Mass d Inv	et. time= 3 <u>ert Av</u> 00'	32.6 min (ail.Storage 38,692 c 7,240 c	899.9 - 86 e Storage f Custon f Custon	7.2) e Descriptio n Stage Dat n Stage Dat	n :a (Irregular) Liste :a (Irregular) Liste	ed below (Recalc) ed below (Recalc)	
Center-o <u>/olume</u> #1	of-Mass d Inv 484.0	et. time= 3 <u>ert Av</u> 00'	32.6 min (<u>ail.Storage</u> 38,692 c	899.9 - 86 e Storage f Custon f Custon	7.2) e Descriptio n Stage Dat	n :a (Irregular) Liste :a (Irregular) Liste		
Center-o <u>/olume</u> #1	of-Mass d Inv 484.0 488.0	et. time= 3 <u>ert Av</u> 00'	32.6 min (ail.Storage 38,692 c 7,240 c 45,933 c	899.9 - 86 <u>Storage</u> f Custon <u>f Custon</u> f Total A	7.2) e Descriptio n Stage Dat n Stage Dat	n :a (Irregular) Liste :a (Irregular) Liste		
Center-o /olume #1 #2	of-Mass d Inv 484.0 488.0	et. time= 3 <u>ert Av</u> 00' 00'	32.6 min (ail.Storage 38,692 c 7,240 c 45,933 c Perin	899.9 - 86 <u>Storage</u> f Custon <u>f Custon</u> f Total A ¹ n.	7.2) e Descriptio n Stage Dat n Stage Dat vailable Sto	n ta (Irregular) Liste ta (Irregular) Liste rage	ed below (Recalc) Wet.Area	
Center-o /olume #1 #2 Elevatio	of-Mass d Inv 484.0 488.0 200	et. time= 3 ert Av 00' 00' Surf.Area	32.6 min (ail.Storage 38,692 c 7,240 c 45,933 c Perin (fee	899.9 - 86 Storage f Custon <u>f Custon</u> f Total A ¹ n. t) (cu	7.2) e Descriptio n Stage Dat n Stage Dat vailable Sto Inc.Store	n :a (Irregular) Liste :a (Irregular) Liste rage Cum.Store	ed below (Recalc) Wet.Area (sq-ft)	
Center-o /olume #1 #2 Elevatio (fee	of-Mass d Inv 484.0 488.0 200	et. time= 3 <u>ert Av</u> 00' 00' Surf.Area (sq-ft) 1,203	32.6 min (ail.Storage 38,692 c 7,240 c 45,933 c 45,933 c Perin (fee 197.	899.9 - 86 <u>Storage</u> f Custon <u>f Custon</u> f Total Av n. t) (cu 0	7.2) <u>e Descriptio</u> n Stage Dat n Stage Dat vailable Sto lnc.Store ubic-feet) 0	n ta (Irregular) Liste ta (Irregular) Liste rage Cum.Store (cubic-feet) 0	ed below (Recalc) Wet.Area (sq-ft) 1,203	
Center-o /olume #1 #2 Elevatio (fee 484.0 485.0	of-Mass d Inv 484.0 488.0 20 20 20 20 20	et. time= 3 ert Av 00' 00' Surf.Area (sq-ft) 1,203 3,502	32.6 min (ail.Storage 38,692 c 7,240 c 45,933 c 45,933 c Perin (fee 197. 286.	899.9 - 86 <u>E Storage</u> f Custon <u>f Custon</u> f Total A n. t) (cu 0 0	7.2) <u>e Descriptio</u> n Stage Dat n Stage Dat vailable Sto Inc.Store ubic-feet) 0 2,253	n ta (Irregular) Liste ta (Irregular) Liste rage Cum.Store (cubic-feet) 0 2,253	ed below (Recalc) Wet.Area (sq-ft) 1,203 4,632	
Center-o /olume #1 #2 Elevatio (fee 484.0	of-Mass d Inv 484.0 488.0 00 00 00	et. time= 3 ert Av 00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988	32.6 min (ail.Storage 38,692 c 7,240 c 45,933 c 45,933 c Perin (fee 197. 286. 352.	899.9 - 86 <u>E Storage</u> f Custon <u>f Custon</u> f Total A n. t) (cu 0 0 0 0	7.2) <u>e Descriptio</u> n Stage Dat n Stage Dat vailable Sto lnc.Store ubic-feet) 0 2,253 4,690	n ta (Irregular) Liste ta (Irregular) Liste rage Cum.Store (cubic-feet) 0 2,253 6,942	ed below (Recalc) Wet.Area (sq-ft) 1,203 4,632 7,998	
Center-o /olume #1 #2 Elevatio (fee 484.0 485.0 486.0 487.0	of-Mass d Inv 484.0 488.0 200 200 200 200 200	et. time= 3 <u>ert Av</u> 00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790	32.6 min (ail.Storage 38,692 c 7,240 c 45,933 c 45,933 c Perin (fee 197. 286. 352. 399.	899.9 - 86 <u>Storage</u> f Custon <u>f Custon</u> f Total A n. t) (cu 0 0 0 0 0 0 0 0	7.2) a Description n Stage Data n Stage Data vailable Sto lnc.Store ubic-feet) 0 2,253 4,690 7,344	n ta (Irregular) Liste ta (Irregular) Liste rage Cum.Store (cubic-feet) 0 2,253 6,942 14,287	ed below (Recalc) Wet.Area (sq-ft) 1,203 4,632 7,998 10,832	
Center-o /olume #1 #2 Elevatio (fee 484.0 485.0 485.0 486.0 486.0 488.0	of-Mass d Inv 484.0 488.0 00 00 00 00 00 00 00 00 00	et. time= 3 ert Av 00' 00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790 12,046	32.6 min (ail.Storage 38,692 c 7,240 c 45,933 c 45,933 c Perin (fee 197. 286. 352. 399. 459.	899.9 - 86 <u>Storage</u> f Custon f Custon f Total A n. t) (cu 0 0 0 0 0 0 0 0 0 0 0 0 0	7.2) <u>e Descriptio</u> n Stage Dat n Stage Dat vailable Sto Inc.Store ubic-feet) 0 2,253 4,690 7,344 10,375	n ta (Irregular) Liste rage Cum.Store (cubic-feet) 0 2,253 6,942 14,287 24,662	ed below (Recalc) Wet.Area (sq-ft) 1,203 4,632 7,998 10,832 14,951	
Center-o /olume #1 #2 Elevatio (fee 484.0 485.0 486.0 487.0	of-Mass d Inv 484.0 488.0 00 00 00 00 00 00 00 00 00	et. time= 3 <u>ert Av</u> 00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790	32.6 min (ail.Storage 38,692 c 7,240 c 45,933 c 45,933 c Perin (fee 197. 286. 352. 399. 459.	899.9 - 86 <u>Storage</u> f Custon f Custon f Total A n. t) (cu 0 0 0 0 0 0 0 0 0 0 0 0 0	7.2) a Description n Stage Data n Stage Data vailable Sto lnc.Store ubic-feet) 0 2,253 4,690 7,344	n ta (Irregular) Liste ta (Irregular) Liste rage Cum.Store (cubic-feet) 0 2,253 6,942 14,287	ed below (Recalc) Wet.Area (sq-ft) 1,203 4,632 7,998 10,832	
Center-o /olume #1 #2 Elevatio (fee 484.0 485.0 485.0 486.0 486.0 488.0	of-Mass d Inv 484.0 488.0 00 00 00 00 00 00 00 00	et. time= 3 ert Av 00' 00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790 12,046	32.6 min (ail.Storage 38,692 c 7,240 c 45,933 c 45,933 c Perin (fee 197. 286. 352. 399. 459. 564.	899.9 - 86 <u>E Storage</u> f Custon <u>f Custon</u> f Total A n. t) (cu 0 0 0 0 0 0 0 0 0 0 0 0 0	7.2) <u>e Descriptio</u> n Stage Dat n Stage Dat vailable Sto Inc.Store ubic-feet) 0 2,253 4,690 7,344 10,375 14,030	n ta (Irregular) Liste ta (Irregular) Liste rage Cum.Store (cubic-feet) 0 2,253 6,942 14,287 24,662 38,692	ed below (Recalc) Wet.Area (sq-ft) 1,203 4,632 7,998 10,832 14,951 23,514	
Center-o /olume #1 #2 Elevatio (fee 484.0 485.0	of-Mass d Inv 484.0 488.0 00 00 00 00 00 00 00 00 00	et. time= 3 <u>ert Av</u> 00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790 12,046 16,113 Surf.Area	32.6 min (ail.Storage 38,692 c 7,240 c 45,933 c 45,933 c Perin (fee 197. 286. 352. 399. 459. 564. Perin	899.9 - 86 <u>E Storage</u> f Custon <u>f Custon</u> f Total A n. t) (cu 0 0 0 0 0 0 0 0 0 0 0 0 0	7.2) <u>e Descriptio</u> n Stage Dat n Stage Dat vailable Sto Inc.Store <u>ubic-feet</u>) 0 2,253 4,690 7,344 10,375 14,030 Inc.Store	n ta (Irregular) Liste ta (Irregular) Liste rage Cum.Store (cubic-feet) 0 2,253 6,942 14,287 24,662 38,692 Cum.Store	ed below (Recalc) Wet.Area (sq-ft) 1,203 4,632 7,998 10,832 14,951 23,514 Wet.Area	
Center-o /olume #1 #2 Elevatio (fee 484.0 485.0	of-Mass d Inv 484.0 488.0 00 00 00 00 00 00 00 00 00	et. time= 3 <u>ert Av</u> 00' 00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790 12,046 16,113 Surf.Area (sq-ft)	32.6 min (ail.Storage 38,692 c 7,240 c 45,933 c 45,933 c Perin (fee 352. 399. 459. 564. Perin (fee	899.9 - 86 Storage f Custon f Custon f Total A n. t) (cu 0 0 0 0 0 0 0 0 0 0 0 0 0	7.2) <u>e Descriptio</u> n Stage Dat n Stage Dat vailable Sto Inc.Store <u>ubic-feet</u>) 0 2,253 4,690 7,344 10,375 14,030 Inc.Store <u>ubic-feet</u>)	n ta (Irregular) Liste rage Cum.Store (cubic-feet) 0 2,253 6,942 14,287 24,662 38,692 Cum.Store (cubic-feet)	ed below (Recalc) Wet.Area (sq-ft) 1,203 4,632 7,998 10,832 14,951 23,514 Wet.Area (sq-ft)	
Center-o /olume #1 #2 Elevatio (fee 484.0 485.0 48	of-Mass d Inv 484.0 488.0 00 00 00 00 00 00 00 00 00	et. time= 3 ert Av 00' 00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790 12,046 16,113 Surf.Area (sq-ft) 6,002	32.6 min (ail.Storage 38,692 c 7,240 c 45,933 c 45,933 c Perin (fee 197. 286. 352. 399. 459. 564. Perim (fee 352.	899.9 - 86 e Storage f Custon f Custon f Total A n. I t) (cu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.2) <u>e Descriptio</u> n Stage Dat n Stage Dat vailable Sto Inc.Store ubic-feet) 0 2,253 4,690 7,344 10,375 14,030 Inc.Store ubic-feet) 0	n ta (Irregular) Liste rage Cum.Store (cubic-feet) 0 2,253 6,942 14,287 24,662 38,692 Cum.Store (cubic-feet) 0	ed below (Recalc) Wet.Area (sq-ft) 1,203 4,632 7,998 10,832 14,951 23,514 Wet.Area (sq-ft) 6,002	
Center-o /olume #1 #2 Elevatio (fee 484.0 485.0 486.0 487.0 488.0 489.0 Elevatio (fee 488.0 489.0	of-Mass d Inv 484.0 488.0 00 00 00 00 00 00 00 00 00	et. time= 3 ert Av 00' 00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790 12,046 16,113 Surf.Area (sq-ft) 6,002 8,554	32.6 min (ail.Storage 38,692 c 7,240 c 45,933 c 45,933 c Perin (fee 197. 286. 399. 459. 564. Perim (fee 352. 399. 352. 399.	899.9 - 86 Storage f Custon f Custon f Total A n. I t) (cu 0 0 0 0 0 0 0 0 0 0 0 0 0	7.2) <u>e Descriptio</u> n Stage Dat n Stage Dat vailable Sto Inc.Store <u>ubic-feet</u>) 0 2,253 4,690 7,344 10,375 14,030 Inc.Store <u>ubic-feet</u>) 0 7,240	n ta (Irregular) Liste rage Cum.Store (cubic-feet) 0 2,253 6,942 14,287 24,662 38,692 Cum.Store (cubic-feet)	ed below (Recalc) Wet.Area (sq-ft) 1,203 4,632 7,998 10,832 14,951 23,514 Wet.Area (sq-ft)	
Center-o /olume #1 #2 Elevatio (fee 484.0 485.0 6 485.0 485.0 6 485.0 485.0 6 485.0 6 485.0 6 485.0 6 485.0 6 485.0 6 485.0 6 485.0 6 485.0 6 485.0 6 485.0 6 6 6 6 6 6 6 6 6 6 6 6 6	of-Mass d Inv 484.0 488.0 00 00 00 00 00 00 00 00 00	et. time= 3 ert Av 00' 00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790 12,046 16,113 Surf.Area (sq-ft) 6,002 8,554 I	32.6 min (<u>ail.Storage</u> 38,692 c 7,240 c 45,933 c Perim (fee 197. 286. 352. 399. 459. 564. Perim (fee 352. 399. 1552. 399. 1552. 399. 1552. 399. 1552. 197.	899.9 - 86 Storage f Custon f Custon f Total A n. I t) (cu 0 0 0 0 0 0 0 0 0 (cu	7.2) <u>e Descriptio</u> n Stage Dat n Stage Dat vailable Sto Inc.Store <u>ubic-feet</u>) 0 2,253 4,690 7,344 10,375 14,030 Inc.Store <u>ubic-feet</u>) 0 7,240 es	n ta (Irregular) Liste ta (Irregular) Liste rage Cum.Store (cubic-feet) 0 2,253 6,942 14,287 24,662 38,692 Cum.Store (cubic-feet) 0 7,240	ed below (Recalc) Wet.Area (sq-ft) 1,203 4,632 7,998 10,832 14,951 23,514 Wet.Area (sq-ft) 6,002	
Center-o /olume #1 #2 Elevatio (fee 484.0 485.0 500 485.0 500 485.0 500 485.0 500 485.0 500 485.0 500 500 500 500 500 500 500	of-Mass d Inv 484.0 488.0 00 00 00 00 00 00 00 00 00	et. time= 3 ert Av 00' 00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790 12,046 16,113 Surf.Area (sq-ft) 6,002 8,554 1 48	32.6 min (ail.Storage 38,692 c 7,240 c 45,933 c Perim (fee 197. 286. 352. 399. 459. 564. Perim (fee 352. 399. 459. 564. Perim (fee 352. 399. 564. Perim (fee 352. 399. 564. Perim (fee 352. 399. 564. Perim (fee 352. 399. 564. Perim (fee 352. 399. 564. Perim (fee 352. 399. 564. Perim (fee 352. 399. 564. Perim (fee 352. 399. 564. Perim (fee 352. 399. 564. Perim (fee 352. 399. 564. Perim (fee 352. 399. 564. Perim (fee 352. 399. 564. Perim (fee 352. 399. 564. Perim (fee 352. 399. 564. 8. 352. 399. 564. 8. 352. 399. 564. 8. 352. 352. 355. 35	899.9 - 86 Storage f Custon f Custon f Total A n. 1 t) (cu 0 0 0 0 0 0 0 0 0 (cu 0 (cu	7.2) <u>e Descriptio</u> n Stage Dat n Stage Dat vailable Sto Inc.Store ubic-feet) 0 2,253 4,690 7,344 10,375 14,030 Inc.Store ubic-feet) 0 7,240 es ifice C= 0	n ta (Irregular) Liste rage Cum.Store (cubic-feet) 0 2,253 6,942 14,287 24,662 38,692 Cum.Store (cubic-feet) 0 7,240	ed below (Recalc) Wet.Area (sq-ft) 1,203 4,632 7,998 10,832 14,951 23,514 Wet.Area (sq-ft) 6,002	
Center-o /olume #1 #2 Elevatio (fee 484.0 485.0 6 485.0 485.0 6 485.0 485.0 6 485.0 6 485.0 6 485.0 6 485.0 6 485.0 6 485.0 6 485.0 6 485.0 6 485.0 6 485.0 6 6 6 6 6 6 6 6 6 6 6 6 6	of-Mass d Inv 484.0 488.0 00 00 00 00 00 00 00 00 00	et. time= 3 ert Av 00' 00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790 12,046 16,113 Surf.Area (sq-ft) 6,002 8,554 1 48	32.6 min (ail.Storage 38,692 c 7,240 c 45,933 c Perim (fee 197. 286. 352. 399. 459. 564. Perim (fee 352. 399. 459. 564. Perim (fee 352. 399. 564. Perim (fee 352. 399. 564. Perim (fee 352. 399. 564. Perim (fee 352. 399. 564. Perim (fee 352. 399. 564. Perim (fee 352. 399. 564. Perim (fee 352. 399. 564. Perim (fee 352. 399. 564. Perim (fee 352. 399. 564. Perim (fee 352. 399. 564. Perim (fee 352. 399. 564. Perim (fee 352. 399. 564. Perim (fee 352. 399. 564. Perim (fee 352. 399. 564. 8. 352. 399. 564. 8. 352. 399. 564. 8. 352. 352. 355. 35	899.9 - 86 Storage f Custon f Custon f Total A n. 1 t) (cu 0 0 0 0 0 0 0 0 0 (cu 0 (cu	7.2) <u>e Descriptio</u> n Stage Dat n Stage Dat vailable Sto Inc.Store ubic-feet) 0 2,253 4,690 7,344 10,375 14,030 Inc.Store ubic-feet) 0 7,240 es ifice C= 0	n ta (Irregular) Liste ta (Irregular) Liste rage Cum.Store (cubic-feet) 0 2,253 6,942 14,287 24,662 38,692 Cum.Store (cubic-feet) 0 7,240	ed below (Recalc) Wet.Area (sq-ft) 1,203 4,632 7,998 10,832 14,951 23,514 Wet.Area (sq-ft) 6,002	

-1=Orifice (Orifice Controls 2.37 cfs @ 6.80 fps) -2=Orifice 24"x12" (Orifice Controls 10.67 cfs @ 5.34 fps) -3=Orifice 24"x13" (Orifice Controls 11.59 cfs @ 5.35 fps)

Type II 24-hr 10 year Rainfall=3.20" Printed 8/14/2014

South existing pond

Prepared by Lamoureux & Dickinson HydroCAD® 9.10 s/n 05471 © 2009 HydroCAD Software Solutions LLC

Page 6

Summary for Subcatchment 3S: Offsite

Runoff = 10.82 cfs @ 12.37 hrs, Volume= 1.383 af, Depth= 0.96"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-84.00 hrs, dt= 0.05 hrs Type II 24-hr 25 year Rainfall=3.70"

	Area	(ac)	CN	Desc	cription							
	2.	070	30	Mea	Meadow, non-grazed, HSG A							
	0.	580	58	Mea	Meadow, non-grazed, HSG B							
	9.	170	71		Meadow, non-grazed, HSG C							
	2.	000	70		Noods, Good, HSG C							
	0.	260	77	Woo	ds, Good,	HSG D						
		310	80	>75%	% Grass co	over, Good	, HSG D					
		730	74			over, Good	, HSG C					
*	0.	080	98	Drive	e & rooftop)						
	17.	200	67	Weig	ghted Aver	age						
	17.	120		99.5	3% Pervio	us Area						
	0.	080		0.47	% Impervi	ous Area						
	2000				01 0 B	12						
	Tc	Length		lope	Velocity	Capacity	Description					
	(min)	(feet) (ft/ft)	(ft/sec)	(cfs)						
	17.6	150	0.0)400	0.14		Sheet Flow, Thru meadow					
							Grass: Dense n= 0.240 P2= 2.30"					
	10.1	1,120	0.0	0700	1.85		Shallow Concentrated Flow, Thru meadow					
							Short Grass Pasture Kv= 7.0 fps					
	9.3	530	0.0	040	0.95		Shallow Concentrated Flow, Diversion					
							Grassed Waterway Kv= 15.0 fps					

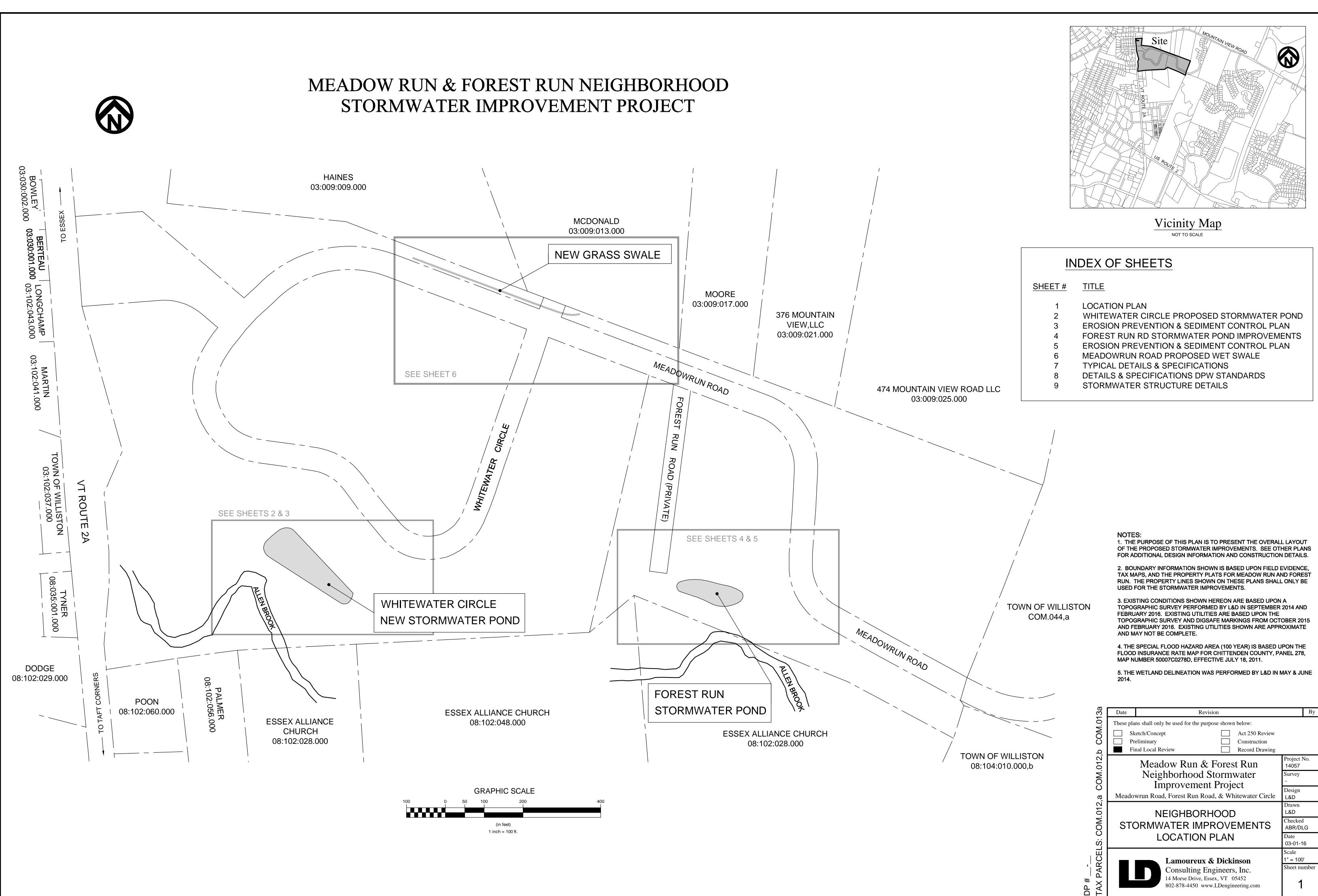
37.0 1,800 Total

Summary for Subcatchment 4S: Golf Links South

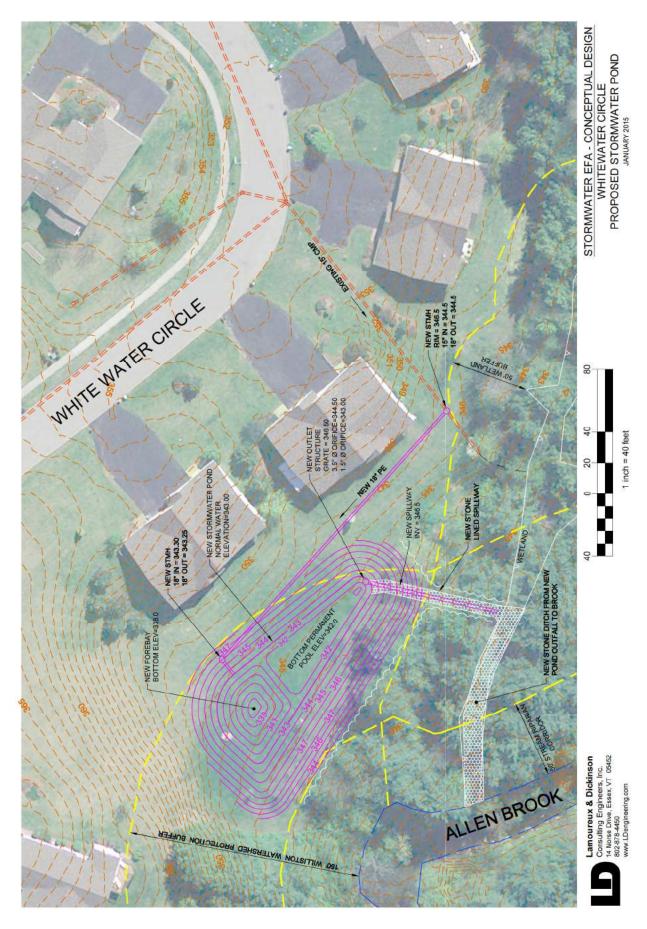
Runoff = 51.85 cfs @ 12.04 hrs, Volume= 3.015 af, Depth= 1.72"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-84.00 hrs, dt= 0.05 hrs Type II 24-hr 25 year Rainfall=3.70"

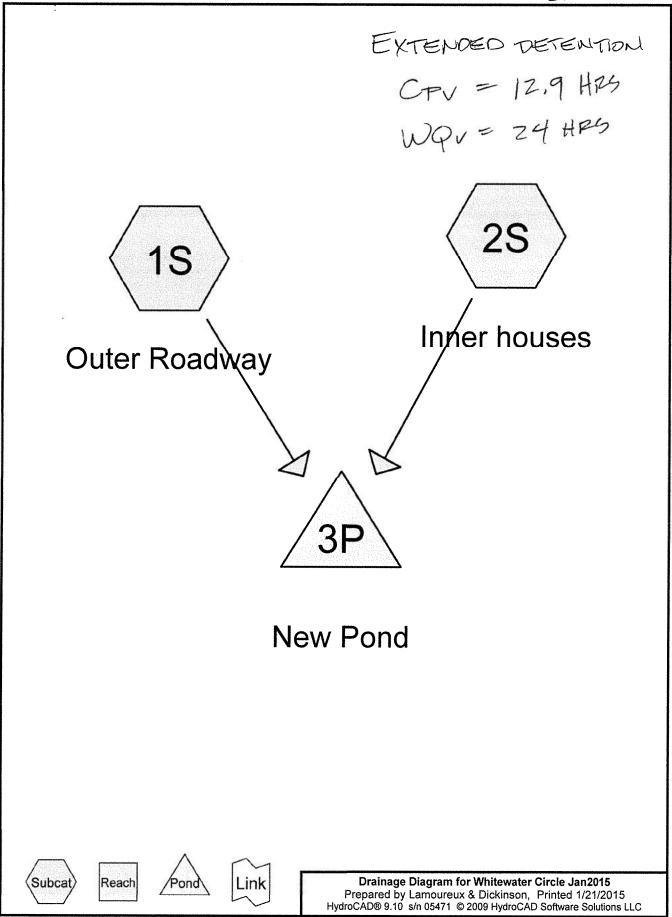
	Area (ac)	CN	Description
*	1.760	98	Streets
*	0.870	98	Drives
*	1.360	98	Rooftop
	17.010	74	>75% Grass cover, Good, HSG C
	21.000	79	Weighted Average
	17.010		81.00% Pervious Area
	3.990		19.00% Impervious Area


.,	00 3.10	<u>s/n 05471</u>	@ 2000 Tiy					Pag
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descriptio	n		
11.2	100	0.0550	0.15	(0.0)	Sheet Flo	w, Lawn	***************************************	
_					Grass: De	nse n= 0.240 P		
0.5	130	0.0850	4.37			Concentrated Flow		
11.7	230	Total			Grassed	Vaterway Kv= 15	b.0 tps	
11.7	200	Total						
			Sum	mary for	Pond 5P	Pond-South		
nflow A	rea =	38.200 a	ac, 10.65%	Impervio	us, Inflow [Depth = 1.38" fo	or 25 year event	
nflow	=		@ 12.04			4.398 af	- -	
Outflow Primory	=				ime=	•	= 48%, Lag= 10.0 m	in
Primary	= 6	20.72 019	@ 12.21	nrs, volu	ime=	4.398 af		
Routina	by Stor-I	nd method	Time Sna	n = 0.00-8	4.00 hrs, dt	= 0.05 hrs		
					orage= 6,07			
							(31,212 cf above sta	art)
	C				.,	0.030 01,200 01		arcy
	w dotopti	an time and	-0.0					
nua-Fio	w oeeenn	on iime= :	y y min ca	liculated fo	or 4 256 af i	97% of inflow)		
						(97% of inflow)		
			29.2 min ca 29.2 min (8			(97% of inflow)		
Center-c		et. time= 2		388.7 - 859		. ,		
Center-c	of-Mass d	et. time= 2 ert Av	29.2 min (8	388.7 - 859 Storage	9.5) e Descriptio	n	d below (Recalc)	
Center-c /olume	of-Mass d Inv	et. time= 2 ert Av 00'	29.2 min (8 ail.Storage	388.7 - 859 Storage Custon	9.5) e Descriptio n Stage Da t	. ,		
Center-c /olume #1	of-Mass d Inv 484.	et. time= 2 ert Av 00'	29.2 min (8 ail.Storage 38,692 cf	Storage Custon Custon	9.5) e Descriptio n Stage Da t	n t a (Irregular) Liste ta (Irregular) Liste		
Center-c /olume #1 #2 Elevatio	of-Mass d Inv 484. 488.	et. time= 2 ert Av 00'	29.2 min (8 ail.Storage 38,692 ct 7,240 ct 45,933 ct	388.7 - 859 Storage Custon Custon Total Av	9.5) • Descriptio n Stage Dat n Stage Dat	n t a (Irregular) Liste ta (Irregular) Liste		
Center-c /olume #1 #2	of-Mass d Inv 484. 488.	et. time= 2 <u>ert Av</u> 00' 00'	29.2 min (8 ail.Storage 38,692 cf 7,240 cf 45,933 cf a Perim	Storage Storage Custon Custon Total A	9.5) e Descriptio n Stage Dat n Stage Dat vailable Sto	n ta (Irregular) Liste ta (Irregular) Liste rage	d below (Recalc)	
Center-c /olume #1 #2 Elevatio (fee 484.0	of-Mass d Inv 484. 488. 488. 00	et. time= 2 ert Av 00' 00' Surf.Area	29.2 min (8 ail.Storage 38,692 cf 7,240 cf 45,933 cf a Perim) (feet	388.7 - 859 Storage Custon Custon Total Av .	9.5) <u>e Descriptio</u> n Stage Dat <u>n Stage Dat</u> vailable Sto Inc.Store	n ta (Irregular) Lister ta (Irregular) Lister rage Cum.Store	d below (Recalc) Wet.Area	
Center-c /olume #1 #2 Elevatio (fee 484.0 485.0	of-Mass d Inv 484. 488. 488. 00 00	et. time= 2 <u>ert Av</u> 00' 00' Surf.Area (sq-ft)	29.2 min (8 ail.Storage 38,692 ct 7,240 ct 45,933 ct 45,933 ct 9 Perim 9 (feet 3 197.0	388.7 - 859 Storage Custon Custon Total Av .) (cu	9.5) Description Stage Dat Stage Dat vailable Sto Inc.Store ubic-feet)	n ta (Irregular) Lister ta (Irregular) Lister rage Cum.Store (cubic-feet)	d below (Recalc) Wet.Area (sq-ft)	
Center-c /olume #1 #2 Elevatio (fee 484.0 485.0 486.0	of-Mass d <u>Inv</u> 484. 488. 00 00 00 00 00	et. time= 2 ert Av 00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988	29.2 min (8 ail.Storage 38,692 cf 7,240 cf 45,933 cf 45,933 cf 9 Perim (feet 3 197.0 2 286.0 3 352.0	388.7 - 859 Storage Custon Custon Total Av .) (cu	9.5) <u>e Descriptio</u> n Stage Dat n Stage Dat vailable Sto lnc.Store ubic-feet) 0	n ta (Irregular) Lister ta (Irregular) Lister rage Cum.Store (cubic-feet) 0	d below (Recalc) Wet.Area (sq-ft) 1,203	
Center-c /olume #1 #2 Elevatio (fee 484.0 485.0 486.0 486.0 486.0	of-Mass d Inv 484. 488. 488. 0 0 0 0 0 0 0 0 0 0 0 0 0	et. time= 2 ert Av 00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790	29.2 min (8 ail.Storage 38,692 cf 7,240 cf 45,933 cf 45,933 cf 9 (feet 3 197.0 2 286.0 3 352.0 3 399.0	388.7 - 859 Storage Custon Custon Total A (cu) (cu)	9.5) <u>e Descriptio</u> n Stage Dat n Stage Dat vailable Sto lnc.Store ubic-feet) 0 2,253	n ta (Irregular) Lister ta (Irregular) Lister rage Cum.Store (cubic-feet) 0 2,253	d below (Recalc) Wet.Area (sq-ft) 1,203 4,632	
Center-c /olume #1 #2 Elevatio (fee 484.0 485.0 485.0 485.0 486.0 486.0 488.0	of-Mass d Inv 484. 488. 488. 00 00 00 00 00 00	et. time= 2 ert Av 00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790 12,046	29.2 min (8 ail.Storage 38,692 cf 7,240 cf 45,933 cf 45,933 cf 9 (feet 3 197.0 2 286.0 3 352.0 3 399.0 5 459.0	388.7 - 859 Storage Custon Total Av (cu) (cu)	9.5) Description Stage Dat Stage Dat Stage Dat vailable Sto Inc.Store <u>ubic-feet</u>) 0 2,253 4,690 7,344 10,375	n ta (Irregular) Lister ta (Irregular) Lister rage Cum.Store (cubic-feet) 0 2,253 6,942 14,287 24,662	d below (Recalc) Wet.Area (sq-ft) 1,203 4,632 7,998	
Center-c /olume #1 #2 Elevatio (fee 484.0 485.0 485.0 486.0 487.0	of-Mass d Inv 484. 488. 488. 00 00 00 00 00 00	et. time= 2 ert Av 00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790	29.2 min (8 ail.Storage 38,692 cf 7,240 cf 45,933 cf 45,933 cf 9 (feet 3 197.0 2 286.0 3 352.0 3 399.0 5 459.0	388.7 - 859 Storage Custon Total Av (cu) (cu)	9.5) <u>e Descriptio</u> n Stage Dat n Stage Dat vailable Sto Inc.Store <u>ubic-feet</u>) 0 2,253 4,690 7,344	n ta (Irregular) Lister ta (Irregular) Lister rage Cum.Store (cubic-feet) 0 2,253 6,942 14,287	d below (Recalc) Wet.Area (sq-ft) 1,203 4,632 7,998 10,832	
Center-c /olume #1 #2 Elevatio (fee 484.0 485.0 485.0 485.0 486.0 486.0 488.0	of-Mass d Inv 484. 488. (0 (0 (0 (0 (0 (0 (0 (0) (0 (0	et. time= 2 ert Av 00' 00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790 12,046 16,113	29.2 min (8 ail.Storage 38,692 cf 7,240 cf 45,933 cf 45,933 cf 9 Perim (feet 3 197.0 2 286.0 3 352.0 3 352.0 3 399.0 3 564.0	388.7 - 859 Storage Custon Custon Total Av (cu (cu <td>9.5) <u>e Descriptio</u> n Stage Dat n Stage Dat vailable Sto Inc.Store ubic-feet) 0 2,253 4,690 7,344 10,375 14,030</td> <td>n ta (Irregular) Lister rage Cum.Store (cubic-feet) 0 2,253 6,942 14,287 24,662 38,692</td> <td>d below (Recalc) Wet.Area (sq-ft) 1,203 4,632 7,998 10,832 14,951 23,514</td> <td></td>	9.5) <u>e Descriptio</u> n Stage Dat n Stage Dat vailable Sto Inc.Store ubic-feet) 0 2,253 4,690 7,344 10,375 14,030	n ta (Irregular) Lister rage Cum.Store (cubic-feet) 0 2,253 6,942 14,287 24,662 38,692	d below (Recalc) Wet.Area (sq-ft) 1,203 4,632 7,998 10,832 14,951 23,514	
Center-c /olume #1 #2 Elevatio (fee 484.0 485.0 485.0 485.0 485.0 489.0 Elevatio	of-Mass d <u>Inv</u> 484. 488. 00 00 00 00 00 00 00 00 00 0	et. time= 2 ert Av 00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790 12,046 16,113 Surf.Area	29.2 min (8 ail.Storage 38,692 cf 7,240 cf 45,933 cf 45,933 cf 9 Perim (feet 3 197.0 2 286.0 3 352.0 3 352.0 3 399.0 3 459.0 3 564.0 9 Perim	388.7 - 859 Storage Custon Custon Total Av (cu (cu) <t< td=""><td>9.5) <u>e Descriptio</u> n Stage Dat n Stage Dat vailable Sto Inc.Store ubic-feet) 0 2,253 4,690 7,344 10,375 14,030 Inc.Store</td><td>n ta (Irregular) Lister rage Cum.Store (cubic-feet) 0 2,253 6,942 14,287 24,662 38,692 Cum.Store</td><td>d below (Recalc) Wet.Area (sq-ft) 1,203 4,632 7,998 10,832 14,951 23,514 Wet.Area</td><td></td></t<>	9.5) <u>e Descriptio</u> n Stage Dat n Stage Dat vailable Sto Inc.Store ubic-feet) 0 2,253 4,690 7,344 10,375 14,030 Inc.Store	n ta (Irregular) Lister rage Cum.Store (cubic-feet) 0 2,253 6,942 14,287 24,662 38,692 Cum.Store	d below (Recalc) Wet.Area (sq-ft) 1,203 4,632 7,998 10,832 14,951 23,514 Wet.Area	
Center-c /olume #1 #2 Elevatio (fee 484.0 485.0 485.0 485.0 485.0 485.0 489.0 Elevatio (fee	of-Mass d Inv 484. 488. 488. 00 00 00 00 00 00 00 00 00 00 00 00 00	et. time= 2 ert Av 00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790 12,046 16,113 Surf.Area (sq-ft)	29.2 min (8 ail.Storage 38,692 cf 7,240 cf 45,933 cf 45,933 cf 9 (feet 3 197.0 2 286.0 3 352.0 3 352.0 3 399.0 5 459.0 5 459.0 5 459.0 5 459.0 5 459.0 5 459.0 5 459.0	388.7 - 859 Storage Custon Custon Total A (cu) (cu)))))))))))))	9.5) Description Stage Dat Stage Stage Dat Stage Dat Stage Dat Stage Stage Dat Stage Dat Stage Stage S	n ta (Irregular) Lister rage Cum.Store (cubic-feet) 0 2,253 6,942 14,287 24,662 38,692 Cum.Store (cubic-feet)	<u>d below (Recalc)</u> Wet.Area (sq-ft) 1,203 4,632 7,998 10,832 14,951 23,514 Wet.Area (sq-ft)	
Center-co /olume #1 #2 Elevatio (fee 484.0 485.0 485.0 485.0 485.0 489.0 Elevatio	of-Mass d Inv 484. 488. 00 00 00 00 00 00 00 00 00 0	et. time= 2 ert Av 00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790 12,046 16,113 Surf.Area	29.2 min (8 ail.Storage 38,692 cf 7,240 cf 45,933 cf 9 Perim 9 (feet 3 352.0 9 399.0 9 352.0 9 564.0 9 Perim 9 (feet 2 352.0	388.7 - 859 Storage Custon Custon Total A (cu) (cu)) (cu	9.5) <u>e Descriptio</u> n Stage Dat n Stage Dat vailable Sto Inc.Store ubic-feet) 0 2,253 4,690 7,344 10,375 14,030 Inc.Store	n ta (Irregular) Lister rage Cum.Store (cubic-feet) 0 2,253 6,942 14,287 24,662 38,692 Cum.Store	d below (Recalc) Wet.Area (sq-ft) 1,203 4,632 7,998 10,832 14,951 23,514 Wet.Area	
Center-c /olume #1 #2 Elevatio (fee 484.0 485.0 485.0 487.0 488.0 489.0 Elevatio (fee 488.0 489.0	of-Mass d Inv 484. 488. 00 00 00 00 00 00 00 00 00 0	et. time= 2 ert Av 00' 00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790 12,046 16,113 Surf.Area (sq-ft) 6,002 8,554	29.2 min (8 ail.Storage 38,692 cf 7,240 cf 45,933 cf 45,933 cf 9 (feet 3 197.0 2 286.0 3 399.0 3 459.0 3 564.0 9 459.0 9 459.0 9 564.0 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	388.7 - 859 Storage Custon Custon Total A (cu) (cu))) (cu	9.5) e Description n Stage Data n Stage Data vailable Sto lnc.Store ubic-feet) 0 2,253 4,690 7,344 10,375 14,030 nc.Store ubic-feet) 0 7,240	n ta (Irregular) Lister rage Cum.Store (cubic-feet) 0 2,253 6,942 14,287 24,662 38,692 Cum.Store (cubic-feet) 0	<u>d below (Recalc)</u> Wet.Area (sq-ft) 1,203 4,632 7,998 10,832 14,951 23,514 Wet.Area (sq-ft) 6,002	
Center-c /olume #1 #2 Elevatio (fee 484.0 485.0 485.0 485.0 485.0 489.0 Elevatio (fee 488.0 489.0 Device	of-Mass d Inv 484. 488. 00 00 00 00 00 00 00 00 00 0	et. time= 2 ert Av 00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790 12,046 16,113 Surf.Area (sq-ft) 6,002 8,554 I	29.2 min (8 ail.Storage 38,692 cf 7,240 cf 45,933 cf 9 Perim 9 (feet 3 352.0 3 352.0 3 399.0 5 459.0 5 459.0 5 459.0 6 459.0 7 Perim 9 (feet 2 352.0 8 399.0 9 399.0	388.7 - 859 Storage Custon Custon Total A (cu) (cu))) (cu)) (cu)) (cu)) (cu))) (cu))) (cu))) (cu))) (cu)) (cu))) (cu))) (cu)))) (cu)))) (cu))) (cu))) (cu))) (cu))) (cu))) (cu))) (cu))) (cu))) (cu))) (cu))) (cu))) (cu))) (cu))) (cu))) (cu))) (cu))) (cu))) (cu)))))))))))))	9.5) <u>e Descriptio</u> n Stage Dat n Stage Dat vailable Sto Inc.Store <u>ubic-feet</u>) 0 2,253 4,690 7,344 10,375 14,030 Inc.Store <u>ubic-feet</u>) 0 7,240 es	n ta (Irregular) Lister rage Cum.Store (cubic-feet) 0 2,253 6,942 14,287 24,662 38,692 Cum.Store (cubic-feet) 0 7,240	<u>d below (Recalc)</u> Wet.Area (sq-ft) 1,203 4,632 7,998 10,832 14,951 23,514 Wet.Area (sq-ft) 6,002	
Center-c /olume #1 #2 Elevatio (fee 484.0 485.0 48	of-Mass d Inv 484. 488. 00 00 00 00 00 00 00 00 00 0	et. time= 2 ert Av 00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790 12,046 16,113 Surf.Area (sq-ft) 6,002 8,554 i 48	29.2 min (8 ail.Storage 38,692 cf 7,240 cf 45,933 cf 9 Perim 9 (feet 3 197.0 2 286.0 3 352.0 3 352.0 3 399.0 5 459.0 5 459.0 5 459.0 5 459.0 5 352.0 9 Perim 9 (feet 2 352.0 1 399.0 1 399.0 1 399.0	388.7 - 859 Storage Custon Custon Total A (cu) (cu))) (cu))) (cu))) (cu))) (cu))) (cu))) (cu))) (cu))) (cu))) (cu))) (cu))) (cu))) (cu))) (cu))) (cu)))) (cu)))) (cu)))) (cu	9.5) Description Stage Dat Stage C= 0 Stage C= 0 	n ta (Irregular) Lister rage Cum.Store (cubic-feet) 0 2,253 6,942 14,287 24,662 38,692 Cum.Store (cubic-feet) 0 7,240	<u>d below (Recalc)</u> <u>Wet.Area</u> <u>(sq-ft)</u> 1,203 4,632 7,998 10,832 14,951 23,514 <u>Wet.Area</u> <u>(sq-ft)</u> 6,002 8,836	
Center-c /olume #1 #2 Elevatio (fee 484.0 485.0 485.0 485.0 485.0 489.0 Elevatio (fee 488.0 489.0 Clevatio (fee 489.0 0 0 0 0 0 0 0 0 0 0 0 0 0	of-Mass d Inv 484. 488. 00 00 00 00 00 00 00 00 00 0	et. time= 2 ert Av 00' 00' Surf.Area (sq-ft) 1,203 3,502 5,988 8,790 12,046 16,113 Surf.Area (sq-ft) 6,002 8,554 I 48 48	29.2 min (8 ail.Storage 38,692 cf 7,240 cf 45,933 cf 45,933 cf 3 197.(2 286.(3 352.(3 352.(3 399.(5 459.(5 459.(5 459.(5 459.(6 Perim (feet 2 352.(3 399.(1 399.()	388.7 - 859 Storage Custon Custon Total Av) (cu) (cu <t< td=""><td>9.5) Description Stage Dat Stage Dat Stage Dat Vailable Sto Inc.Store Jbic-feet) 0 2,253 4,690 7,344 10,375 14,030 Inc.Store Jbic-feet) 0 7,240 Store Jbic-feet 0 7,240 Store Jbic-feet 0 These Store Jbic-feet Dot Store Dot Store</td><td>n ta (Irregular) Lister rage Cum.Store (cubic-feet) 0 2,253 6,942 14,287 24,662 38,692 Cum.Store (cubic-feet) 0 7,240 .600 Orifice 24''x12''</td><td><u>d below (Recalc)</u> Wet.Area (sq-ft) 1,203 4,632 7,998 10,832 14,951 23,514 Wet.Area (sq-ft) 6,002</td><td></td></t<>	9.5) Description Stage Dat Stage Dat Stage Dat Vailable Sto Inc.Store Jbic-feet) 0 2,253 4,690 7,344 10,375 14,030 Inc.Store Jbic-feet) 0 7,240 Store Jbic-feet 0 7,240 Store Jbic-feet 0 These Store Jbic-feet Dot Store Dot Store	n ta (Irregular) Lister rage Cum.Store (cubic-feet) 0 2,253 6,942 14,287 24,662 38,692 Cum.Store (cubic-feet) 0 7,240 .600 Orifice 24''x12''	<u>d below (Recalc)</u> Wet.Area (sq-ft) 1,203 4,632 7,998 10,832 14,951 23,514 Wet.Area (sq-ft) 6,002	

-2=Orifice 24"x12" (Orifice Controls 12.49 cfs @ 6.25 fps) -3=Orifice 24"x13" (Orifice Controls 13.56 cfs @ 6.26 fps)



MEADOW RUN: PERMIT 2-1190



⁴³⁴ of 529

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
7.376	80	>75% Grass cover, Good, HSG D (1S, 2S)
1.398	98	Paved parking, HSG D (1S)
1.319	98	Paved roads w/curbs & sewers, HSG D (1S)
0.977	98	Roofs, HSG D (1S)
0.176	98	Sidewalk, HSG D (1S)
0.716	98	Unconnected roofs, HSG D (2S)

Version: 9/06

For the area draining to*: Whitewater Circle Pond Located in drainage area for S/N: 002

WQ Volume Calculation for Volume-Based Practice

Use this worksheet to calculate the water quality volume draining to your volume based STP if you are not using any of the site design credits in section 3 of the 2002 VSWMM. **Do not use** this worksheet to calculate your WQv if you need to determine the Peak Q for the WQ storm (i.e. designing a grass channel, flow-splitter or other flow based practice). See the worksheet "Water Quality Volume and Modified Curve Number Calculation for Water Quality Treatment in a Flow-Based Practice"

ne			value/calculation	on units
ιſ	Site Area (impervious + disturbed pervious)	A=	11.96	acres
2 [Impervious area		4.59	acres
s []	Percent Impervious Area = [(line 2/line 1) * 100] =	I =	38.34	% (whole #)
£ [Precipitation	P =	0,9	inches
; [Runoff coefficient calculation = (0.05 + (0.009*I))	Rv =	0.395	
; [WQ Volume (in watershed inches) Calculation =($P *$	Rv) =	0.356	Qa (watershed inches, a.k.a. inches of runof
,	Minimum WQ Volume ¹		0.2	watershed inches
3	Enter the greater of line 6 or line 7	WQv =	0.356	watershed inches
, [WQ Volume Calculation = (line 8 *A)/12 =	WQv =	0.354	ac. ft.
0	WQ Volume Calculation = (line 9 * 43560) =	WQv =	15438	cu. ft.

Notes:

1: Sites with low impervious cover (~19%) but that do not employ a **significant** use of the stormwater design credits in Section 3 of the VSWMM are required to treat the minimum water quality volume of 0.2 watershed inches. Sites that have a **significant** portion of their impervious cover addressed via the stormwater credits (section 3 of the VSWMM) will be able to reduce this WQv and will only be required to treat the volume calculated on the "WQ Volume (with credit reduction)" worksheet which will be less than the 0.2 watershed inches.

PERMANENT POOL VOL = 3970 CF STORAGE VOLUME/EXTENDED DETENTION VOLUME = 8632 CF TIME = 24 Hizs

(TOTAL RUNDEFF VOLUME = 11,848 CF)

Summary for Subcatchment 1S: Outer Roadway

Runoff = 3.22 cfs @ 12.07 hrs, Volume= 0.237 af, Depth= 0.42"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv. UI as Pervious, Time Span= 0.00-96.00 hrs, dt= 0.1 Type II 24-hr WQv Rainfall=0.90"

_	A	rea (sf)	CN	Description						
		57,475	98	Paved roads w/curbs & sewers, HSG D						
*		7,650	98	Sidewalk, H	ISG D					
		60,900	98	Paved park	ing, HSG D					
		42,560		Roofs, HSG						
	1	24,199	80	<u>>75% Gras</u>	<u>s cover, Go</u>	ood, HSG D				
		92,784		Weighted A						
		24,199			vious Area					
	1	68,585	98	57.58% lmp	pervious Ar	ea				
			. .							
	ŢĊ	Length	Slope		Capacity	Description				
	(min)	(feet)	(ft/ft)		(cfs)					
	11.5	70	0.0100	0.10		Sheet Flow, Grass yard				
						Grass: Short n= 0.150 P2= 2.30"				
	0.7	30	0.0100	0.69		Sheet Flow,				
						Smooth surfaces n= 0.011 P2= 2.30"				
	2.9	1,122	0.0200	6.42	5.04					
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'				
•••••						n= 0.013 Corrugated PE, smooth interior				
	15.1	1,222	Total							

Summary for Subcatchment 2S: Inner houses

Runoff	=	0.22 cfs @	12.20 hrs,	Volume=	0.035 af, Depth= 0.08"
--------	---	------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv. UI as Pervious, Time Span= 0.00-96.00 hrs, dt= 0.1 Type II 24-hr WQv Rainfall=0.90"

Area (sf) CN	Description		
31,200		Unconnecte		
197,093	<u> </u>	<u>>75% Gras</u>	<u>s cover, Go</u>	ood, HSG D
228,293	3 82	Weighted A	verage	
228,293	8 82	100.00% P	ervious Are	a
Tc Leng (min) (fee	•		Capacity (cfs)	Description
11.6 10	0.020	0.14		Sheet Flow, Grass yard
6.0 85	56 0.02	50 2.37		Grass: Short n= 0.150 P2= 2.30" Shallow Concentrated Flow, Shallow grass swale Grassed Waterway Kv= 15.0 fps
17.6 95	6 Total			

Summary for Pond 3P: New Pond

Inflow A Inflow Outflow Primary		3.38 cfs @ 0.07 cfs @	12.08 hrs 19.95 hrs	s, Volume=	Depth = 0.27" for 0.272 af 0.269 af, Atten= 9 0.269 af	WQv event 98%, Lag= 472.2 min			
Starting	Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.10 hrs Starting Elev= 343.00' Surf.Area= 4,610 sf Storage= 3,969 cf Peak Elev= 344.53' @ 19.95 hrs Surf.Area= 6,727 sf Storage= 12,601 cf (8,632 cf above start)								
Center-	of-Mass de	et. time= 1,441	1.1 min (2	alculated for 0.178 2,267.5 - 826.4) 2 4 Hoves	· · ·				
Volume				Storage Description					
#1	342.0	00' 38,	920 cf	Custom Stage Dat	a (Irregular) Listed	below (Recalc)			
Elevati			Perim.	Inc.Store	Cum.Store	Wet.Area			
(fee	<u>ət)</u>	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>			
342.	00	3,361	295.0	0	0	3,361			
343.	00	4,610	322.0	3,969	3,969	4,722			
344.	00	5,969	350.0	5,275	9,244	6,257			
345.	00	7,440	378.0	6,691	15,935	7,919			
346.	00	9,020	405.0	8,217	24,152	9,646			
347.	50	10,694	431.0	14,768	38,920	11,486			
Device	Routing	Inver	t Outlet	Devices					
#1	Primary	343.00	' 1.5" V	ert. Orifice1 C=	0.600				
#2	Primary	344.50			0.600				
#3	Primary	346.50		x 24.0" Horiz. Gra					
				d to weir flow at low					
#4	Primary	346.50	" 8.0' lo Head 2.50 (Coef.	ng x 4.0' breadth (feet) 0.20 0.40 0 3.00 3.50 4.00 4. (English) 2.38 2.5	Broad-Crested Re 0.60 0.80 1.00 1.2 50 5.00 5.50	0 1.40 1.60 1.80 2.00 2.67 2.65 2.66 2.66			
Duine em	. A	Max-0 07 -f-	A 10.05						

Primary OutFlow Max=0.07 cfs @ 19.95 hrs HW=344.53' (Free Discharge) **1=Orifice1** (Orifice Controls 0.07 cfs @ 5.83 fps)

-2=Orifice1 (Orifice Controls 0.00 cfs @ 0.58 fps)

-3=Grate (Controls 0.00 cfs)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Subcatchment 1S: Outer Roadway

Runoff = 10.20 cfs @ 12.07 hrs, Volume= 0.753 af, Depth= 1.34"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv. UI as Pervious, Time Span= 0.00-96.00 hrs, dt= 0.1 Type II 24-hr 1 year Rainfall=2.10"

	A	rea (sf)	CN [Description						
		57,475	98 F	Paved roads w/curbs & sewers, HSG D						
*		7,650	98 3	Sidewalk, H	ISG D					
		60,900	98 F	Paved park	ing, HSG D)				
		42,560	98 F	Roofs, HSC	6 D					
	1	24,199	80 >	-75% Gras	s cover, Go	bod, HSG D				
	2	92,784	90 \	Neighted A	verage					
	1	24,199	80 4	12.42% Pei	vious Area					
	1	68,585	98 5	57.58% lmp	pervious Ar	ea				
	Тс	Length	Slope	•	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	11.5	70	0.0100	0.10		Sheet Flow, Grass yard				
						Grass: Short n= 0.150 P2= 2.30"				
	0.7	30	0.0100	0.69		Sheet Flow,				
						Smooth surfaces n= 0.011 P2= 2.30"				
	2.9	1,122	0.0200	6.42	5.04	Pipe Channel,				
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'				
						n= 0.013 Corrugated PE, smooth interior				
	15.1	1,222	Total							

Summary for Subcatchment 2S: Inner houses

Runoff	=	4.20 cfs @	12.11 hrs,	Volume=	0.312 af, Depth= 0.72"
--------	---	------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv. UI as Pervious, Time Span= 0.00-96.00 hrs, dt= 0.1 Type II 24-hr 1 year Rainfall=2.10"

Area (sf)	CN	Description		
31,200	98	Unconnecte		
197,093	80	>75% Gras	<u>s cover, Go</u>	ood, HSG D
228,293	82	Weighted A	verage	
228,293	82	100.00% Pe	ervious Are	а
Tc Length (min) (feet)	Slop (ft/ft		Capacity (cfs)	Description
11.6 100	0.020	0 0.14		Sheet Flow, Grass yard
6.0 856	0.025	0 2.37		Grass: Short n= 0.150 P2= 2.30" Shallow Concentrated Flow, Shallow grass swale Grassed Waterway Kv= 15.0 fps
17.6 956	Total			

Summary for Pond 3P: New Pond

Inflow A Inflow Outflow Primary	=	14.29 cfs @ 1.84 cfs @	12.09 hi 12.73 hi	mpervious, Inflow E rs, Volume= rs, Volume= rs, Volume=	1.065 af	1 year event 87%, Lag= 38.5 min
Starting	Elev= 34	3.00' Surf.Are	a= 4,61	= 0.00-96.00 hrs, dt 0 sf Storage= 3,96 \rea= 9,662 sf Stor	9 cf	5,700 cf above start)
	of-Mass d	et. time= 776.4	I_min (1	culated for 0.968 af ,589.5 - 813.1) 「こう」 Hours Storage Description)	
<u>volume</u> #1						
#1	342.0	JU 38,	920 CT	Custom Stage Dat	a (Irregular) Listed	below (Recalc)
Elevatio	on	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(fee		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
342.0	00	3,361	295.0	0	0	3,361
343.0		4,610	322.0			4,722
344.(00	5,969	350.0	5,275	9,244	6,257
345.0	00	7,440	378.0	6,691	15,935	7,919
346.0	00	9,020	405.0	8,217	24,152	9,646
347.5	50	10,694	431.0	14,768	38,920	11,486
Dovice	Douting	1	+ 0			
Device	Routing	Inver		et Devices		
#1	Primary	343.00		Vert. Orifice1 C=		
#2 #3	Primary	344.50			0.600	
#3	Primary	346.50		' x 24.0'' Horiz. Gra ed to weir flow at lov		
#4	Primary	346.50		ong x 4.0' breadth		otongulor Mair
<i>n</i> - 1	i innai y	540.50				0 1.40 1.60 1.80 2.00
				3.00 3.50 4.00 4.		0 1.40 1.00 1.00 2.00
						2.67 2.65 2.66 2.66
				2.72 2.73 2.76 2.		
Primary	OutFlow	May=1 76 cfs	@ 127	3 bre H = 346.59'	(Free Discharge)	

Primary OutFlow Max=1.76 cfs @ 12.73 hrs HW=346.59' (Free Discharge)

-1=Orifice1 (Orifice Controls 0.11 cfs @ 9.04 fps)

-2=Orifice1 (Orifice Controls 0.45 cfs @ 6.71 fps)

-3=Grate (Weir Controls 0.70 cfs @ 0.98 fps)

4=Broad-Crested Rectangular Weir (Weir Controls 0.51 cfs @ 0.71 fps)

Summary for Subcatchment 1S: Outer Roadway

Runoff = 25.10 cfs @ 12.07 hrs, Volume= 1.855 af, Depth= 3.31"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv. UI as Pervious, Time Span= 0.00-96.00 hrs, dt= 0.1 Type II 24-hr 100 year Rainfall=4.30"

	A	rea (sf)	CN	Description							
		57,475	98	Paved road	Paved roads w/curbs & sewers, HSG D						
*		7,650	98	Sidewalk, H	ISG D						
		60,900	98	Paved park	ing, HSG D)					
		42,560	98	Roofs, HSG	5 D						
	1	24,199	80	>75% Gras	s cover, Go	bod, HSG D					
	2	92,784	90	Neighted A	verage						
	1	24,199	80 4	12.42% Pei	vious Area						
	1	68,585	98	57.58% lmp	pervious Ar	ea					
	_										
	Tc	Length	Slope		Capacity	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	11.5	70	0.0100	0.10		Sheet Flow, Grass yard					
						Grass: Short					
	0.7	30	0.0100	0.69		Sheet Flow,					
						Smooth surfaces n= 0.011 P2= 2.30"					
	2.9	1,122	0.0200	6.42	5.04	Pipe Channel,					
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'					
						n= 0.013 Corrugated PE, smooth interior					
	15.1	1,222	Total								

Summary for Subcatchment 2S: Inner houses

Runoff	=	15.04 cfs @	12.10 hrs,	Volume=	1.075 af,	Depth= 2.46"
--------	---	-------------	------------	---------	-----------	--------------

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv. UI as Pervious, Time Span= 0.00-96.00 hrs, dt= 0.1 Type II 24-hr 100 year Rainfall=4.30"

	Ar	ea (sf)	CN	Description						
		31,200	98	Unconnecte	ed roofs, H	SG D				
	1	97,093	80	>75% Gras	s cover, Go	bod, HSG D				
	22	28,293	82	Weighted A	verage					
	23	28,293	82	100.00% Pe	ervious Are	a				
T (mir	ĩc n)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description				
11.	.6	100	0.020	0.14		Sheet Flow, Grass yard				
6.	.0	856	0.025	0 2.37		Grass: Short n= 0.150 P2= 2.30" Shallow Concentrated Flow, Shallow grass swale Grassed Waterway Kv= 15.0 fps				
17.	.6	956	Total							

Summary for Pond 3P: New Pond

/ Inflow Area =	11.962 ac, 32.35% Impervious, Inflov	w Depth = 2.94" for 100 year event
Inflow Area =	39.92 cfs @ 12.08 hrs, Volume=	2.930 af
[/] Outflow =	36.88 cfs @ 12.14 hrs, Volume=	2.923 af, Atten= 8%, Lag= 3.4 min
Primary =	36.88 cfs @ 12.14 hrs, Volume=	2.923 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.10 hrs Starting Elev= 343.00' Surf.Area= 4,610 sf Storage= 3,969 cf Peak Elev= 347.38' @ 12.14 hrs Surf.Area= 10,560 sf Storage= 37,688 cf (33,719 cf above start)

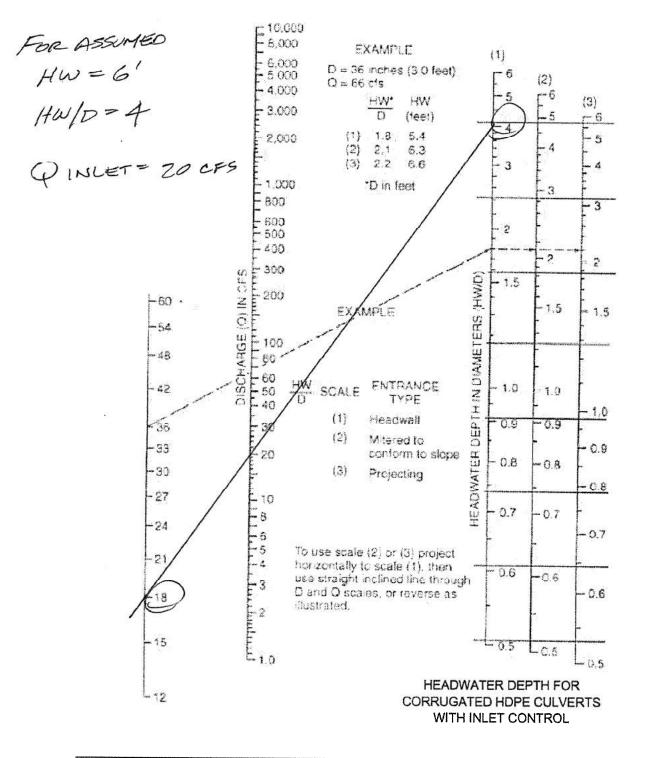
Plug-Flow detention time= 378.2 min calculated for 2.829 af (97% of inflow) Center-of-Mass det. time= 345.2 min (1,142.5 - 797.3)

Volume	Inv	ert Avai	l.Storage	Storage Descrip	tion		
#1	#1 342.00' 38,920 cf		Custom Stage Data (Irregular) Listed below (Recalc)				
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
342.0 343.0 344.0 345.0 346.0	00 00 00	3,361 4,610 5,969 7,440 9,020	295.0 322.0 350.0 378.0 405.0	0 3,969 5,275 6,691 8,217	0 3,969 9,244 15,935	3,361 4,722 6,257 7,919	
340.0				•	,	9,646 11,486	
<u>Device</u> #1 #2 #3 #4	Routing Primary Primary Primary Primary	10,694 431.0 14,768 38,920 11,486 Invert Outlet Devices 343.00' 1.5" Vert. Orifice1 C= 0.600 344.50' 3.5" Vert. Orifice1 C= 0.600 346.50' 24.0" x 24.0" Horiz. Grate C= 0.600 Limited to weir flow at low heads 346.50' 8.0' long x 4.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.38 2.54 2.69 2.68 2.67 2.65 2.66 2.66 2.68 2.72 2.73 2.76 2.79 2.88 3.07 3.32					

Primary OutFlow Max=35.03 cfs @ 12.14 hrs HW=347.35' (Free Discharge)

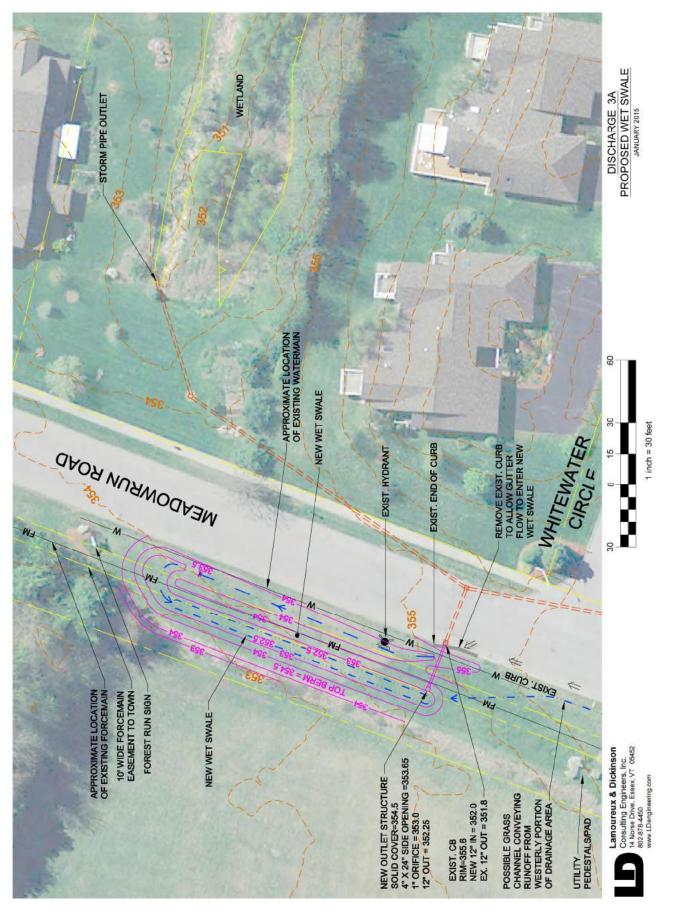
-1=Orifice1 (Orifice Controls 0.12 cfs @ 9.97 fps)

-2=Orifice1 (Orifice Controls 0.53 cfs @ 7.91 fps)

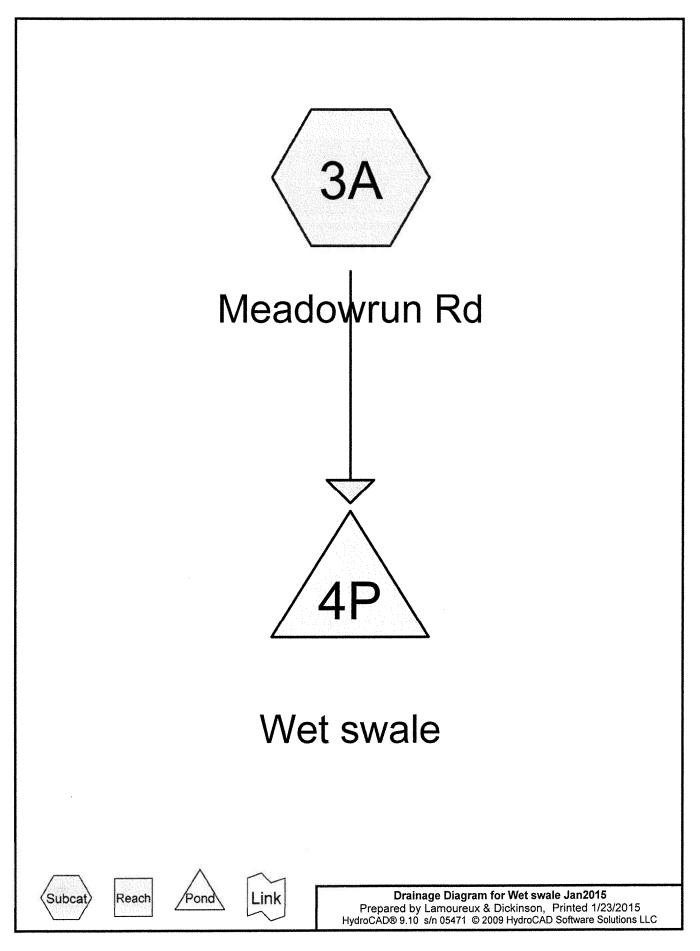

-3=Grate (Orifice Controls 17.71 cfs @ 4.43 fps)

4=Broad-Crested Rectangular Weir (Weir Controls 16.66 cfs @ 2.46 fps)

* CALCULATED INFLOW EXCERDS THE CAPACITY OF THE INLET PIPE


CULVERTS

INLET CONTROL, CIRCULAR HDPE PIPE



CULVERTS

Attachment 6 Meadowrun Road Proposed Wet Swale

Page 1 of 2 Version: 9/06

For the area draining to*: Meadowrun Rd wet swale

Located in drainage area for S/N:

003A

WQ Volume and Modified Curve Number Calculation for Water Quality Treatment in Flow-Based Practice

Use this worksheet to calculate your WQv if you need to determine the Peak Q for the WQ storm (i.e. designing a grass channel, flow-splitter or other flow based practice) and you are not using any of the site design credits in section 3 of the 2002 VSWMM. See page 2 for "Calculating Peak WQ Discharge Rate (0.9" storm) using the Modified Curve Number." Please note that in the case of grass channels you must include any off-site area draining to the practice as this will affect the peak discharge rate which will ultimately affect the hydraulics, and thus residence time, in your channel.

ne			value/calculation	on units
	Area draining to practice	A=	1.04	acres
	Impervious area		0.28	acres
	Percent Impervious Area = [(line 2/line 1) * 100] =	I =	26.92	% (whole #)
	Precipitation	P =	0.9	inches
	Runoff coefficient calculation = (0.05 + (0.009*I))	Rv =	0.292	
	WQ Volume (in watershed inches) Calculation =($P *$	Rv) =	0.263	Qa (watershed inches, a.k.a. inches of runof
	Minimum WQ Volume ¹		0.2	watershed inches
	Enter the greater of line 6 or line 7	WQv =	0.263	watershed inches
	WQ Volume Calculation = (line 8 *A)/12 =	WQv =	0.023	ac. ft.
)	WQ Volume Calculation = (line 9 * 43560) =	WQv =	993	cu. ft.

Notes:

1: Sites with low impervious cover (~19%) but that do not employ a **significant** use of the stormwater design credits in Section 3 of the VSWMM are required to treat the minimum water quality volume of 0.2 watershed inches. Sites that have a **significant** portion of their impervious cover addressed via the stormwater credits (section 3 of the VSWMM) will be able to reduce this WQv and will only be required to treat the volume calculated on the "WQ Volume (with credit reduction)" worksheet which will be less than the 0.2 watershed inches.

PERMANENT FOOL VOL = 450 CF MAX STORAGE VOL = 531 CF 989 CF

003A

Meadowrun Rd wet swale

Page 2 of 2 Version: 9/06 For the area draining to*:

Located in drainage area for S/N:

Calculating Peak WQ Peak Discharge Rate (0.9" storm) using the Modified Curve Number

Because NRCS methods underestimate the peak discharge for rainfall events of less than 2", simply plugging in 0.9" of rainfall into your hydrologic model with the standard curve numbers will not produce the correct peak discharge during the WQv storm, nor will it produce a volume of runoff equivalent to that which you have calculated using the WQv formula (WQv = $P^*Rv^*A/12$). In order to calculate the peak discharge for the 0.9" storm, a modified curve number must be calculated. This modified curve number is based on the runoff (in inches) calculated using the short cut method formula (WQv = P^*Rv) that is also the basis of the familiar WQv calculations provided in the 2002 VSWMM (and on the WQv calculation worksheets). Essentially, the curve number that is calculated using the methods below is the curve number that will generate the volume of runoff calculated using the WQv formula.

Above, you should have calculated the **WQv** in watershed inches draining to the facility/practice for which you need to calculate the WQpeak discharge. As provided in the guidance listed on the grass channel worksheet, please remember that the WQv calculation should include runoff from on-site as well as off-site area draining to the grass channel since this will have an impact on the channel hydraulics and thus the velocity and residence time.

Steps:

1. Transfer information from WQv calculation worksheets.

Enter the Qa (line 8 from WQv sheet) Qa = 0.263 inches Enter the area (site +off-site draining to practice) used in calculating the percent impervious (I) A = 1.0 acres 2. Use the following equation to calculate a corresponding curve number where P = 0.9 inches CN = $1000/(10 + (5*P) + (10*Qa) - (10*(Qa^2 + (1.25*Qa*P))^{0.5}))$ CN = 90.2

3. If you are using **hand hydrologic runoff calculations**, use the computed CN above along with your calculated time of concentration and the drainage area (A) to calculate the peak discharge (Qwq) for the water quality storm using the TR-55 Graphical Peak Discharge Method.

OR

3. If you are using a computer aided hydrologic model, simply revise the curve number for your subwatershed(s) draining to the practice using the curve number calculated above; the computed curve number should be applied to the total area (A) used in the WQv calcuation. As a check, you should note that now when you run the 0.9" storm, your runoff depth should be roughly equal to Qa (WQ runoff in inches) and your total runoff volume roughly equal to your WQv (in ac. ft.). If this is not the case, make sure that the time span for your modelling run is long enough to capture the entire storm. Small variations are likely due to having to round your computed CN to a whole number. Remember that for storms larger than 2", you do not need to use the modified curve number and you should calculate your composite curve number based on the accepted values for different types of land-use (see TR-55).

Area Listing (all nodes)

Area	CN	Description				
 (acres)		(subcatchment-numbers)		~~~~	6.01131	1/172 .
1.040	90	Modified CN (3A)	e -	WATER	QUALITY	Voc.

Summary for Subcatchment 3A: Meadowrun Rd

Runoff = 0.42 cfs @ 12.01 hrs, Volume= 0.022 af, Depth= 0.26"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-120.00 hrs, dt= 0.05 hrs Type II 24-hr WQv Rainfall=0.90"

Area (ac) CN Description											
* 1.040 90 Modified CN 🛹 MOD CN											
1.040 90 100.00% Pervious Area											
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)											
8.2 50 0.0300 0.10 Sheet Flow, Overland to gutter Grass: Dense n= 0.240 P2= 2.30"											
Summary for Pond 4P: Wet swale											
Inflow Area = 1.040 ac, 0.00% Impervious, Inflow Depth = 0.26" for WQv event Inflow = 0.42 cfs @ 12.01 hrs, Volume= 0.022 af Outflow = 0.01 cfs @ 15.67 hrs, Volume= 0.022 af, Atten= 97%, Lag= 219.7 min Primary = 0.01 cfs @ 15.67 hrs, Volume= 0.022 af											
Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs / 2 Starting Elev= 353.00' Surf.Area= 1,365 sf Storage= 458 cf Peak Elev= 353.32' @ 15.67 hrs Surf.Area= 2,000 sf Storage= 989 cf (531 cf above start)											
Plug-Flow detention time= 1,086.2 min calculated for 0.012 af (53% of inflow) Center-of-Mass det. time= 563.0 min (1,431.7 - 868.6) 9,44 HPS											
Volume Invert Avail.Storage Storage Description											
#1 352.50' 5,105 cf Custom Stage Data (Irregular) Listed below (Recalc)											
Elevation Surf.Area Perim. Inc.Store Cum.Store Wet.Area (feet) (sq-ft) (feet) (cubic-feet) (cubic-feet) (sq-ft)											
352.50 530 271.0 0 530											
353.00 1,365 346.0 (458) 458 4,216											
354.00 3,773 591.0 2,469 2,927 22,490											
354.50 4,969 373.0 2,179 5,105 39,215											
Device Routing Invert Outlet Devices											
#1 Primary 353.00' 1.0'' Vert. Orifice C= 0.600											
#2 Primary 353.65' 24.0" W x 4.0" H Vert. Overflow orifice C= 0.600											
Primary OutFlow Max=0.01 cfs @ 15.67 hrs HW=353.32' (Free Discharge) -1=Orifice (Orifice Controls 0.01 cfs @ 2.53 fps)											

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
0.760	80	>75% Grass cover, Good, HSG D (3A)
0.280	98	Street (3A)

Summary for Subcatchment 3A: Meadowrun Rd

Runoff = 1.50 cfs @ 12.00 hrs, Volume= 0.083 af, Depth= 0.96"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-120.00 hrs, dt= 0.05 hrs Type II 24-hr 1 year Rainfall=2.10"

Area (ac) CN Description	
* 0.280 98 Street	
0.760 80 >75% Grass cover, Good, HSG D	
1.040 85 Weighted Average	
0.760 80 73.08% Pervious Area	
0.280 98 26.92% Impervious Area	
Tc Length Slope Velocity Capacity Description	
(min) (feet) (ft/ft) (ft/sec) (cfs)	
8.2 50 0.0300 0.10 Sheet Flow, Over	
Grass: Dense n=	0.240 P2= 2.30"
Commence for David 4D. Mate	
Summary for Pond 4P: Wet	swale
Inflow Area = 1.040 ac, 26.92% Impervious, Inflow Depth =	0.96" for 1 year event
Inflow = 1.50 cfs @ 12.00 hrs, Volume= 0.083	
	af, Atten= 82%, Lag= 15.3 min
Primary = 0.27 cfs @ 12.25 hrs, Volume= 0.083	af
Politing by Star Ind mathed Time Spann 0.00 120.00 bro. dt 0.05	hrs/2 PONDING VOL.
Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.05 Starting Elev= 353.00' Surf.Area= 1,365 sf Storage= 458 cf	nrs / 2
Peak Elev= 353.77' @ 12.25 hrs Surf.Area= 3,100 sf Storage= 2,	
1 9" PONDING DEPTH (PLL	5 6" PERM Popl
Plug-Flow detention time= 714.4 min calculated for 0.073 af (87% of	
Center-of-Mass det. time= 554.1 min (1,366.9 - 812.8)	
-> 9,2 HRS	
Volume Invert Avail.Storage Storage Description	
#1 352.50' 5,105 cf Custom Stage Data (Irreg	ular) Listed below (Recalc)
Elevation Surf.Area Perim. Inc.Store Cur	n.Store Wet.Area
(feet) (sq-ft) (feet) (cubic-feet) (cub	ic-feet) (sq-ft)
352.50 530 271.0 0	0 530
353.00 1,365 346.0 (458) PERM	
354.00 3,773 591.0 2,469 pool	2,927 22,490
354.50 4,969 373.0 2,179	5,105 39,215
Device Routing Invert Outlet Devices	
#1 Primary 353.00' 1.0'' Vert. Orifice C= 0.600	
#2 Primary 353.65' 24.0" W x 4.0" H Vert. Overflow	orifice C= 0.600
·	
Primary OutFlow Max=0.27 cfs @ 12.25 hrs HW=353.77' (Free I	Discharge)
T-1=Orifice (Orifice Controls 0.02 cfs @ 4.10 fps)	

-2=Overflow orifice (Orifice Controls 0.25 cfs @ 1.09 fps)

Summary for Subcatchment 3A: Meadowrun Rd

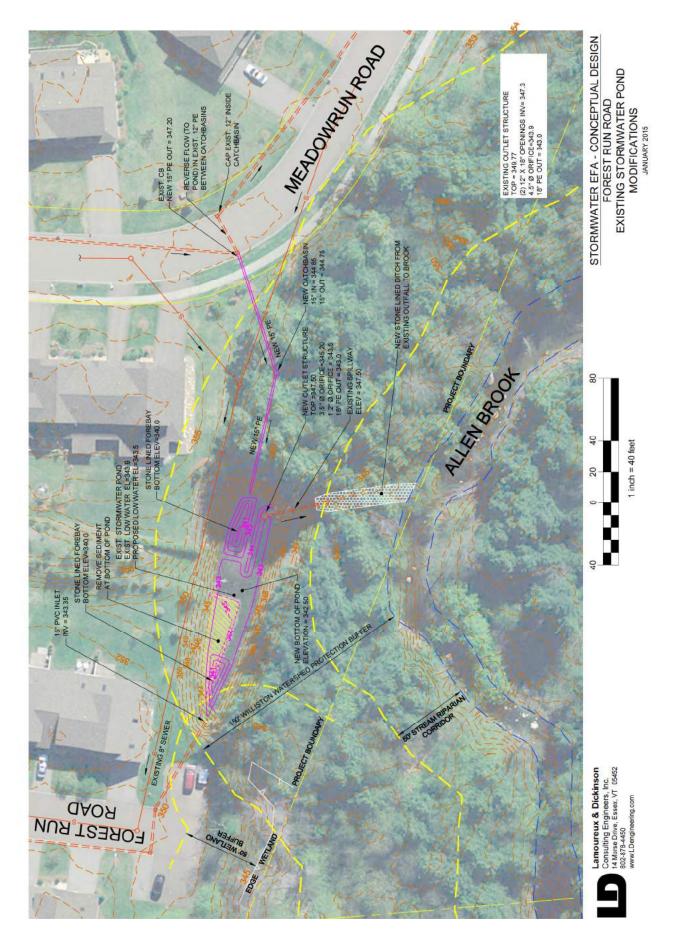
Runoff 2.89 cfs @ 12.00 hrs, Volume= 0.158 af, Depth= 1.82" =

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-120.00 hrs, dt= 0.05 hrs Type II 24-hr 10 year Rainfall=3.20"

	Area	(ac)	CN	Desc	ription		
*	0.	280	98	Stree	et		
	0.	760	80	>75%	6 Grass co	over, Good,	HSG D
	1.	040					
	0.	760	80	73.08	3% Pervio	us Area	
	0.280 98 26.92% Impervious Area						
	Tc Lengti (min) (feet			Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	8.2	50	0 0	.0300	0.10		Sheet Flow, Overland to gutter Grass: Dense n= 0.240 P2= 2.30"

Summary for Pond 4P: Wet swale

Inflow Are	ea =	1.040 ac, 26.92% Impervious, Inflow Depth = 1.82" for 10 year event
Inflow	=	2.89 cfs @ 12.00 hrs, Volume= 0.158 af
Outflow	=	1.45 cfs @ 12.11 hrs, Volume= 0.158 af, Atten= 50%, Lag= 6.8 min
Primary	=	1.45 cfs @ 12.11 hrs, Volume= 0.158 af


Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs / 2 Starting Elev= 353.00' Surf.Area= 1,365 sf Storage= 458 cf Peak Elev= 354.03' @ 12.11 hrs Surf.Area= 3,831 sf Storage= 3,026 cf (2,568 cf above start) Plug-Flow detention time= 385.8 min calculated for 0.147 af (93% of inflow) Center-of-Mass det. time= 316.4 min (1,119.9 - 803.4)

Volume	ume Invert Avail.Storage Storage Description								
#1	352.5	0!	5,105 cf	cf Custom Stage Data (Irregular) Listed below (Recalc)					
Elevation (feet)		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
352.5	0	530	271.0	0	0	530			
353.00		1,365	346.0	458	458	4,216			
354.0	0	3,773	591.0	2,469	2,927	22,490			
354.5	0	4,969	373.0	2,179	5,105	39,215			
Device Routing #1 Primary					0.600				
#2 Primary 353.65' 24.0'' W x 4.0'' H Vert. Overflow orifice C= 0.600									
Primary	Primary OutFlow Max=1.44 cfs @ 12.11 hrs HW=354.02' (Free Discharge)								

Imary OutFlow Max=1.44 cts @ 12.11 hrs HW= −1=Orifice (Orifice Controls 0.03 cfs @ 4.77 fps) HVV=354.02° (Free Discharge)

-2=Overflow orifice (Orifice Controls 1.41 cfs @ 2.12 fps)

Attachment 7 Forest Run Road Existing Stormwater Pond

FOREST RUN MODIFIED POND **1**S 2SDraining to existing pond (Forest Run Rd) Meadowrun (PORTION OF MEADOWRUN ROAD TO BE RE-DIRECTED TO POND) 2FExisting pond Link Drainage Diagram for Existing pond Jan2015 Subcat Pond Reach Prepared by Lamoureux & Dickinson, Printed 1/22/2015 HydroCAD® 9.10 s/n 05471 © 2009 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description	
(acres)		(subcatchment-numbers)	
3.539	80	>75% Grass cover, Good, HSG D (1S, 2S)	
0.296	98	Paved Driveways, HSG D (1S)	
0.953	98	Paved Road, HSG D (1S)	
0.811	98	Roof, HSG D (1S)	
0.600	98	Roofs & drives (2S)	
0.072	98	Sidewalk, HSG D (1S)	
0.430	98	Street & sidewalk (2S)	

6.701 AC

For the area draining to*: Forest Run pond Located in drainage area for S/N: 004

WQ Volume Calculation for Volume-Based Practice

Use this worksheet to calculate the water quality volume draining to your volume based STP if you are not using any of the site design credits in section 3 of the 2002 VSWMM. Do not use this worksheet to calculate your WQv if you need to determine the Peak Q for the WQ storm (i.e. designing a grass channel, flow-splitter or other flow based practice). See the worksheet "Water Quality Volume and Modified Curve Number Calculation for Water Quality Treatment in a Flow-Based Practice"

ne			value/calculation	on units
1	Site Area (impervious + disturbed pervious)	A=	6.70	acres
2	Impervious area		3.16	acres
3	Percent Impervious Area = [(line 2/line 1) * 100] =	I =	47.19	% (whole #)
4	Precipitation	P =	0.9	inches
5	Runoff coefficient calculation = (0.05 + (0.009*I))	Rv =	0.475	
6	WQ Volume (in watershed inches) Calculation =(P *	Rv) =	0.427	Qa (watershed inches, a.k.a. inches of runof
7	Minimum WQ Volume ¹		0.2	watershed inches
}	Enter the greater of line 6 or line 7	WQv =	0.427	watershed inches
)	WQ Volume Calculation = (line 8 *A)/12 =	WQv =	0.239	ac. ft.
υ	WQ Volume Calculation = (line 9 * 43560) =	WQv =	10392	cu, ft.

Notes:

1: Sites with low impervious cover (~19%) but that do not employ a significant use of the stormwater design credits in Section 3 of the VSWMM are required to treat the minimum water quality volume of 0.2 watershed inches. Sites that have a significant portion of their impervious cover addressed via the stormwater credits (section 3 of the VSWMM) will be able to reduce this WQv and will only be required to treat the volume calculated on the "WQ Volume (with credit reduction)" worksheet which will be less than the 0.2 watershed inches.

PERMANENT POOL VOLUME = 2758 CF

STORAGE VOLUME (EXTENDED DETENTION

VOLUME = 6219 CF TIME = 24,8 HIZS

(TOTAL RUNOFF VOLVME = 8668 CF)

Summary for Subcatchment 1S: Draining to existing pond (Forest Run Rd)

Runoff = 1.75 cfs @ 12.09 hrs, Volume= 0.135 af, Depth= 0.34"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-120.00 hrs, dt= 0.10 hrs Type II 24-hr WQv Rainfall=0.90"

	A	rea (sf)	CN [Description							
	1	13,204	80 >	>75% Grass cover, Good, HSG D							
*		3,131	98 3	Sidewalk, H	ISG D						
*		41,507	98 F	Paved Road	d, HSG D						
*		35,309	98 F	Roof, HSG	Ď						
*		12,912	98 F	Paved Drive	eways, HS0	GD					
	2	206,063	88 \	Neighted A	verage						
	1	13,204		•	vious Area						
92,859 98 45.06% Impervious Are				45.06% Imp	pervious Ar	ea					
	Тс	Length	Slope	Velocity	Capacity	Description					
	(min) (feet) (ft/ft) (ft/sec) (cfs)					Description					
	13.0 100 0.0150 0.13			0.13		Sheet Flow, Grass Lawn					
						Grass: Short n= 0.150 P2= 2.30"					
	3.3 368 0.0150 1.84			1.84		Shallow Concentrated Flow, Shallow Grass Swale					
						Grassed Waterway Kv= 15.0 fps					
	16.3	468	Total								

Summary for Subcatchment 2S: Meadowrun

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.98 cfs @ 12.01 hrs, Volume= 0.064 af, Depth= 0.39"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-120.00 hrs, dt= 0.10 hrs Type II 24-hr WQv Rainfall=0.90"

	Area	(ac)	CN	Desc	ription		
*	0.	600	98	Roof	s & drives		
*	0.	430	98	Stree	et & sidewa	alk	
	0.	940	80	>75%	<u>% Grass co</u>	over, Good,	HSG D
	1.	970	89	Weig	hted Aver	age	
	0.	940	80	47.72	2% Pervio	us Area	
	1.	030	98	52.28	3% Imperv	vious Area	
_	Tc Length (min) (feet)			Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	10.7	80) 0.0	0400	0.12		Sheet Flow, Overland lawn Grass: Dense n= 0.240 P2= 2.30"

Summary for Pond 2P: Existing pond

Inflow Outflow Primary	Outflow = 0.07 cfs @ 17.19 hrs, Volume= 0.199 af, Atten= 97%, Lag= 308.2 min Primary = 0.07 cfs @ 17.19 hrs, Volume= 0.199 af Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af									
Starting	Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.10 hrs / 2 Starting Elev= 343.50' Surf.Area= 3,216 sf Storage= 2,758 cf									
				alculated for 0.135 a	af (68% of inflow)					
Center-o	of-Mass det.			2,300.9 - 811.5)						
Volume	Invert			・ こ4 ち HRら Storage Description	i l					
#1	342.50'			Custom Stage Data		below (Recalc)				
		, -		j	- (
Elevatio			Perim.	Inc.Store	Cum.Store	Wet.Area				
(fee		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)				
342.5		2,321	289.0	0	0	2,321				
343.0		2,754	305.0	1,267	1,267	3,092				
344.(00	3,713	327.0	3,222	4,489	4,242				
345.0	00	4,368	339.0	4,036	8,525	4,960				
346.0	00	5,039	352.0	4,700	13,224	5,754				
347.0	00	5,753	365.0	5,392	18,616	6,578				
348.0	00	6,501	377.0	6,123	24,740	7,378				
349.0	00	7,276	391.0	6,885	31,624	8,316				
Device	Routing			t Devices						
#1	Primary	343.50).600					
#2	Primary	345.00		/ert. Orifice2 C= (
#3	Secondary	347.50		ong x 4.0' breadth						
						0 1.40 1.60 1.80 2.00				
				3.00 3.50 4.00 4.5						
			Coef.	(English) 2.38 2.5	4 2.69 2.68 2.67	2.67 2.65 2.66 2.66				
			2.68	2.72 2.73 2.76 2.7	79 2.88 3.07 3.32					
Primary OutFlow Max=0.07 cfs @ 17.19 hrs HW=345.10' (Free Discharge)										

1=Orifice1 (Orifice Controls 0.05 cfs @ 6.00 fps)

2=Orifice2 (Orifice Controls 0.02 cfs @ 1.09 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=343.50' (Free Discharge)

Summary for Subcatchment 1S: Draining to existing pond (Forest Run Rd)

Runoff = 6.21 cfs @ 12.09 hrs, Volume= 0.468 af, Depth= 1.19"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-120.00 hrs, dt= 0.10 hrs Type II 24-hr 1 year Rainfall=2.10"

	A	rea (sf)	CN I	Description					
	1	13,204	80 :	>75% Gras	s cover, Go	bod, HSG D			
*		3,131	98 3	Sidewalk, ⊦	ISG D				
*		41,507	98 I	Paved Road	d, HSG D				
*		35,309	98	Roof, HSG	D				
*		12,912	98 I	Paved Drive	eways, HS0	G D			
	2	206,063	88 \	Neighted A	verage				
	113,204 80			54.94% Pervious Area					
	92,859 98 45.06% Imperviou					ea			
				•					
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	13.0	100	0.0150	0.13		Sheet Flow, Grass Lawn			
						Grass: Short n= 0.150 P2= 2.30"			
	3.3	368	0.0150	1.84		Shallow Concentrated Flow, Shallow Grass Swale			
						Grassed Waterway Kv= 15.0 fps			
	16.3	468	Total						

Summary for Subcatchment 2S: Meadowrun

[49] Hint: Tc<2dt may require smaller dt

Runoff = 3.24 cfs @ 12.01 hrs, Volume= 0.210 af, Depth= 1.28"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-120.00 hrs, dt= 0.10 hrs Type II 24-hr 1 year Rainfall=2.10"

	Area	(ac)	CN	Desc	cription						
*	0.	600	98	Roof	s & drives						
*	0.	430	98	Stree	et & sidewa	alk					
	0.	940	80	>75%	6 Grass co	over, Good,	HSG D				
	1.970 89 Weighted Average										
	0.940 80				47.72% Pervious Area						
	1.	030	98	52.28	8% Imperv	vious Area					
	Tc (min)	Length (feet		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	10.7	80) 0.	0400	0.12		Sheet Flow, Overland lawn Grass: Dense n= 0.240 P2= 2.30"				

Summary for Pond 2P: Existing pond

Inflow = 8.96 cfs Outflow = 0.55 cfs	a @ 12.06 hrs, a @ 13.56 hrs, a @ 13.56 hrs,	Volume= Volume=	epth = 1.21" for 0.678 af 0.677 af, Atten= 9 0.677 af 0.000 af	1 year event 94%, Lag= 90.1 min				
Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.10 hrs / 2 Starting Elev= 343.50' Surf.Area= 3,216 sf Storage= 2,758 cf Peak Elev= 347.32' @ 13.56 hrs Surf.Area= 5,987 sf Storage= 20,490 cf (17,732 cf above start)								
Center-of-Mass det. time=	Plug-Flow detention time= 863.0 min calculated for 0.613 af (90% of inflow) Center-of-Mass det. time= 732.2 min (1,530.2 - 798.0) iz, z , $HFSVolume Invert Avail.Storage Storage Description$							
#1 342.50'			(Irregular) Listed	below (Recalc)				
Elevation Surf.Area		Inc.Store	Cum.Store	Wet.Area				
(feet) (sq-ft		(cubic-feet)	(cubic-feet)	(sq-ft)				
342.50 2,32		0	0	2,321				
343.00 2,754		1,267	1,267	3,092				
344.00 3,71		3,222	4,489	4,242				
345.00 4,36		4,036	8,525	4,960				
346.00 5,03		4,700	13,224	5,754				
347.00 5,753		5,392	18,616	6,578				
348.00 6,50		6,123	24,740	7,378				
349.00 7,270		6,885	31,624	8,316				
Device Routing	Invert Outlet D	evices						
#1 Primary 34	43.50' 1.2" Vei	rt. Orifice1 C= 0	.600					
#2 Primary 3	45.00' 3.5" Vei	rt. Orifice2 C= 0	.600					
#3 Secondary 3-			Broad-Crested Re					
	•	,		0 1.40 1.60 1.80 2.00				
		00 3.50 4.00 4.5						
				2.67 2.65 2.66 2.66				
	2.68 2.1	72 2.73 2.76 2.7	9 2.88 3.07 3.32					
Primary OutFlow May=0 P	5 cfs @ 13 56 F	ns HW=347 32'	(Free Discharge)					
Primary OutFlow Max=0.55 cfs @ 13.56 hrs HW=347.32' (Free Discharge) -1=Orifice1 (Orifice Controls 0.07 cfs @ 9.35 fps)								

2=Orifice2 (Orifice Controls 0.47 cfs @ 7.10 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=343.50' (Free Discharge)

Hydrograph for Pond 2P: Existing pond

Time	Inflow	Storage	Elevation	Outflow	Drimony	Secondary
(hours)	(cfs)	(cubic-feet)	(feet)	Outflow (cfs)	Primary (cfs)	Secondary (cfs)
0.00	0.00	2,758	343.50	0.00	0.00	0.00
0.50	0.00	2,758	343.50	0.00	0.00	0.00
1.00	0.00	2,758	343.50	0.00	0.00	0.00
1.50	0.00	2,758	343.50	0.00	0.00	0.00
2.00	0.00	2,758	343.50	0.00	0.00	0.00
2.50 3.00	0.01 0.02	2,767 2,791	343.50 343.51	0.00 0.00	0.00 0.00	0.00 0.00
3.50	0.02	2,791	343.51	0.00	0.00	0.00
4.00	0.03	2,881	343.54	0.00	0.00	0.00
4.50	0.04	2,945	343.56	0.00	0.00	0.00
5.00	0.05	3,021	343.58	0.01	0.01	0.00
5.50	0.06	3,109	343.61	0.01	0.01	0.00
6.00	0.07	3,210	343.64	0.01	0.01	0.00
6.50	0.08	3,324	343.67	0.01	0.01	0.00
7.00	0.09	3,451	343.71	0.01	0.01	0.00
7.50 8.00	0.10 0.11	3,591	343.75	0.02	0.02	0.00
8.50	0.11	3,745 3,918	343.79 343.84	0.02 0.02	0.02 0.02	0.00 0.00
9.00	0.16	4,139	343.90	0.02	0.02	0.00
9.50	0.18	4,404	343.98	0.02	0.02	0.00
10.00	0.21	4,696	344.06	0.03	0.03	0.00
10.50	0.27	5,072	344.15	0.03	0.03	0.00
11.00	0.38	5,592	344.29	0.03	0.03	0.00
11.50	0.63	6,397	344.49	0.04	0.04	0.00
12.00	8.32	11,293	345.61	0.27	0.27	0.00
12.50 13.00	1.63 0.77	19,367	347.13	0.52	0.52	0.00
13.50	0.77	20,297 20,488	347.29 347.32	0.54 0.55	0.54 0.55	0.00 0.00
14.00	0.44	20,405	347.30	0.55	0.55	0.00
14.50	0.38	20,154	347.26	0.54	0.54	0.00
15.00	0.34	19,834	347.21	0.53	0.53	0.00
15.50	0.31	19,462	347.15	0.53	0.53	0.00
16.00	0.27	19,040	347.07	0.52	0.52	0.00
16.50	0.25	18,575	346.99	0.51	0.51	0.00
17.00	0.23	18,101	346.91	0.50	0.50	0.00
17.50	0.22	17,623	346.83	0.49	0.49	0.00
18.00 18.50	0.21 0.19	17,142 16,659	346.74 346.65	0.47 0.46	0.47 0.46	0.00 0.00
19.00	0.19	16,174	346.56	0.40	0.40	0.00
19.50	0.17	15,689	346.47	0.44	0.44	0.00
20.00	0.15	15,203	346.38	0.42	0.42	0.00
20.50	0.14	14,722	346.29	0.41	0.41	0.00
21.00	0.14	14,260	346.20	0.39	0.39	0.00
21.50	0.14	13,820	346.12	0.38	0.38	0.00
22.00	0.14	13,402	346.04	0.36	0.36	0.00
22.50	0.13	13,005	345.96	0.35	0.35	0.00
23.00 23.50	0.13 0.13	12,630 12,277	345.88 345.81	0.33 0.32	0.33 0.32	0.00 0.00
23.50	0.13	11,945	345.74	0.32	0.32	0.00
24.50	0.00	11,515	345.65	0.28	0.28	0.00
25.00	0.00	11,029	345.55	0.26	0.26	0.00
25.50	0.00	10,588	345.46	0.23	0.23	0.00

Time	Inflow	Storage	Elevation	Outflow	Primary	Secondary
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)	(cfs)	<u>(cfs)</u>
26.00	0.00	10,196	345.37	0.20	0.20	0.00
26.50	0.00	9,855 9,569	345.30	0.18	0.18	0.00
27.00 27.50	0.00		345.23	0.14	0.14	0.00
27.50	0.00 0.00	9,338 9,156	345.18 345.14	0.11 0.09	0.11 0.09	0.00 0.00
28.00	0.00	9,156 9,008	345.14 345.11	0.09	0.09	0.00
29.00	0.00	8,886	345.08	0.06	0.07	0.00
29.50	0.00	8,779	345.06	0.06	0.00	0.00
30.00	0.00	8,684	345.04	0.05	0.00	0.00
30.50	0.00	8,597	345.02	0.05	0.05	0.00
31.00	0.00	8,514	345.00	0.05	0.05	0.00
31.50	0.00	8,433	344.98	0.05	0.05	0.00
32.00	0.00	8,352	344.96	0.04	0.04	0.00
32.50	0.00	8,271	344.94	0.04	0.04	0.00
33.00	0.00	8,191	344.92	0.04	0.04	0.00
33.50	0.00	8,111	344.90	0.04	0.04	0.00
34.00	0.00	8,032	344.89	0.04	0.04	0.00
34.50	0.00	7,954	344.87	0.04	0.04	0.00
35.00	0.00	7,876	344.85	0.04	0.04	0.00
35.50	0.00	7,799	344.83	0.04	0.04	0.00
36.00	0.00	7,722	344.81	0.04	0.04	0.00
36.50	0.00	7,646	344.80	0.04	0.04	0.00
37.00	0.00	7,570	344.78	0.04	0.04	0.00
37.50	0.00	7,495	344.76	0.04	0.04	0.00
38.00	0.00	7,420	344.74	0.04	0.04	0.00
38.50	0.00	7,346	344.72	0.04	0.04	0.00
39.00	0.00	7,273	344.71	0.04	0.04	0.00
39.50	0.00	7,200	344.69	0.04	0.04	0.00
40.00	0.00	7,128	344.67	0.04	0.04	0.00
40.50	0.00	7,056	344.65	0.04	0.04	0.00
41.00	0.00	6,985	344.64	0.04	0.04	0.00
41.50	0.00	6,914	344.62	0.04	0.04	0.00
42.00	0.00	6,844	344.60	0.04	0.04	0.00
42.50 43.00	0.00	6,774	344.59	0.04	0.04	0.00
43.00 43.50	0.00 0.00	6,705 6,637	344.57 344.55	0.04 0.04	0.04 0.04	0.00 0.00
43.50	0.00	6,569	344.55	0.04	0.04	0.00
44.50	0.00	6,502	344.52	0.04	0.04	0.00
45.00	0.00	6,435	344.50	0.04	0.04	0.00
45.50	0.00	6,369	344.49	0.04	0.04	0.00
46.00	0.00	6,303	344.47	0.04	0.04	0.00
46.50	0.00	6,238	344.45	0.04	0.04	0.00
47.00	0.00	6,174	344.44	0.04	0.04	0.00
47.50	0.00	6,110	344.42	0.04	0.04	0.00
48.00	0.00	6,047	344.41	0.03	0.03	0.00
48.50	0.00	5,984	344.39	0.03	0.03	0.00
49.00	0.00	5,922	344.37	0.03	0.03	0.00
49.50	0.00	5,861	344.36	0.03	0.03	0.00
50.00	0.00	5,800	344.34	0.03	0.03	0.00
50.50	0.00	5,739	344.33	0.03	0.03	0.00
51.00	0.00	5,680	344.31	0.03	0.03	0.00
51.50	0.00	5,620	344.30	0.03	0.03	0.00

Time	Inflow	Storage	Elevation	Outflow	Primary	Secondary
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)	(cfs)	(cfs)
52.00	0.00	5,562	344.28	0.03	0.03	0.00
52.50	0.00	5,504	344.27	0.03	0.03	0.00
53.00	0.00	5,447	344.25	0.03	0.03	0.00
53.50	0.00	5,390	344.24	0.03	0.03	0.00
54.00	0.00	5,334	344.22	0.03	0.03	0.00
54.50	0.00	5,278	344.21	0.03	0.03	0.00
55.00	0.00	5,223	344.19	0.03	0.03	0.00
55.50	0.00	5,169	344.18	0.03	0.03	0.00
56.00	0.00	5,115	344.17	0.03	0.03	0.00
56.50	0.00	5,062	344.15	0.03 0.03	0.03 0.03	0.00 0.00
57.00 57.50	0.00 0.00	5,010 4,958	344.14 344.12	0.03	0.03	0.00
58.00	0.00	4,956 4,906	344.12	0.03	0.03	0.00
58.50	0.00	4,856	344.10	0.03	0.03	0.00
59.00	0.00	4,806	344.08	0.03	0.03	0.00
59.50	0.00	4,756	344.07	0.03	0.03	0.00
60.00	0.00	4,707	344.06	0.03	0.03	0.00
60.50	0.00	4,659	344.05	0.03	0.03	0.00
61.00	0.00	4,612	344.03	0.03	0.03	0.00
61.50	0.00	4,565	344.02	0.03	0.03	0.00
62.00	0.00	4,518	344.01	0.03	0.03	0.00
62.50	0.00	4,472	344.00	0.03	0.03	0.00
63.00	0.00	4,427	343.98	0.02	0.02	0.00
63.50	0.00	4,383	343.97	0.02	0.02	0.00
64.00	0.00	4,339	343.96	0.02	0.02	0.00
64.50	0.00	4,296	343.95	0.02	0.02	0.00
65.00	0.00	4,253	343.94	0.02	0.02	0.00
65.50	0.00	4,211	343.92	0.02	0.02	0.00
66.00	0.00	4,170	343.91	0.02	0.02	0.00
66.50	0.00	4,129	343.90	0.02	0.02	0.00
67.00	0.00	4,089	343.89	0.02	0.02	0.00
67.50	0.00	4,050	343.88	0.02	0.02	0.00
68.00	0.00	4,011	343.87	0.02	0.02	0.00
68.50	0.00	3,973	343.86	0.02	0.02	0.00
69.00	0.00	3,936	343.85	0.02 0.02	0.02 0.02	0.00 0.00
69.50 70.00	0.00 0.00	3,899 3,863	343.84 343.83	0.02	0.02	0.00
70.50	0.00	3,803	343.83	0.02	0.02	0.00
71.00	0.00	3,793	343.81	0.02	0.02	0.00
71.50	0.00	3,758	343.80	0.02	0.02	0.00
72.00	0.00	3,725	343.79	0.02	0.02	0.00
72.50	0.00	3,692	343.78	0.02	0.02	0.00
73.00	0.00	3,660	343.77	0.02	0.02	0.00
73.50	0.00	3,628	343.76	0.02	0.02	0.00
74.00	0.00	3,598	343.75	0.02	0.02	0.00
74.50	0.00	3,568	343.74	0.02	0.02	0.00
75.00	0.00	3,538	343.73	0.02	0.02	0.00
75.50	0.00	3,509	343.73	0.02	0.02	0.00
76.00	0.00	3,481	343.72	0.02	0.02	0.00
76.50	0.00	3,454	343.71	0.02	0.02	0.00
77.00	0.00	3,427	343.70	0.01	0.01	0.00
77.50	0.00	3,401	343.69	0.01	0.01	0.00

Time	Inflow	Storage	Elevation	Outflow	Primary	Secondary
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)	(cfs)	(cfs)
78.00	0.00	3,376	343.69	0.01	0.01	0.00
78.50	0.00	3,351	343.68	0.01	0.01	0.00
79.00	0.00	3,327	343.67	0.01	0.01	0.00
79.50	0.00	3,303	343.67	0.01	0.01	0.00
80.00	0.00	3,281	343.66	0.01	0.01	0.00
80.50	0.00	3,259	343.65	0.01	0.01	0.00
81.00	0.00	3,238	343.65	0.01	0.01	0.00
81.50	0.00	3,217	343.64	0.01	0.01	0.00
82.00	0.00	3,198	343.63	0.01	0.01	0.00
82.50	0.00	3,179	343.63	0.01	0.01	0.00
83.00	0.00	3,160	343.62	0.01	0.01	0.00
83.50	0.00	3,143	343.62	0.01	0.01	0.00
84.00	0.00	3,125	343.61	0.01	0.01	0.00
84.50 85.00	0.00 0.00	3,109 3,093	343.61 343.60	0.01 0.01	0.01 0.01	0.00 0.00
85.50	0.00	3,093	343.60	0.01	0.01	0.00
86.00	0.00	3,078	343.50	0.01	0.01	0.00
86.50	0.00	3,050	343.59	0.01	0.01	0.00
87.00	0.00	3,038	343.59	0.01	0.01	0.00
87.50	0.00	3,026	343.58	0.01	0.01	0.00
88.00	0.00	3,014	343.58	0.01	0.01	0.00
88.50	0.00	3,004	343.58	0.01	0.01	0.00
89.00	0.00	2,994	343.57	0.01	0.01	0.00
89.50	0.00	2,984	343.57	0.01	0.01	0.00
90.00	0.00	2,975	343.57	0.00	0.00	0.00
90.50	0.00	2,967	343.56	0.00	0.00	0.00
91.00	0.00	2,959	343.56	0.00	0.00	0.00
91.50	0.00	2,951	343.56	0.00	0.00	0.00
92.00	0.00	2,944	343.56	0.00	0.00	0.00
92.50	0.00	2,938	343.56	0.00	0.00	0.00
93.00	0.00	2,931	343.55	0.00	0.00	0.00
93.50	0.00	2,925	343.55	0.00	0.00	0.00
94.00	0.00	2,920	343.55	0.00	0.00	0.00
94.50	0.00	2,914	343.55	0.00	0.00	0.00
95.00	0.00	2,909	343.55	0.00	0.00	0.00
95.50	0.00	2,905	343.55	0.00	0.00	0.00
96.00	0.00	2,900	343.54	0.00	0.00	0.00
96.50	0.00	2,896	343.54	0.00	0.00	0.00
97.00	0.00	2,892	343.54	0.00	0.00	0.00
97.50	0.00	2,888	343.54	0.00 0.00	0.00	0.00
98.00	0.00	2,885	343.54		0.00	0.00
98.50 99.00	0.00	2,881	343.54	0.00 0.00	0.00 0.00	0.00 0.00
99.00 99.50	0.00 0.00	2,878 2,875	343.54 343.54	0.00	0.00	0.00
100.00	0.00	2,873	343.54	0.00	0.00	0.00
100.50	0.00	2,868	343.53	0.00	0.00	0.00
101.00	0.00	2,865	343.53	0.00	0.00	0.00
101.50	0.00	2,862	343.53	0.00	0.00	0.00
102.00	0.00	2,860	343.53	0.00	0.00	0.00
102.50	0.00	2,857	343.53	0.00	0.00	0.00
103.00	0.00	2,854	343.53	0.00	0.00	0.00
103.50	0.00	2,851	343.53	0.00	0.00	0.00

Time	Inflow	Storage	Elevation	Outflow	Primary	Secondary
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)	(cfs)	(cfs)
104.00	0.00	2,849	343.53	0.00	0.00	0.00
104.50	0.00	2,846	343.53	0.00	0.00	0.00
105.00	0.00	2,844	343.53	0.00	0.00	0.00
105.50	0.00	2,842	343.53	0.00	0.00	0.00
106.00	0.00	2,839	343.53	0.00	0.00	0.00
106.50	0.00	2,837	343.52	0.00	0.00	0.00
107.00	0.00	2,835	343.52	0.00	0.00	0.00
107.50	0.00	2,833	343.52	0.00	0.00	0.00
108.00	0.00	2,831	343.52	0.00	0.00	0.00
108.50	0.00	2,829	343.52	0.00	0.00	0.00
109.00	0.00	2,827	343.52	0.00	0.00	0.00
109.50	0.00	2,825	343.52	0.00	0.00	0.00
110.00	0.00	2,823	343.52	0.00	0.00	0.00
110.50	0.00	2,821	343.52	0.00	0.00	0.00
111.00	0.00	2,820	343.52	0.00	0.00	0.00
111.50	0.00	2,818	343.52	0.00	0.00	0.00
112.00	0.00	2,816	343.52	0.00	0.00	0.00
112.50	0.00	2,815	343.52	0.00	0.00	0.00
113.00	0.00	2,813	343.52	0.00	0.00	0.00
113.50	0.00	2,812	343.52	0.00	0.00	0.00
114.00	0.00	2,810	343.52	0.00	0.00	0.00
114.50	0.00	2,809	343.52	0.00	0.00	0.00
115.00	0.00	2,807	343.52	0.00	0.00	0.00
115.50	0.00	2,806	343.51	0.00	0.00	0.00
116.00	0.00	2,805	343.51	0.00	0.00	0.00
116.50	0.00	2,803	343.51	0.00	0.00	0.00
117.00	0.00	2,802	343.51	0.00	0.00	0.00
117.50	0.00	2,801	343.51	0.00	0.00	0.00
118.00	0.00	2,800	343.51	0.00	0.00	0.00
118.50	0.00	2,799	343.51	0.00	0.00	0.00
119.00	0.00	2,798	343.51	0.00	0.00	0.00
119.50	0.00	2,796	343.51	0.00	0.00	0.00
120.00	0.00	2,795	343.51	0.00	0.00	0.00

Summary for Subcatchment 1S: Draining to existing pond (Forest Run Rd)

Runoff = 16.35 cfs @ 12.08 hrs, Volume= 1.218 af, Depth= 3.09"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-120.00 hrs, dt= 0.10 hrs Type II 24-hr 100 year Rainfall=4.30"

	A	rea (sf)	CN I	Description					
	1	13,204	80 >	>75% Gras	s cover, Go	bod, HSG D			
*		3,131	98 3	Sidewalk, ⊢	ISG D				
*		41,507	98 I	Paved Road	d, HSG D				
*		35,309	98 F	Roof, HSG	Ď				
*		12,912	98 F	Paved Drive	eways, HSC	G D			
	2	06,063	88 \	Neighted A	verage				
	113,204 80			54.94% Pervious Area					
	92,859 98			45.06% Imp	pervious Ar	ea			
	Tc	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·			
	13.0	100	0.0150	0.13		Sheet Flow, Grass Lawn			
						Grass: Short n= 0.150 P2= 2.30"			
	3.3	368	0.0150	1.84		Shallow Concentrated Flow, Shallow Grass Swale			
						Grassed Waterway Kv= 15.0 fps			
	16.3	468	Total						

Summary for Subcatchment 2S: Meadowrun

[49] Hint: Tc<2dt may require smaller dt

Runoff = 8.20 cfs @ 12.01 hrs, Volume= 0.528 af, Depth= 3.22"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-120.00 hrs, dt= 0.10 hrs Type II 24-hr 100 year Rainfall=4.30"

_	Area	(ac)	CN	Desc	ription		
*	0.	600	98	Roof	s & drives		
*	0.	430	98	Stree	et & sidewa	alk	
_	0.	940	80	>75%	6 Grass co	over, Good,	HSG D
	1.970 89 Weighted Average						· · · · · · · · · · · · · · · · · · ·
	0.940 80			47.72	2% Pervio	us Area	
	1.	030	98	52.28	3% Imperv	vious Area	
	Tc (min)	Length (feet)		lope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	10.7	80	0.0	0400	0.12		Sheet Flow, Overland lawn Grass: Dense n= 0.240 P2= 2.30"

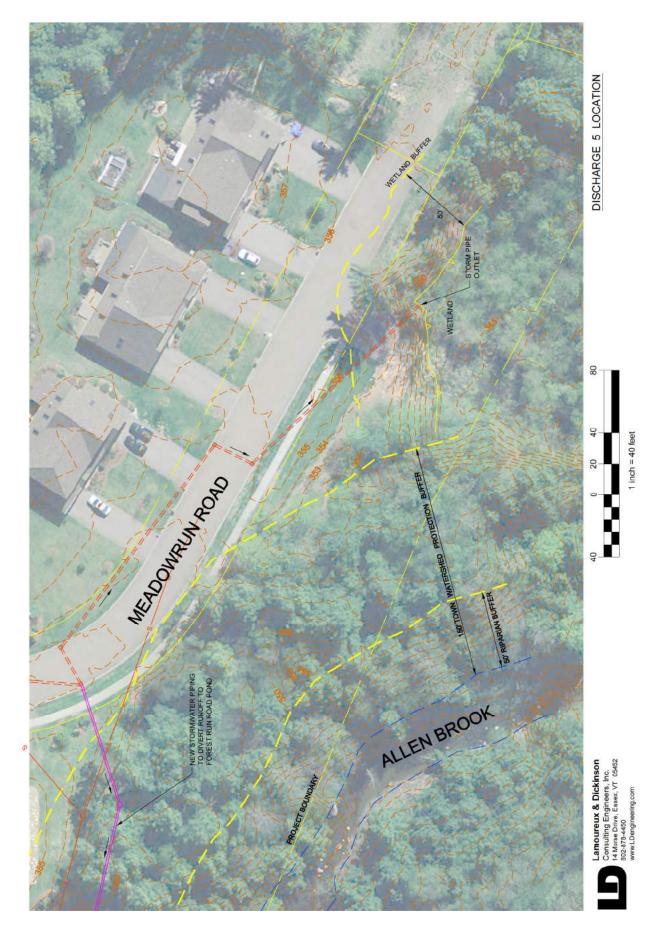
Summary for Pond 2P: Existing pond

Inflow Area = 6.701 ac, 47.19% Impervious, Inflow Depth = 3.13" for 100 year event								
Inflow =	23.30 cfs @	12.06 hrs, Volume	= 1.747 a	af				
Outflow =	19.07 cfs @	12.15 hrs, Volume	= 1.749 a	af, Atten= 18	3%, Lag= 5.6 min			
Primary =	0.68 cfs @	12.15 hrs, Volume	= 0.959 a	af				
Secondary =	18.38 cfs @	12.15 hrs, Volume	= 0.790 a	af				
Starting Elev= 34 Peak Elev= 348.6 Plug-Flow detent	3.50' Surf.Ard 30' @ 12.15 hr ion time= 422.9	ne Span= 0.00-120. ea= 3,216 sf Storag s Surf.Area= 6,964 <i>TOP BERM</i> 9 min calculated for 5 min (1,165.6 - 785	ge= 2,758 cf sf Storage= 28 <i>349,0</i> 1.686 af (96% of	,808 cf (26,	049 cf above start)			

Volume	Invert	Avail.Sto	orage	Storage Descri	ption				
#1 342.50'		31,6	24 cf	Custom Stage	Custom Stage Data (Irregular) Listed below (Recalc)				
Elevatio (fee		ırf.Area f (sq-ft)	Perim. (feet)	Inc.Stor (cubic-feel			Wet.Area (sq-ft)		
342.5	50	2,321	289.0	(0	0	2,321		
343.0	0	2,754	305.0	1,26	7 1	,267	3,092		
344.0	0	3,713	327.0	3,22	2 4	,489	4,242		
345.0	0	4,368	339.0	4,03	6 8	,525	4,960		
346.0	0	5,039	352.0	4,70	0 13	,224	5,754		
347.0	0	5,753	365.0	5,39		,616	6,578		
348.0	0	6,501	377.0	6,12		,740	7,378		
349.0	00	7,276	391.0	6,88	5 31	,624	8,316		
Device	Routing	Invert	Outle	et Devices					
#1	Primary	343.50'	1.2"	Vert. Orifice1	C= 0.600				
#2	Primary	345.00'	3.5"	Vert. Orifice2	C= 0.600				
#3	Secondary	347.50'	6.0' I	long x 4.0' brea	dth Broad-Cro	ested Rec	tangular Weir		
			2.50 Coef	3.00 3.50 4.00	0 4.50 5.00 5 2.54 2.69 2.	.50 68 2.67 2	2.67 2.65 2.66 2.0		

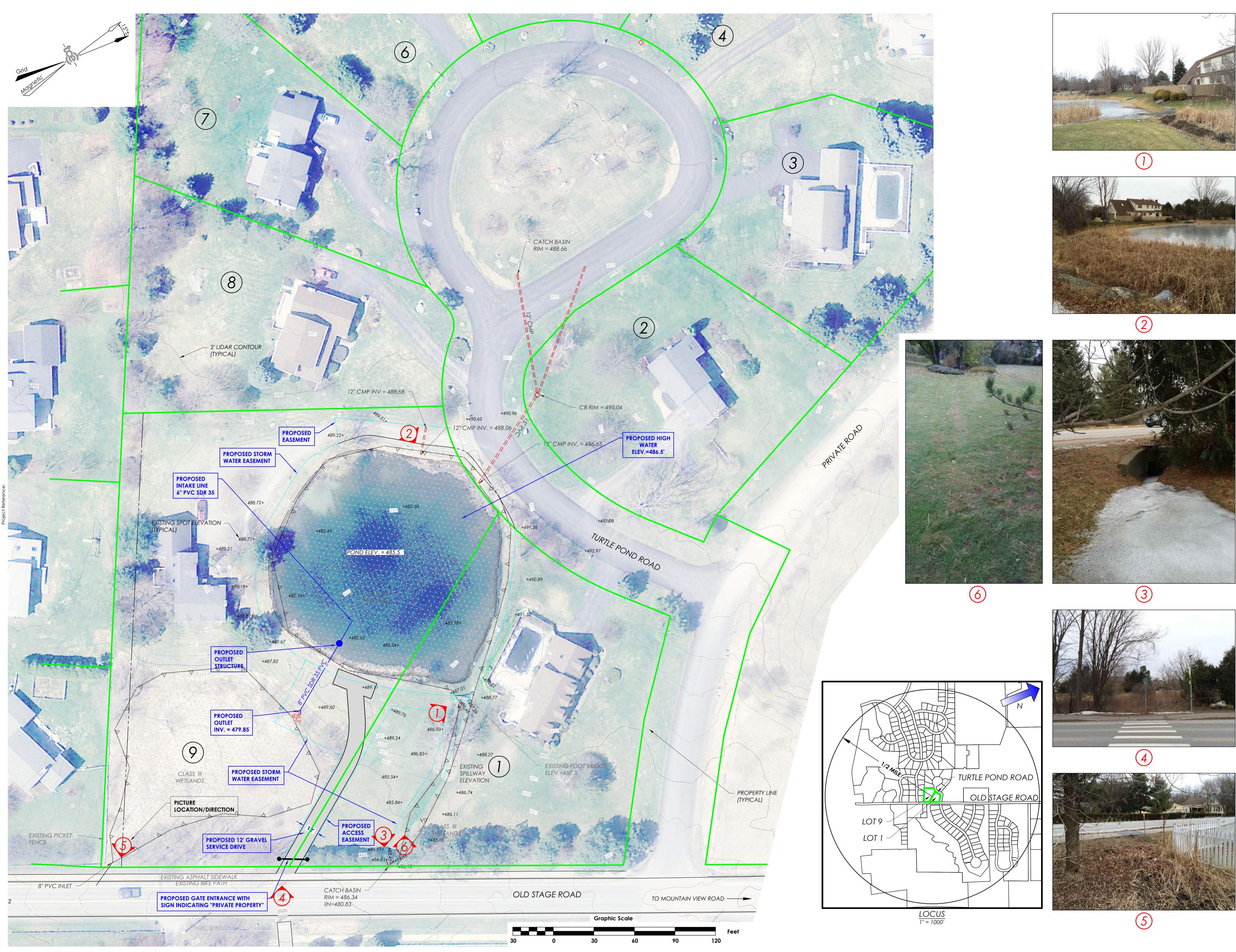
Primary OutFlow Max=0.68 cfs @ 12.15 hrs HW=348.54' (Free Discharge) -1=Orifice1 (Orifice Controls 0.08 cfs @ 10.76 fps)

-2=Orifice2 (Orifice Controls 0.59 cfs @ 8.88 fps)

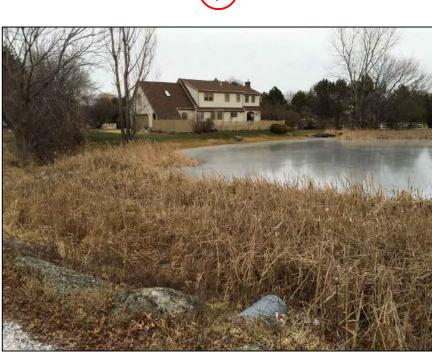

Secondary OutFlow Max=17.08 cfs @ 12.15 hrs HW=348.54' (Free Discharge) -3=Broad-Crested Rectangular Weir (Weir Controls 17.08 cfs @ 2.73 fps)

Attachment 8 Discharge 3 Location Map

Attachment 9 Discharge 5 Location Map



TURTLE POND: PERMIT 2-1191



TRUDELL CONSULTING ENGINEERS 478 BLAIR PARK ROAD | WILLISTON, VERMONT 05495 802 879 6331 | WWW.TCEVT.COM

Revis	ions		
No.	Description	Date	Ву

Use of These Drawings 1. Unless otherwise noted, these Drawings are intended for the start with other disciplines or preliminary planning, coordination with other disciplines or utilities, and/or approval from the regulatory authorities. They are not intended as construction drawings unless noted as such or marked approved by a regulatory authority.

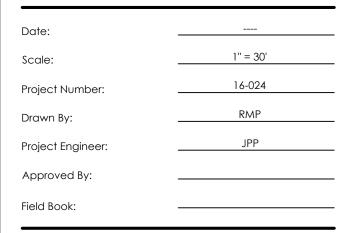
2. By use of these drawings for construction of the Project, the Owner represents that they have reviewed, approved, and accepted the drawings, obtained all necessary permits, and have met with all applicable parties/disciplines, including but not limited to, the Engineer and the Architect, to insure these plans are properly coordinated including, but not limited to, contract documents, specifications, owner/contractor agreements, building and mechanical plans, private and public utilities, and other pertinent permits for construction.

3. Owner and Architect, are responsible for final design and location of buildings shown, including an area measured a minimum five (5) feet around any building and coordinating final utility connections shown on these plans.

4. Prior to using these plans for construction layout, the user shall contact TCE to ensure the plan contains the most current revisions.

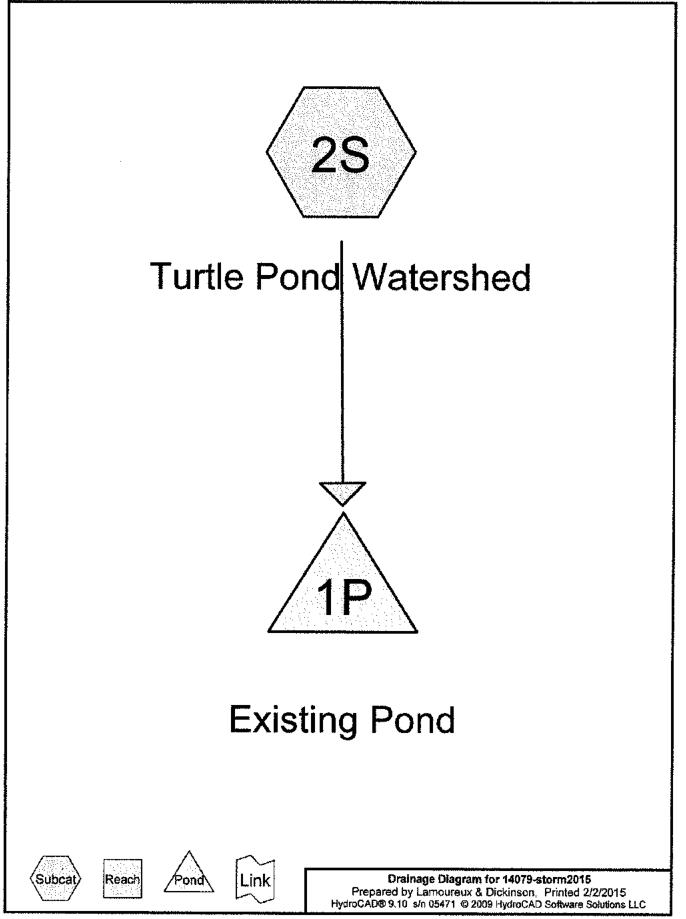
5. These Drawings are specific to the Project and are not transferable. As instruments of service, these drawings, and copies thereof, furnished by TCE are its exclusive property. Changes to the drawings may only be made by TCE. If errors or omissions are discovered, they shall be brought to the attention of TCE immediately.

6. It is the User's responsibility to ensure this copy contains the most current revisions. If unsure, please contact TCE.



Project Title

Turtle Pond Turtle Pond Road Williston, Vermont


Sheet Title

Site Plan

C2-01 478 of 529

PROPOSED POND

.

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
3.039	74	>75% Grass cover, Good, HSG C (2S)
1.225	77	Woods, Good, HSG D (2S)
4.700	80	>75% Grass cover, Good, HSG D (28)
0.157	98	Gravel Drives (2S)
0.817	98	Paved Drives (2S)
0.617	98	Paved Road (2S)
0.516	98	Roofs (2S)

Summary for Subcatchment 2S: Turtle Pond Watershed

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 0.83 cfs @ 11.93 hrs, Vo	olume= 0.062 af,	Depth= 0.07"
-----------------------------------	------------------	--------------

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr WQv Rainfall=0.90"

	Area (sf)	CN	Description
	132,381	74	>75% Grass cover, Good, HSG C
*	22,465	98	Roofs
*	6,837	98	Gravel Drives
	204,723	80	>75% Grass cover, Good, HSG D
*	35,569	98	Paved Drives
÷	26,894	98	Paved Road
_	53,376	77	Woods, Good, HSG D
	482,245	81	Weighted Average
	390,480		80.97% Pervious Area
	91,765		19.03% Impervious Area

Summary for Pond 1P: Existing Pond

Inflow Area =	11.071 ac, 19.03% Impervious, Inflow Dep	pth = 0.07" for WQv event
Inflow =	0.83 cfs @ 11.93 hrs, Volume= (0.062 af
Outflow =	0.02 cfs @ 23.99 hrs, Volume= (0.053 af, Atten= 97%, Lag= 723.7 min
Primary =	0.02 cfs @ 23.99 hrs, Volume= (0.053 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume= (0. 0 00 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Starting Elev= 485.48' Surf.Area= 20,331 sf Storage= 44,019 cf Peak Elev= 485.58' @ 23.99 hrs Surf.Area= 20,684 sf Storage= 46,022 cf (2,003 cf above start)

Plug-Flow detention time= (not calculated: initial storage excedes outflow) Center-of-Mass det. time= 1,226.8 min (2,182.1 - 955.4)

Volume	invert	Avail.	Storage	Storage Description	۱	
# 1	482.50'	11	9,998 cf	Custom Stage Dat	a (Irregular) Listed	below (Recalc)
Elevation (feet)		f.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
482.50 483.00 484.00 485.50 486.50 488.50	1 1 2 2	9,856 1,355 4,636 0,414 4,031 9,433	364.0 389.0 436.0 515.0 561.0 618.0	0 5,298 12,961 26,168 22,198 53,373	0 5,298 18,259 44,427 66,625 119,998	9,856 11,366 14,479 20,500 24,475 29,951

Device	Routing	Invert	Outlet Devices		
#1	Primary	487.50'	2.0" x 2.0" Horiz. Grate X 6.00 columns		
			X 6 rows C= 0.600 in 2.0" x 2.0" Grate		
			Limited to weir flow at low heads		
#2	Primary	485.48'	4.0" Vert. Orifice C= 0.600		
#3	Secondary	486.60'	Spillway, Cv= 2.62 (C= 3.28)		
	-		Head (feet) 0.00 0.50 1.00 1.50		
			Width (feet) 3.00 7.00 15.00 25.00		
Primary OutFlow Max=0.02 cfs @ 23.99 hrs HW=485.58' (Free Discharge) -1=Grate (Controls 0.00 cfs) -2=Orifice (Orifice Controls 0.02 cfs @ 1.06 fps)					

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=485.48' (Free Discharge)

Summary for Subcatchment 2S: Turtle Pond Watershed

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff =	: 1	6.40 cfs @	11.90 hrs,	Volume=	0.617 af,	Depth= 0.67	7 ⁿ
----------	-----	------------	------------	---------	-----------	-------------	----------------

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 1 year Rainfall=2.10"

	Area (sf)	CN	Description
	132,381	74	>75% Grass cover, Good, HSG C
*	22,465	98	Roofs
×	6,837	98	Gravel Drives
	204,723	80	>75% Grass cover, Good, HSG D
*	35,569	98	Paved Drives
*	26,894	98	Paved Road
	53,376	77	Woods, Good, HSG D
	482,245	81	Weighted Average
	390,480		80.97% Pervious Area
	91,765		19.03% Impervious Area

Summary for Pond 1P: Existing Pond

Inflow Area =	11.071 ac, 19.03% Impervious, Inflow D	epth = 0.67" for 1 year event
Inflow =	16.40 cfs @ 11.90 hrs, Volume=	0.617 af
Outflow =	0.32 cfs @ 16.23 hrs, Volume=	0.604 af, Atten= 98%, Lag= 259.7 min
Primary =	0.32 cfs @ 16.23 hrs, Volume=	0.604 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Starting Elev= 485.48' Surf.Area= 20,331 sf Storage= 44,019 cf Peak Elev= 486.22' @ 16.23 hrs Surf.Area= 22,992 sf Storage= 60,065 cf (16,046 cf above start)

Plug-Flow detention time= (not calculated: initial storage excedes outflow) Center-of-Mass det. time= 761.0 min (1,615.3 - 854.3)

Volume	Invert	Avail	Storage	Storage Description	٦	
#1	482.50'	11	9,998 cf	Custom Stage Dat	a (Irregular) Listed	below (Recalc)
Elevation (feet)		f.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
482.50		9,856	364.0	0	0	9,856
483.00	1	1,355	389.0	5,298	5,298	11,366
484.00	1	4,636	436.0	12,961	18,259	14,479
485.50	2	0,414	515.0	26,168	44,427	20,500
486.50	2	4,031	561.0	22,198	66,625	24,475
488.50	2	9,433	618.0	53,373	119,998	29,951

Device	Routing	Invert	Outlet Devices
#1	Primary	487.50'	2.0" x 2.0" Horiz. Grate X 6.00 columns
			X 6 rows C= 0.600 in 2.0" x 2.0" Grate
			Limited to weir flow at low heads
#2	Primary	485.48'	4.0" Vert. Orifice C= 0.600
#3	Secondary	486,60'	Spillway, Cv= 2.62 (C= 3.28)
	-		Head (feet) 0.00 0.50 1.00 1.50
			Width (feet) 3.00 7.00 15.00 25.00
7—1=Gr	ate (Controls	0.00 cfs)	2 16.23 hrs HW=486.22' (Free Discharge) 2 cfs @ 3.65 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=485.48' (Free Discharge) --3=Spillway (Controls 0.00 cfs)

Summary for Subcatchment 2S: Turtle Pond Watershed

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

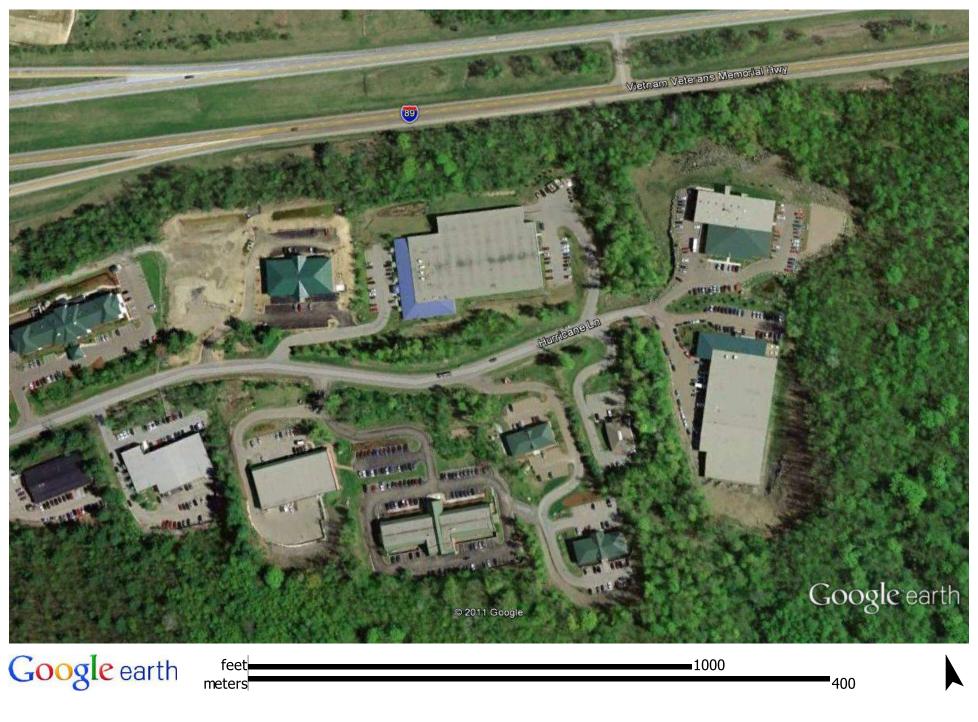
Runoff = 74.68 cfs @ 11.90 hrs, Volume= 2.918 af, Depth= 3.	Runoff	= 7	74.68 cfs @	11.90 hrs.	Volume=	2.918 af.	Depth= 3.1	16"
---	--------	-----	-------------	------------	---------	-----------	------------	-----

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 100 year Rainfall=5.20"

	Area (sf)	CN	Description					
	132,381	74	>75% Grass cover, Good, HSG C					
*	22,465	98	Roofs					
*	6,837	98	Gravel Drives					
	204,723	80	>75% Grass cover, Good, HSG D					
*	35,569	98	Paved Drives					
*	26,894	98	Paved Road					
	53,376	77	Woods, Good, HSG D					
	482,245	81	Weighted Average					
	390,480		80.97% Pervious Area					
	91,765		19.03% Impervious Area					

Summary for Pond 1P: Existing Pond

Inflow Area =	11.071 ac, 19.03% Impervious, Inflow Depth	= 3.16" for 100 year event
inflow =	74.68 cfs @ 11.90 hrs, Volume= 2.9	18 af
Outflow =	30.65 cfs @ 11.97 hrs, Volume= 2.9	02 af, Atten= 59%, Lag= 4.3 min
Primary =	0.67 cfs @ 11.97 hrs, Volume= 1.0	72 af
Secondary =	29.98 cfs @ 11.97 hrs, Volume= 1.8	29 af


Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Starting Elev= 485.48' Surf.Area= 20,331 sf Storage= 44,019 cf Peak Elev= 487.74' @ 11.97 hrs Surf.Area= 27,315 sf Storage= 98,426 cf (54,407 cf above start)

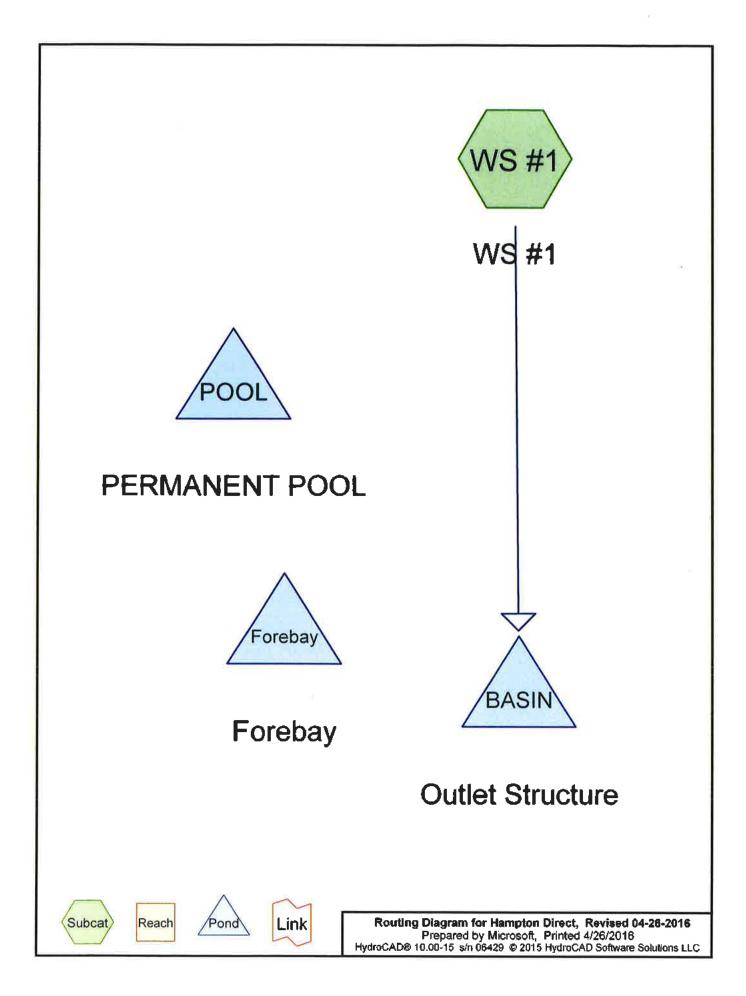
Plug-Flow detention time= 669.9 min calculated for 1.891 af (65% of inflow) Center-of-Mass det. time= 339.3 min (1,148.1 - 808.8)

Volume	Invert	Avail	Storage	Storage Description	1	
#1	482.50'	11	9,998 cf	Custom Stage Dat	a (Irregular) Listed	below (Recalc)
Elevation (feet)		f.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
482.50		9,856	364.0	0	0	9,856
483.00	1	1,355	389.0	5,298	5,298	11,366
484.00	1	4,636	436.0	12,961	18,259	14,479
485.50	2	0,414	515.0	26,168	44,427	20,500
486.50	2	4,031	561.0	22,198	66,625	24,475
488.50	2	9,433	618.0	53,373	119,998	29,951

Device	Routing	Invert	Outlet Devices	
#1	Primary	487.50'	2.0" x 2.0" Horiz. Grate X 6.00 columns X 6 rows C= 0.600 in 2.0" x 2.0" Grate	
			Limited to weir flow at low heads	
#2	Primary	485.48'	4.0" Vert. Orifice C= 0.600	
#3	Secondary	486.60'	Spillway, Cv= 2.62 (C= 3.28)	
	-		Head (feet) 0.00 0.50 1.00 1.50	
			Width (feet) 3.00 7.00 15.00 25.00	
Primary OutFlow Max=0.67 cfs @ 11.97 hrs HW=487.74' (Free Discharge) -1=Grate (Orifice Controls 0.07 cfs @ 2.36 fps) -2=Orifice (Orifice Controls 0.61 cfs @ 6.97 fps)				

Secondary OutFlow Max=29.93 cfs @ 11.97 hrs HW=487.74' (Free Discharge) —3=Spillway (Weir Controls 29.93 cfs @ 2.91 fps)

HURRICANE LANE: PERMITS 1-1078, 1-1205, 1-1245, 1-1301, 2-1172



LOCATION

NTS

		20' 240' Bar Scale	480' 1" = 120'		20'
Date revised		Description		Checked	Date
Design Drawn	WHN SLM		Overall Site Pl	an	
Checked Scale Date	WHN 1" = 120' 4/21/16	HILL	SIDE EAST - Stormwater E		
Project	14133	Hurricane Lane		V	Villiston, Vermont
		SING Consulting eet, Colchester, V	-	File nome 14133 efa overall site plan Printing dote 4/28/16	OV-1

Project Notes

291 Hurricane Lane Hampton Direct Hydrologic Model

Area Listing (all nodes)

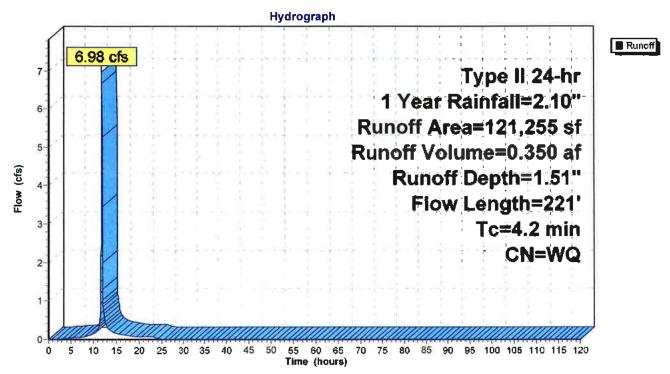
Area	CN	Description
(acres)		(subcatchment-numbers)
0.812	80	>75% Grass cover, Good, HSG D (WS #1)
1.971	98	Impervious (WS#1)
2.784	93	TOTAL AREA

Hampton Direct	Type II 24-hr 1 Year Rainfall=2.10"
Prepared by Microsoft	Revised 04-26-2016 Printed 4/26/2016
HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solution	ons LLC Page 4

Time span=0.00-120.00 hrs, dt=0.03 hrs, 4001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment WS #1: WS #1Runoff Area=121,255 sf 70.82% Impervious Runoff Depth=1.51"
Flow Length=221' Tc=4.2 min CN=WQ Runoff=6.98 cfs 0.350 afPond BASIN: Outlet StructurePeak Elev=468.78' Storage=9,786 cf Inflow=6.98 cfs 0.350 af
Outflow=0.17 cfs 0.350 afPond Forebay: ForebayPeak Elev=468.78' Storage=9,786 cf Inflow=6.98 cfs 0.350 af
Outflow=0.17 cfs 0.350 afPond POOL: PERMANENT POOLPeak Elev=0.00' Storage=0 cf

Total Runoff Area = 2.784 ac Runoff Volume = 0.350 af Average Runoff Depth = 1.51" 29.18% Pervious = 0.812 ac 70.82% Impervious = 1.971 ac


Summary for Subcatchment WS #1: WS #1

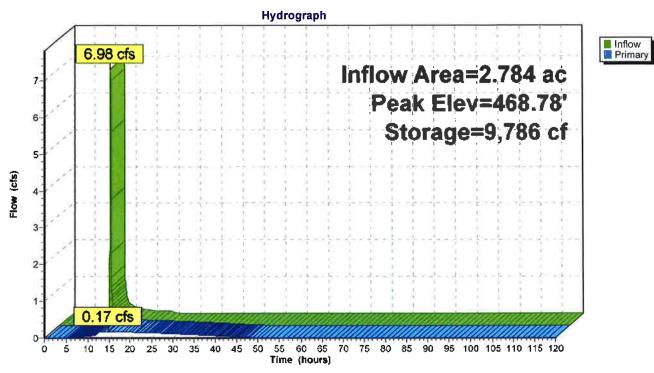
Runoff 6.98 cfs @ 11.95 hrs, Volume= 0.350 af, Depth= 1.51"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.03 hrs Type II 24-hr 1 Year Rainfall=2.10"

~	A	rea (sf)	CN D	escription					
*		85,870	98 Ir	98 Impervious					
*		35,385	80 >	75% Gras	s cover, Go	ood, HSG D			
	1	21,255	V	Veighted A	verage				
		35,385	2	9.18% Per	vious Area				
		85,870	7	0.82% Imp	ervious Are	ea			
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	3.4	36	0.1400	0.18		Sheet Flow, Sheet			
	0.8	185	0.0550	3.78		Grass: Dense n= 0.240 P2= 2.30" Shallow Concentrated Flow, Shallow Concentrated Unpaved Kv= 16.1 fps			
	4.2	221	Total						

Subcatchment WS #1: WS #1

Type II 24-hr 1 Year Rainfall=2.10" Revised 04-26-2016 Printed 4/27/2016


Summary for Pond BASIN: Outlet Structure

Inflow Area = Inflow = Outflow = Primary =	6.98 cfs @ 1 0.17 cfs @ 1	.82% Impervious 1.95 hrs, Volum 4.71 hrs, Volum 4.71 hrs, Volum	ne= 0.350 a ne= 0.350 a	f₀ Atten= 98%, Lag= 166.0 min	
	or-Ind method, Time 68.78' @ 14.71 hrs				
Center-of-Ma	tention time= 737.4 ss det. time= 738.5 12.3 h	min (1,511.6 - 7 <mark>rs</mark>	73.1)	f inflow)	
Volume		orage Storage			
#1 4	467.00' 41,2	64 cf Custom	Stage Data (Prism	atic)Listed below (Recalc)	
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
467.00	4,117	0	0		
468.00	5,610	4,864	4,864	84	
472.00	12,590	36,400	41,264	2.2" Low Flow Orifice @	
	12,000	00,100	11,204	Elev, 467.00	
Device Rou	ting Invert	Outlet Devices			
#1 Prin	and a second		ice/Grate C= 0.60	0	
#2 Prin	-		ifice/Grate C= 0.0		
#3 Prin	-			Crested Rectangular Weir	
#0 1111	iary 471.00) 1.00 1.20 1.40 1.60 1.80 2.00	
			0 4.00 4.50 5.00		
Coef. (English) 2.37 2.51 2.70 2.68 2.68 2.67 2.65 2.65 2.65 2.65 2.66 2.67 2.69 2.72 2.76 2.83					
		2.00 2.00 2.0	0 E.VI E.VV Z.IZ	2.70 2.00	
Primary Out	low Max=0.17 cfs	@ 14.71 hrs HV	V=468.78' (Free D	ischarge)	

-1=Orifice/Grate (Orifice Controls 0.17 cfs @ 6.26 fps) -2=Orifice/Grate (Controls 0.00 cfs) -3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Type II 24-hr 1 Year Rainfall=2.10" Revised 04-26-2016 Printed 4/26/2016

Page 7

Pond BASIN: Outlet Structure

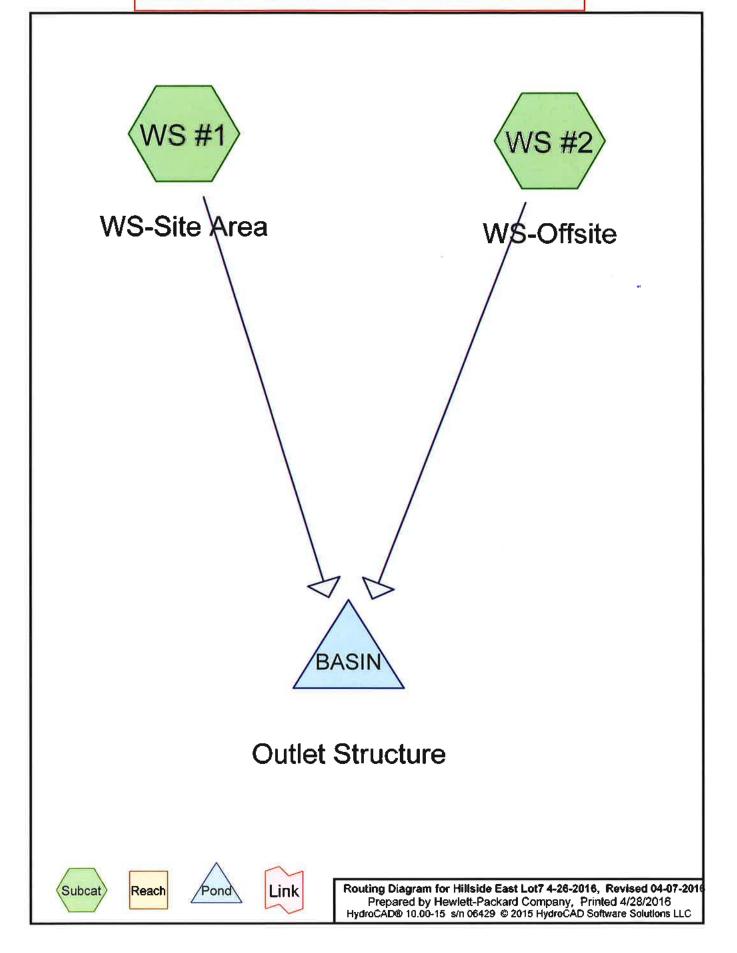
Page 8

Volume #1	Invert Ava 463.00'	il.Storage 2,409 cf		Description Stage Data (Prismat	tic)Listed below (Recalc)
Elevation (feet)	Surf.Area (sq-ft)		: Store c-feet)	Cum.Store (cubic-feet)	
463.00 464.00 465.00 466.00 467.00	210 375 579 812 1,076		0 293 477 696 944	0 293 770 1,465 2,409	
				Forebay V	/olume

Summary for Pond Forebay: Forebay

Summary for Pond POOL: PERMANENT POOL

Volume	Invert Ava	ail.Storage Storag	ge Description	
#1	463.00'	10,045 cf Custo	om Stage Data (Prismatic)Listed below (Recal	c)
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
463.00	1,235	0	0	
464.00	1,794	1,515	1,515	
465.00	2,439	2,117	3,631	
466.00	3,136	2,788	6,419	
467.00	4,117	3,627	10,045	
	5)		Permanent Pool Volume	


LOCATION

NTS

N/F Joan Oliver & Kara Cassani Parcel 13.189.037.000

	0' 120	o' 240' Bar Scale	480' 1" = 120'	720	0'
Date revised		Description		Checked	Date
Design Drawn	WHN		Overall Site Plan		
Checked Scale Date	WHN 1" = 120' 4/21/16	HIL	LSIDE EAST - L Stormwater EF		
Project	14133/94137/85135	Hurricane Lane		Wil	liston, Vermont
		SING Consulting et, Colchester, V	Engineers, Inc. Vermont 05446	File nome 94137 efa overall site plan Printing dote 4/28/16	OV-1

HILLSIDE EAST - LOT #7 - STORMWATER CALCULATIONS

Hillside East Lot7 4-26-2016

 Prepared by Hewlett-Packard Company
 Revised 04-07-2016
 Printed 4/28/2016

 HydroCAD® 10.00-15
 s/n 06429
 © 2015
 HydroCAD Software Solutions LLC
 Page 2

Project Notes

Hillside East Lot #7

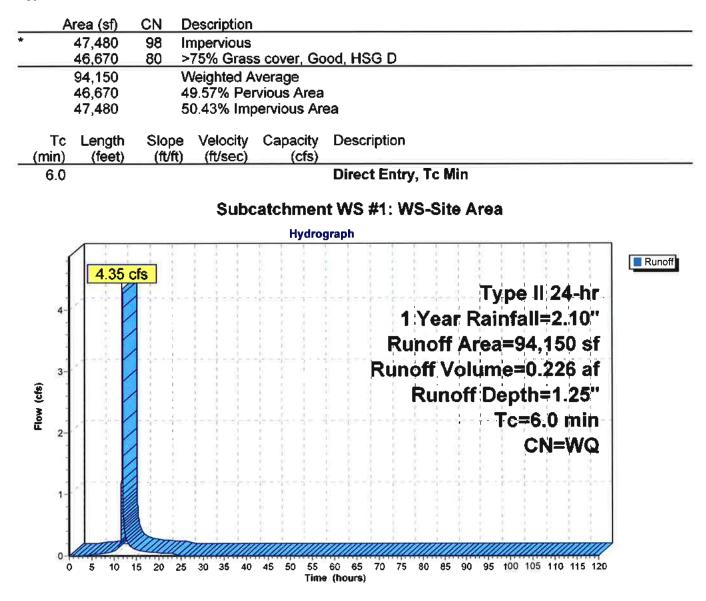
Hillside East Lot7 4-26-2016

Prepared by Hewlett-Packard CompanyRevised04-07-2016Printed4/28/2016HydroCAD® 10.00-15s/n 06429© 2015HydroCAD Software SolutionsLLCPage 3

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
1.071	80	>75% Grass cover, Good, HSG D (WS #1)
1.090	98	Impervious (WS #1)
3.927	79	Woods/grass comb., Good, HSG D (WS #2)
6.089	83	TOTAL AREA

Time span=0.00-120.00 hrs, dt=0.01 hrs, 12001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method


Subcatchment WS #1: WS-Site Area	Runoff Area=94,150 sf 50.43% Impervious Runoff Depth=1.25" Tc=6.0 min CN=WQ Runoff=4.35 cfs 0.226 af
Subcatchment WS #2: WS-Offsite	Runoff Area=171,070 sf 0.00% Impervious Runoff Depth=0.58" Flow Length=1,250' Tc=18.8 min CN=79 Runoff=2.42 cfs 0.190 af
Pond BASIN: Outlet Structure	Peak Elev=503.63' Storage=4,275 cf Inflow=5.52 cfs 0.416 af Outflow=2.58 cfs 0.416 af
Total Runoff Area = 6.08	89 ac Runoff Volume = 0.416 af Average Runoff Depth = 0.82"

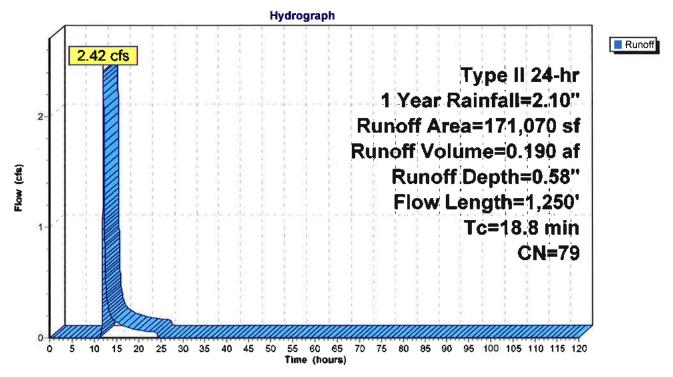
82.10% Pervious = 4.999 ac 17.90% Impervious = 1.090 ac

Summary for Subcatchment WS #1: WS-Site Area

Runoff =	4.35 cfs @	11.97 hrs, Volu	me= 0.226 af	, Depth= 1.25"
----------	------------	-----------------	--------------	----------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 1 Year Rainfall=2.10"

Summary for Subcatchment WS #2: WS-Offsite


Runoff = 2.42 cfs @ 12.13 hrs, Volume= 0.190 af, Depth= 0.58"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 1 Year Rainfall=2.10"

А	rea (sf)	CN D	escription		
1	71,070	79 V	79 Woods/grass comb., Good, HSG D		
1	71,070	1	00.00% Pe	ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
15.6	150	0.1500	0.16		Sheet Flow, Sheet Forest Woods: Light underbrush n= 0.400 P2= 2.30"
3.2	1,100	0.1260	5.71		Shallow Concentrated Flow, Gras channel Unpaved Kv= 16.1 fps
40.0	4.000	Tatal			

18.8 1,250 Total

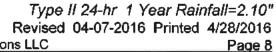
Subcatchment WS #2: WS-Offsite

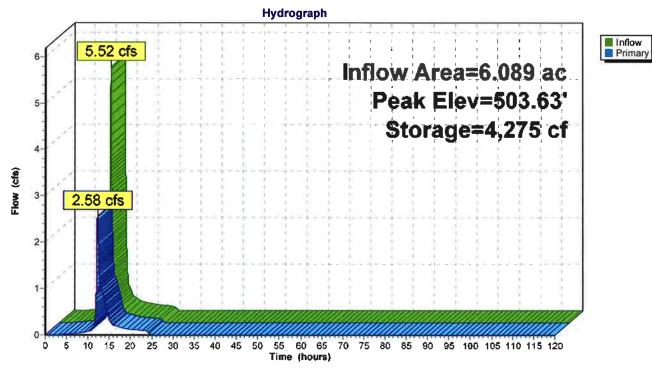
Summary for Pond BASIN: Outlet Structure

Inflow Area =	6.089 ac, 17.90% Impervious, Inflow I	Depth = 0.82" for 1 Year event
Inflow =	5.52 cfs @ 11.99 hrs, Volume=	0.416 af
Outflow =	2.58 cfs @ 12.22 hrs, Volume=	0.416 af, Atten= 53%, Lag= 14.2 min
Primary =	2.58 cfs @ 12.22 hrs, Volume=	0.416 af

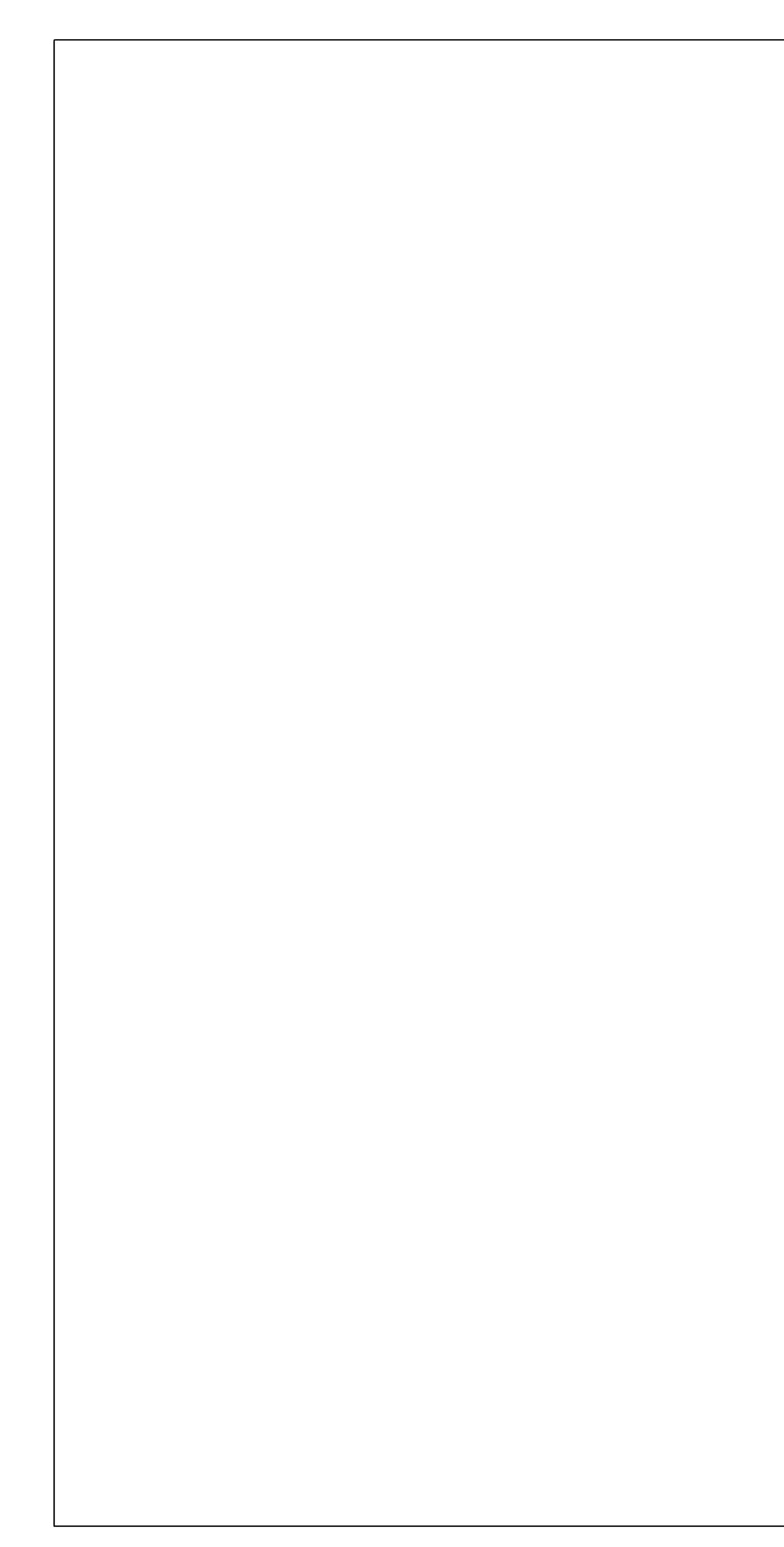
Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs / 2 <u>Starting Elev= 500.33'</u> Surf.Area= 191 sf Storage= 183 cf Peak Elev= 503.63' 12.22 hrs Surf.Area= 2,180 sf Storage= 4,275 cf (4,092 cf above start)

Plug-Flow detention time= 35.2 min calculated for 0.412 af (99% of inflow) Center-of-Mass det. time= 23.3 min (853.3 - 830.0)


Volume	Inv	ert Avail.Sto	rage Storage	Description	
#1	498.	83' 7,8	53 cf Custom	Stage Data (Pri	ismatic)Listed below (Recalc)
Elevatio	n	Surf.Area	Inc.Store	Cum.Store	
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)	
498.8		53	0	0	
500.3	33	191	183	183	
501.0	00	750	315	498	
502.0		1,240	995	1,493	
503.0		1,800	1,520	3,013	
504.0		2,400	2,100	5,113	
505.0	00	3,080	2,740	7,853	Low Flow Orifice
Device	Routing	Invert	Outlet Devices		
#1	Primary	500.33'	5.0" Vert. Orif	ice/Grate C= 0	0.600
#2	Primary	503.00'	12.0" Vert. Or	ifice/Grate C=	0.600
#3	Primary	504.00'			ad-Crested Rectangular Weir
		7			0.80 1.00 1.20 1.40 1.60 1.80 2.00
		_ /		0 4.00 4.50 5.	
Emerg	gency				0 2.68 2.68 2.66 2.65 2.65 2.65
Spillw	a second s		2.65 2.67 2.6	6 2.68 2.70 2.7	74 2.79 2.88
-ino o m	OutElou	May-2 58 ofc 0	a 12.22 hra LIM	1-502 621 (Erec	


Primary OutFlow Max=2.58 cfs @ 12.22 hrs HW=503.63' (Free Discharge)

-1=Orifice/Grate (Orifice Controls 1.16 cfs @ 8.47 fps)


-2=Orifice/Grate (Orifice Controls 1.42 cfs @ 2.71 fps)

-3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)



Pond BASIN: Outlet Structure

				C	$\overline{}$			
)			
			LOCA	TION		NTS	-	
		20'	240'		480'			
C	2' <u>1</u>			=				720'
C	2' 1		Bar Scale	1" = 12	20'			
	2' 1		Bar Scale	1" = 12	20'			720'
	2' 1			1" = 12	20'			
Date revised	2' 1.	Description				Plan	Checked	720'
Date revised Design Drawn	WHN		วท	Over	rall Site			Date
	WHN SLM WHN 1" = 120'			Over IDE E <i>f</i>	rall Site AST - I	_ots	16 &	Date
Date revised Design Drawn Checked	WHN SLM WHN		n HILLS	Over IDE E <i>f</i>	rall Site	_ots	16 &	Date

Project Notes

Hillside East Lot 16 & 17 Hydrologic Model

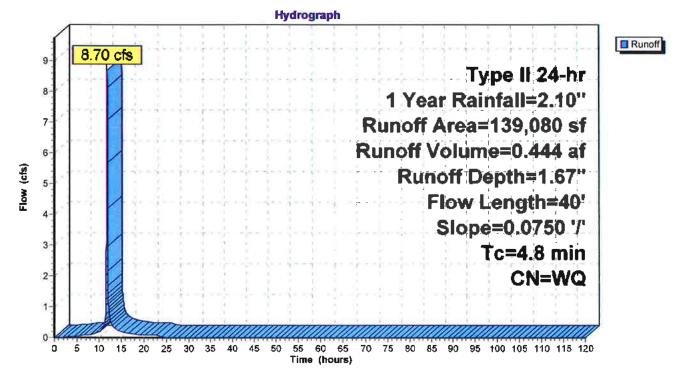
Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
1.188	80	>75% Grass cover, Good, HSG D (WS #1, WS #2)
2.620	98	Impervious (WS #1)
0.053	98	Water Surface, 0% imp, HSG D (WS #1)
3.861	92	TOTAL AREA

Time span=0.00-120.00 hrs, dt=0.02 hrs, 6001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentWS #1: WS-Site Area	Runoff Area=139,080 sf 82.06% Impervious Runoff Depth=1.67"
Flow Length=40'	Slope=0.0750 '/' Tc=4.8 min CN=WQ Runoff=8.70 cfs 0.444 af
Subcatchment WS #2: WS-Offsite	Runoff Area=29,100 sf 0.00% Impervious Runoff Depth=0.62"
Flow Length=780'	Slope=0.1300 '/' Tc=12.8 min CN=80 Runoff=0.55 cfs 0.035 af
Pond BASIN: Outlet Structure	Peak Elev=502.42' Storage=9,787 cf Inflow=9.04 cfs 0.479 af Outflow=0.67 cfs 0.479 af
Pond POOL: Pond	Peak Elev=0.00' Storage=0 cf

Total Runoff Area = 3.861 ac Runoff Volume = 0.479 af Average Runoff Depth = 1.49" 32.14% Pervious = 1.241 ac 67.86% Impervious = 2.620 ac


Summary for Subcatchment WS #1: WS-Site Area

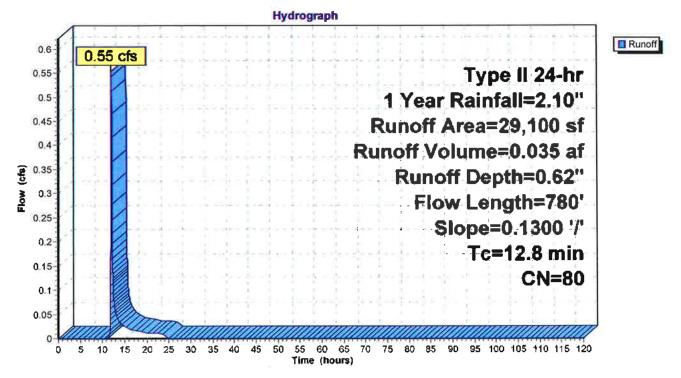
Runoff = 8.70 cfs @ 11.95 hrs, Volume= 0.444 af, Depth= 1.67"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.02 hrs Type II 24-hr 1 Year Rainfall=2.10"

	A	rea (sf)	CN E	escription		
*	1	14,130	98 Ir	npervious		
		22,635	80 >	75% Gras	s cover, Go	ood, HSG D
		2,315	98 V	Vater Surfa	ace, 0% imp	b, HSG D
	1	39,080	V	Veighted A	verage	
		24,950	1	7.94% Per	vious Area	
	1	14,130	8	2.06% Imp	pervious Are	ea
	TC	Length	Slope	Velocity	Capacity	Description
_	<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	4.8	40	0.0750	0.14		Sheet Flow, Sheet Grass
						Grass: Dense n= 0.240 P2= 2.30"

Subcatchment WS #1: WS-Site Area

Summary for Subcatchment WS #2: WS-Offsite


Runoff = 0.55 cfs @ 12.06 hrs, Volume= 0.035 af, Depth= 0.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.02 hrs Type II 24-hr 1 Year Rainfall=2.10"

A	rea (sf)	CN [Description		
	29,100	80 >	>75% Gras	s cover, Go	bod, HSG D
	29,100		00.00% Pe	ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
11.0	150	0.1300	0.23		Sheet Flow, Sheet Forest Grass: Dense n= 0.240 P2= 2.30"
1.8	630	0.1300	5.80		Shallow Concentrated Flow, Gras channel Unpaved Kv= 16.1 fps
42.0	790	Tatal			

12.8 780 Total

Subcatchment WS #2: WS-Offsite

Type II 24-hr 1 Year Rainfall=2.10"

Revised 3-31-2016 Printed 4/28/2016

Page 7

Summary for Pond BASIN: Outlet Structure

Inflow Area =	3.861 ac, 67.86% Impervious, Inflow E	Depth = 1.49" for 1 Year event
Inflow =	9.04 cfs @ 11.96 hrs, Volume=	0.479 af
Outflow =	0.67 cfs @ 12.54 hrs, Volume=	0.479 af, Atten= 93%, Lag= 35.1 min
Primary =	0.67 cfs @_ 12.54 hrs, Volume=	0.479 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.02 hrs / 2 Peak Elev= 502.42' @ 12.54 hrs Surf.Area= 3,901 sf Storage= 9,787 cf

Plug-Flow detention time= 166.3 min calculated for 0.479 af (100% of inflow) Center-of-Mass det. time= 166.5 min (941.5 - 775.0)

Volume	Inv	ert Avail.Sto	rage Storage	Description	
#1	499.	13' 19 ,59	93 cf Custom	i Stage Data (Pi	rismatic)Listed below (Recalc)
Elevatio	on	Surf.Area	Inc.Store	Cum.Store	
(fee	∋t)	(sq-ft)	(cubic-feet)	(cubic-feet)	
499.1	13	2,400	0	0	
500.0	00	2,517	2,139	2,139	
501.0	00	3,023	2,770	4,909	
502.0	00	3,602	3,313	8,221	
503.0	00	4,318	3,960	12,181	
504.0	00	5,177	4,748	16,9 29	
504.9	50	5,480	2,664	19,593	Low Flow Orifice
Device	Routing	Invert	Outlet Device	3	
#1	Primary	499.13	3.8" Vert. Ori	fice/Grate C=	0.600
#2	Primary	502.80'		Orifice/Grate C	
				ir flow at low hea	
#3	Primary	503.50'			road-Crested Rectangular Weir
					0.80 1.00 1.20 1.40 1.60
			Coef. (English	n) 2.49 2.56 2.	70 2.69 2.68 2.69 2.67 2.64

Primary OutFlow Max=0.67 cfs @ 12.54 hrs HW=502.42' (Free Discharge)

-1=Orifice/Grate (Orifice Controls 0.67 cfs @ 8.52 fps)

-2=Orifice/Grate (Controls 0.00 cfs)

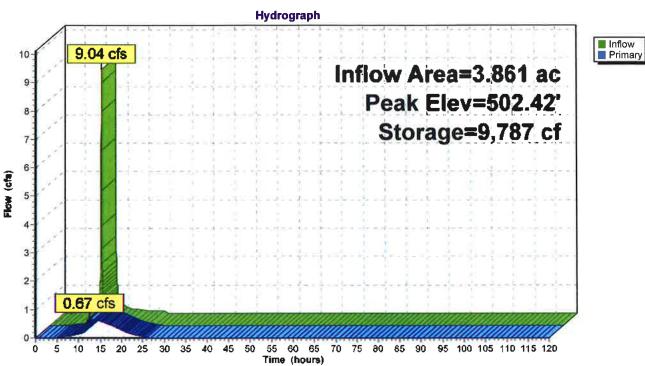
-3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Hillside East 458-459

Type II 24-hr 10 Year Rainfall=3.20" Revised 3-31-2016 Printed 4/28/2016

Prepared by Hewlett-Packard Company Revis HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solutions LLC

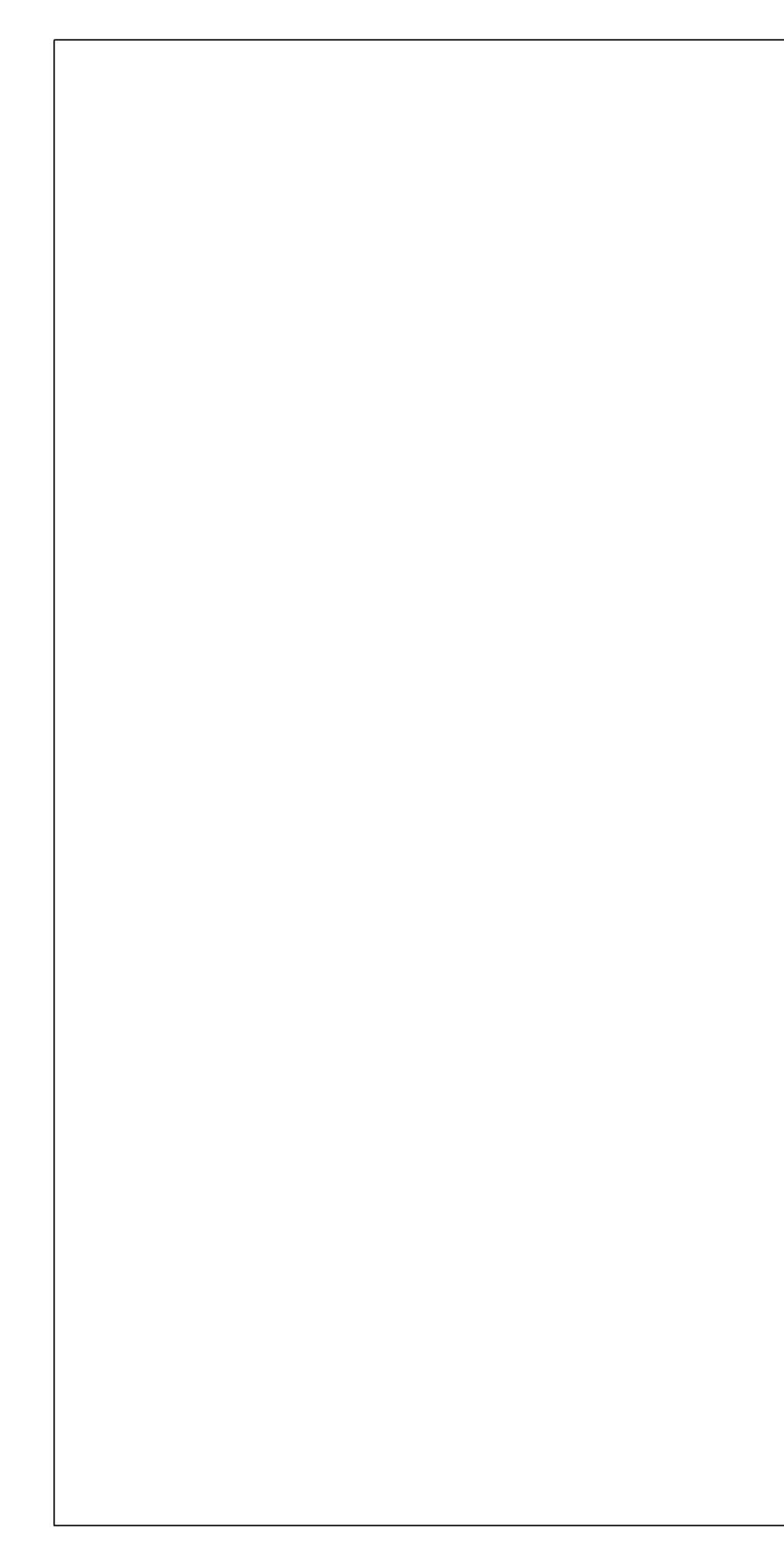
Summary for Pond BASIN: Outlet Structure

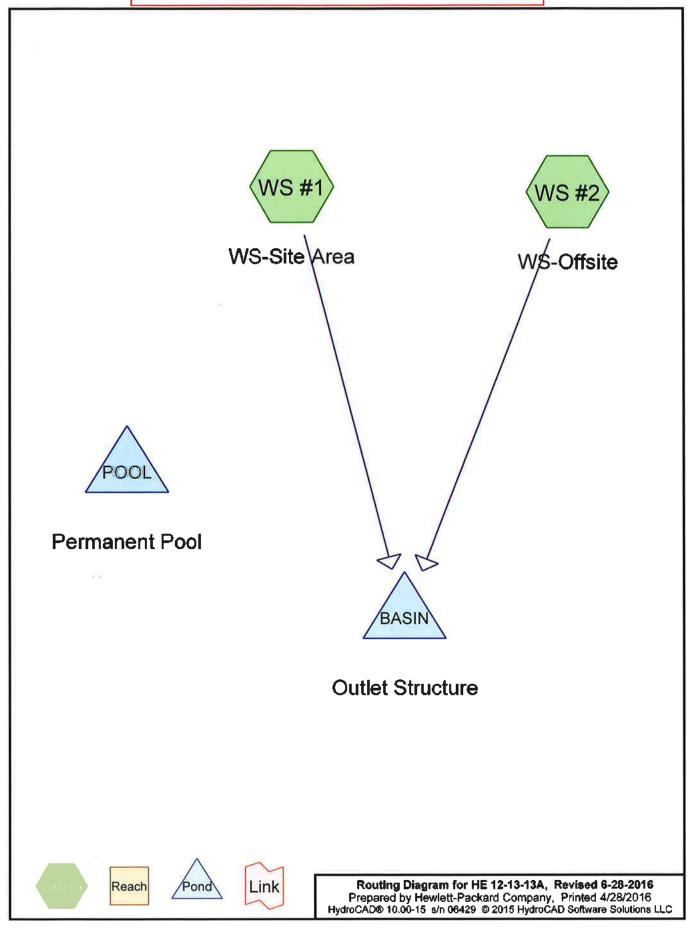

Inflow Area =	3.861 ac, 67.86% Impervious, Inflow Depth = 2.49" for 10 Year event	
Inflow =	14.77 cfs @ 11.96 hrs, Volume= 0.800 af	
Outflow =	3.90 cfs @ 12.10 hrs, Volume= 0.800 af, Atten= 74%, Lag= 8.7 min	
Primary =	3.90 cfs @ 12.10 hrs, Volume= 0.800 af	

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.02 hrs / 2 Peak Elev= 503.48' @ 12.10 hrs Surf.Area= 4,731 sf Storage= 14,356 cf

Plug-Flow detention time= 154.2 min calculated for 0.800 af (100% of inflow) Center-of-Mass det. time= 153.9 min (921.1 - 767.2)

Volume	Inver	t Avail.Sto	rage Storage	and the second data	
#1	499 .13	' 19,59	93 cf Custom	Stage Data (Prisn	natic)Listed below (Recalc)
Elevatio	n S	Surf.Area	Inc.Store	Cum.Store	
(fee	t)	(sq-ft)	(cubic-feet)	(cubic-feet)	
499.1	3	2,400	0	0	
500.0	0	2,517	2,139	2,139	
501.0	0	3,023	2,770	4,909	
502.0	0	3,602	3,313	8,221	
503.0	0	4,318	3,960	12,181	
504.0	0	5,177	4,748	16,929	
504.5	60	5,480	2,664	19,593	
Device	Routing	Invert	Outlet Devices	6	
#1	Primary	499.13'	3.8" Vert. Ori	fice/Grate C= 0.6	00
#2	Primary	502.80'		Drifice/Grate C= 0	
	,			r flow at low heads	
#3	Primary	503.50'	15.0' long x '	10.0' breadth Broa	d-Crested Rectangular Weir
	•	1	Head (feet) 0	.20 0.40 0.60 0.8	0 1.00 1.20 1.40 1.60
			Coef. (English) 2.49 2.56 2.70	2.69 2.68 2.69 2.67 2.64
	20 Y 10 Y 10				
				V=503.48' (Free D	lischarge)
			ols 0.78 cfs @ 9		
			ols 3.12 cfs @ 3		
—3=Br	oad-Creste	a Rectangula	r Weir (Control	s 0.00 cis)	
		Emergency			
		Spillway			
		Opinway			
Peak	water sur	face elevatio	n of 10 year, 2	24 hour	
			nergency spill		
Biom	over us	last below en	leigency spin	way.	


Page 8


Pond BASIN: Outlet Structure

Summary for Pond POOL: Pond

Volume	Invert	Avai	I.Storage	Storage	e Description			
#1	495.13'		7,031 cf	Custor	n Stage Data (P	rismatic)Lis	ted below	(Recalc)
Elevation (feet)		Area (sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)			
495.13		790		0	0			
496.00		937		751	751			
497.00		1,243		1,090	1,841			
498.00		1,575		1, 40 9	3,250			
499.90	:	2,405		3,781	7,031	<		
								ermanent Pool olume

					(
			LC	DCATI	ON					
							NTS			
	2, 1	'20'	240'			480'			720'	
	2' 1	120'	240' Bar S	Scale	1" = 12				720'	
		20'		Scale	1" = 12				720'	
Date revised	2' 1 	20'	Bar S	Scale		20'	e Plan	Checked	720'	
Date revised Design _ Drawn _			Bar S		Over	all Site			Date	
	WHN		Bar S	SIDE	Over EAS ⁻	all Site		, 13 8	Date	

HE 12-13-13APrepared by Hewlett-Packard CompanyRevised 6-28-2016HydroCAD® 10.00-15s/n 06429© 2015HydroCAD Software SolutionsLLCPage 2

Project Notes

Lot 12, 13 and 13A Hillside East Williston, Vermont Hydrologic Model Calculations

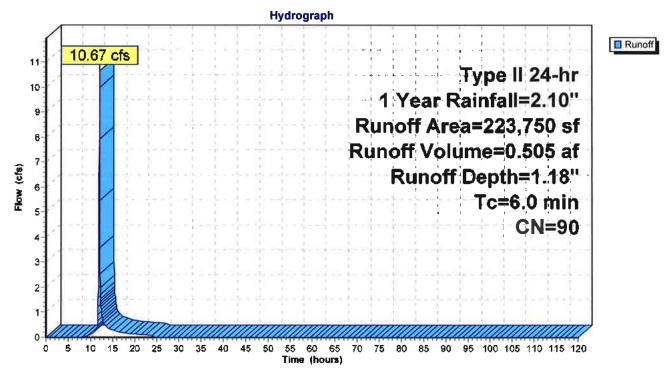
Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
2.175	80	>75% Grass cover, Good, HSG D (WS #1)
2.962	98	Impervious (WS #1)
9.238	77	Woods, Good, HSG D (WS #2)
14.375	82	TOTAL AREA

Time span=0.00-120.00 hrs, dt=0.03 hrs, 4001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentWS #1: WS-Site Area	Runoff Area=223,750 sf 57.66% Impervious Runoff Depth=1.18" Tc=6.0 min CN=90 Runoff=10.67 cfs 0.505 af
SubcatchmentWS #2: WS-Offsite	Runoff Area=402,420 sf 0.00% Impervious Runoff Depth=0.50" Flow Length=910' Tc=17.2 min CN=77 Runoff=4.96 cfs 0.387 af
Pond BASIN: Outlet Structure	Peak Elev=517.85' Storage=9,873 cf Inflow=13.11 cfs 0.892 af Outflow=4.02 cfs 0.892 af
Pond POOL: Permanent Pool	Peak Elev=0.00' Storage=0 cf

Total Runoff Area = 14.375 ac Runoff Volume = 0.892 af Average Runoff Depth = 0.74" 79.40% Pervious = 11.413 ac 20.60% Impervious = 2.962 ac

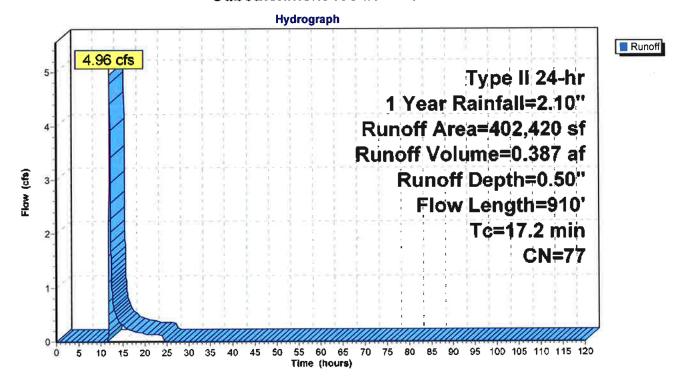

Summary for Subcatchment WS #1: WS-Site Area

Runoff =	10.67 cfs @	11.97 hrs, Volume=	0.505 af, Depth= 1.18"
----------	-------------	--------------------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.03 hrs Type II 24-hr 1 Year Rainfall=2.10"

	A	rea (sf)	CN	Description			
*	1	29,010	98	Impervious			
		94,740	80	>75% Gras	s cover, Go	bod, HSG D	
	223,750 90 Weighted Average						
	94,740 42.34% Pervious Area			42.34% Pei	rvious Area	1	
	1	29,010		57.66% lmp	pervious Ar	ea	
	Тс	Length	Slope	· · · · · · · · · · · · · · · · · · ·	Capacity	Description	
(m	<u>nin)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)		
(6.0					Direct Entry, Tc Min	

Subcatchment WS #1: WS-Site Area


Summary for Subcatchment WS #2: WS-Offsite

Runoff	=	4.96 cfs @	12.12 hrs,	Volume=	0.387 af, Depth= 0.50"
--------	---	------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.03 hrs Type II 24-hr 1 Year Rainfall=2.10"

 A	rea (sf)	CN Description							
 4	02,420	77 V	Voods, Goo	od, HSG D					
4	02,420	1	00.00% Pe	ervious Are	а				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
15.2	150	0.1600	0.16		Sheet Flow, Sheet Forest Woods: Light underbrush n= 0.400 P2= 2.30"				
2.0	760	0.1500	6.24		Shallow Concentrated Flow, Gras channel Unpaved Kv= 16.1 fps				
17.2	910	Total							

Subcatchment WS #2: WS-Offsite

Summary for Pond BASIN: Outlet Structure

Inflow Area =	14.375 ac, 20.60% Impervious, Inflow	Depth = 0.74" for 1 Year event
Inflow =	13.11 cfs @ 11.99 hrs, Volume=	0.892 af
Outflow =	4.02 cfs @ 12.29 hrs, Volume=	0.892 af, Atten= 69%, Lag= 18.4 min
Primary =	4.02 cfs @ 12.29 hrs, Volume=	0.892 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.03 hrs / 2 Peak Elev= 517.85' @ 12.29 hrs Surf.Area= 4,032 sf Storage= 9,873 cf

Plug-Flow detention time= 28.1 min calculated for 0.892 af (100% of inflow) Center-of-Mass det. time= 28.2 min (878.3 - 850.1)

Volume	Inv	ert Avail.Sto	orage Storage	Description	
#1	514.	20' 21,1	70 cf Custom	n Stage Data (Pr	<pre>'ismatic)Listed below (Recalc)</pre>
Elevatio (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
514.2	20	1,470	0	0	
515.0	00	2,007	1,391	1,391	
516.0		2,655	2,331	3,722	
517.0		3,360	3,008	6,729	
518.0		4,150	3,755	10,484	
519.0		4,995	4,573	15,057	
520 .1	10	6,120	6,113	21,170	Low Flow Orifice
<u>Device</u> #1 #2 #3	Routing Primary Primary Primary	514.20' 517.85'	9.2" Vert. Ori 60.0" W x 12 8.0' long x 8 Head (feet) 0 2.50 3.00 3. Coef. (English	ifice/Grate C= .0" H Vert. Orific .0' breadth Bros 0.20 0.40 0.60 50 4.00 4.50 5	ce/Grate X 2.00 C= 0.600 ad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 0.00 5.50 70 2.69 2.68 2.68 2.66 2.64 2.64

Primary OutFlow Max=4.02 cfs @ 12.29 hrs HW=517.85' (Free Discharge)

-1=Orifice/Grate (Orifice Controls 4.02 cfs @ 8.70 fps)

-2=Orifice/Grate (Controls 0.00 cfs)

-3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Qp10 Storm

HE 12-13-13A

Type II 24-hr 10 Year Rainfall=3.20" Revised 6-28-2016 Printed 4/28/2016

Prepared by Hewlett-Packard Company Revis HydroCAD® 10.00-15 s/n 06429 © 2015 HydroCAD Software Solutions LLC

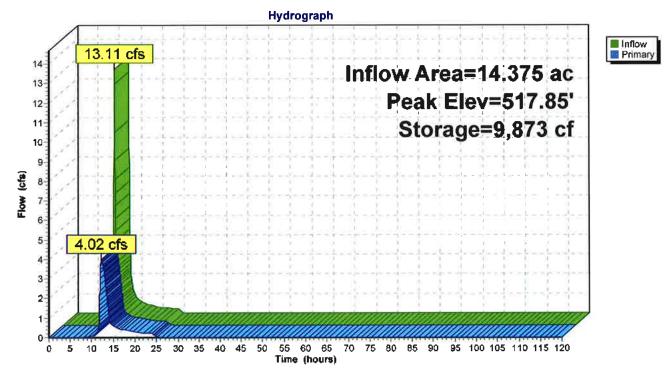
Summary for Pond BASIN: Outlet Structure

Inflow Area =	14.375 ac, 20.60% Impervious, Inflow De	epth = 1.55" for 10 Year event
Inflow =	27.13 cfs @ 11.99 hrs, Volume=	1.861 af
Outflow =	24.29 cfs @ 12.04 hrs, Volume=	1.861 af, Atten= 10%, Lag= 3.1 min
Primary =	24.29 cfs @ 12.04 hrs, Volume=	1.861 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.03 hrs / 2 Peak Elev= 518.58' (2) 12.04 hrs Surf.Area= 4,637 sf Storage= 13,015 cf

Plug-Flow detention time= 22.1 min calculated for 1.861 af (100% of inflow) Center-of-Mass det. time= 21.6 min (853.3 - 831.7)

Volume	Inve	ert Avail.Sto	orage Storage	Description		
#1	514.2	.0' 21,1	70 cf Custon	n Stage Data (Prismatic)Listed below (Recalc)		
Elevatio (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
514.2	20	1,470	0	0		
515.0	00	2,007	1,391	1,391		
516.0	00	2,655	2,331	3,722		
517.0	00	3,360	3,008	6,729		
518.0	00	4,150	3,755	10,484		
519.0	00	4,995	4,573	15,057		
520 .1	10	6,120	6,113	21,170		
Device	Routing	Invert	Outlet Device			
#1	Primary	514.20'	9.2" Vert. Or	ifice/Grate C= 0.600		
#2	Primary	517.85'	60.0" W x 12	2.0" H Vert. Orifice/Grate X 2.00 C= 0.600		
#3	Primary	518.60'	8.0' long x 8	3.0' breadth Broad-Crested Rectangular Weir		
	·	1	Head (feet) (0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00		
Emergen	01			50 4.00 4.50 5.00 5.50		
· · · ·	Cy			h) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64		
Spillway			2.64 2.65 2.	65 2.66 2.66 2.68 2.70 2.74		
Delegen OutFlow Manager 00.00 (fr @ 40.04 her 1846-540.571 (Free Discharge))						


Primary OutFlow Max=23.90 cfs @ 12.04 hrs HW=518.57' (Free Discharge)

-1=Orifice/Grate (Orifice Controls 4.44 cfs @ 9.61 fps)

-2=Orifice/Grate (Orifice Controls 19.46 cfs @ 2.72 fps)

-3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Peak Water Surface Elevation for 10 year, 24 hour storm is just below the elevation of the emergency spillway.

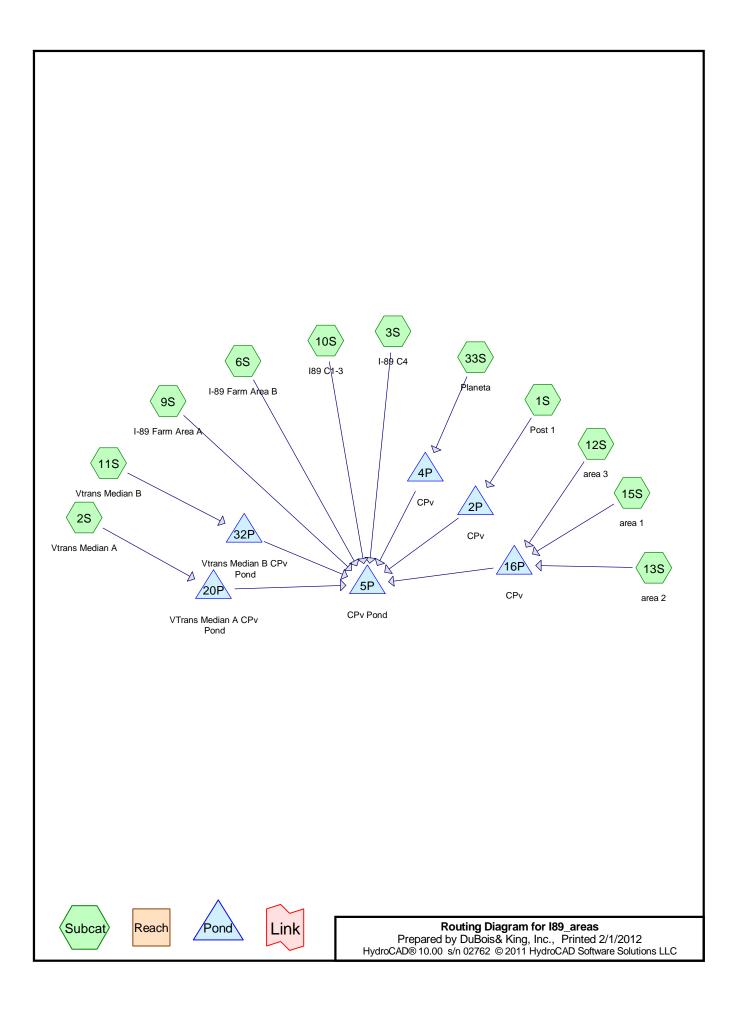
Pond BASIN: Outlet Structure

Page 8

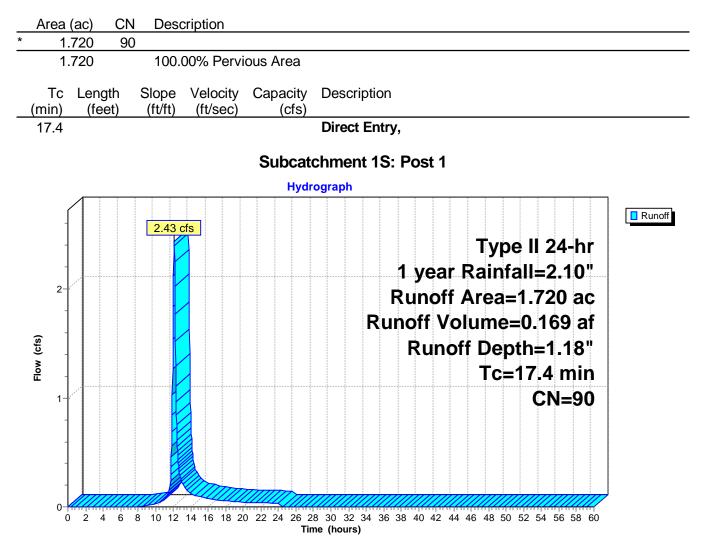
Summary for Pond POOL: Permanent Pool

Volume	Invert	Avail.S	itorage	Storage	Description	
#1	510.20'	3	,227 cf	Custon	n Stage Data (Pri	smatic)Listed below (Recalc)
Elevation (feet)	Surf./	Area sq-ft)	+	.Store >feet)	Cum.Store (cubic-feet)	
510.20 511.00 513.00 514.20		150 421 ,060 ,470		0 228 1,481 1,518	0 228 1,709 3,227 Permaner	t Pool Volume

APPENDIX C


TOWN OF WILLISTON BMP PARCELS

AERIAL MAPS AND CPv BMP MODELS



WILLISTON PARCEL: FARMLAND NORTH OF I-89

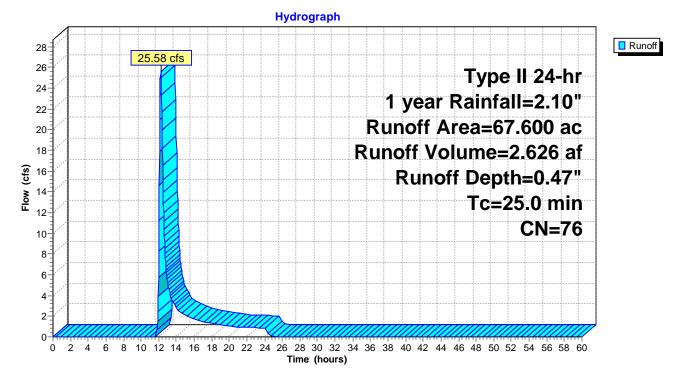
Summary for Subcatchment 1S: Post 1

Runoff = 2.43 cfs @ 12.10 hrs, Volume= 0.169 af, Depth= 1.18"

Summary for Subcatchment 2S: Vtrans Median A

Runoff = 1.03 cfs @ 12.00 hrs, Volume= 0.054 af, Depth= 0.50"

Area (ac) CN Description		
0.285 98 Paved parking		
	grazed, HSG C	
1.285 77 Weighted Aver		
1.000 77.82% Pervio 0.285 22.18% Imperv		
Tc Length Slope Velocity	Capacity Description	
(min) (feet) (ft/ft) (ft/sec)	(cfs)	
7.4 287 0.0300 0.65	Lag/CN Method,	
Sul	bcatchment 2S: Vtrans Median A	
	Hydrograph	
1.03 cfs		Runoff
	Type II 24-hr	
	1 year Rainfall=2.10"	
	Runoff Area=1.285 ac	
	Runoff Volume=0.054 af	
(cts)	Runoff Depth=0.50"	
Flow (cfs)	Flow Length=287'	
ш	Slope=0.0300 '/'	
	Tc=7.4 min	
	CN=77	
0 2 4 6 8 10 12 14 16 18 20	0 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60	
	Time (hours)	

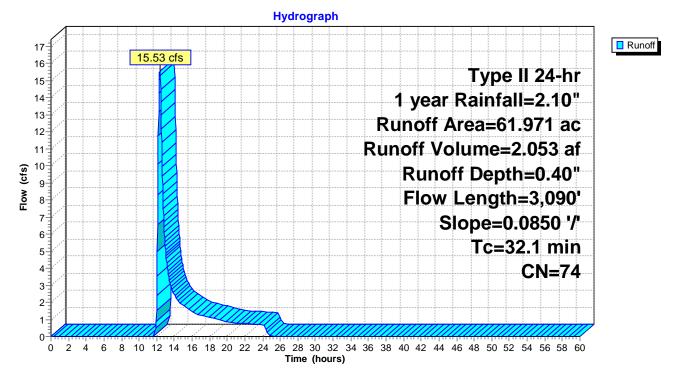

Summary for Subcatchment 3S: I-89 C4

Runoff = 25.58 cfs @ 12.22 hrs, Volume= 2.626 af, Depth= 0.47"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-60.00 hrs, dt= 0.03 hrs Type II 24-hr 1 year Rainfall=2.10"

Area (a	ac) (CN	Desc	ription		
20.4	48	70	Woo	ds, Good,	HSG C	
42.0)40	77	Woo	ds, Good,	HSG D	
5.1	12	98	Pave	d parking	& roofs	
67.6	600	76	Weig	hted Aver	age	
62.4	88		92.44	1% Pervio	us Area	
5.1	12		7.56%	% Impervi	ous Area	
Тс	Length	S	lope	Velocity	Capacity	Description
(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	
25.0						Direct Entry,

Subcatchment 3S: I-89 C4

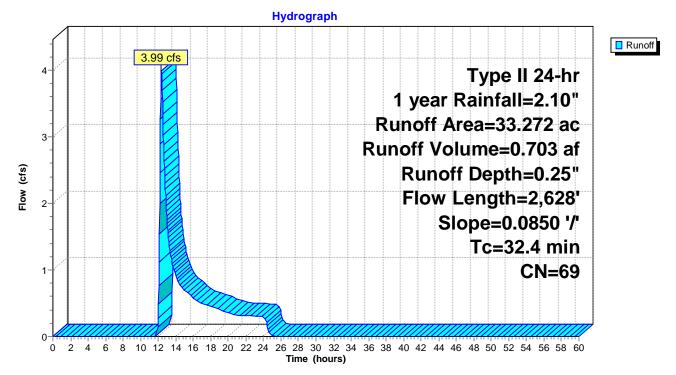

Summary for Subcatchment 6S: I-89 Farm Area B

Runoff = 15.53 cfs @ 12.32 hrs, Volume= 2.053 af, Depth= 0.40"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-60.00 hrs, dt= 0.03 hrs Type II 24-hr 1 year Rainfall=2.10"

Area	(ac)	CN	Desc	cription		
0.	288	30	Woo	ds, Good,	HSG A	
31.	207	70	Woo	ds, Good,	HSG C	
28.	181	77	′ Woo	ds, Good,	HSG D	
2.	295	98	Pave	ed parking	& roofs	
61.	971	74		ghted Aver		
59.	676		96.30	0% Pervio	us Area	
2.	295	3.70% Impervious Area			ous Area	
Tc	Leng		Slope	Velocity	Capacity	Description
<u>(min)</u>	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
32.1	3,09	90	0.0850	1.60		Lag/CN Method,

Subcatchment 6S: I-89 Farm Area B

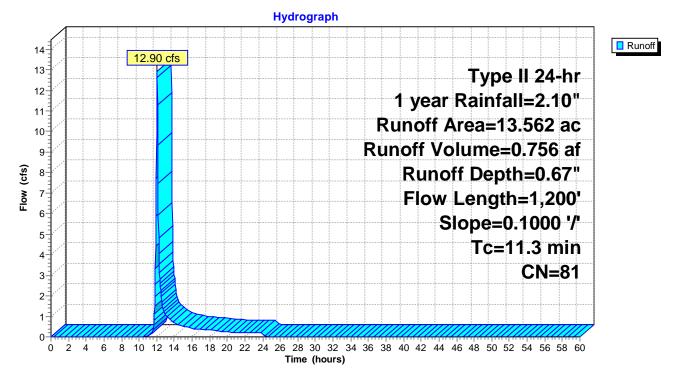

Summary for Subcatchment 9S: I-89 Farm Area A

Runoff = 3.99 cfs @ 12.37 hrs, Volume= 0.703 af, Depth= 0.25"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-60.00 hrs, dt= 0.03 hrs Type II 24-hr 1 year Rainfall=2.10"

Area	(ac)	CN	Desc	cription		
0.	218	98	B Pave	ed parking	& roofs	
2.	196	30) Woo	ds, Good,	HSG A	
23.	354	70) Woo	ds, Good,	HSG C	
7.	504	77	7 Woo	ds, Good,	HSG D	
33.	272	69) Weig	ghted Aver	age	
33.	054		99.3	4% Pervio	us Area	
0.	218		0.66	% Impervi	ous Area	
Тс	Leng		Slope	Velocity	Capacity	Description
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
32.4	2,62	28	0.0850	1.35		Lag/CN Method,

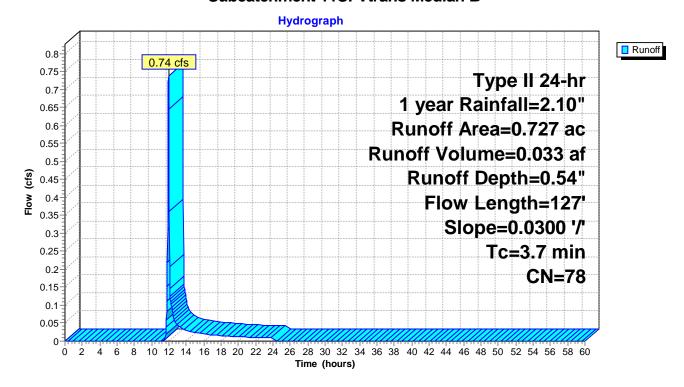
Subcatchment 9S: I-89 Farm Area A


Summary for Subcatchment 10S: I89 C1-3

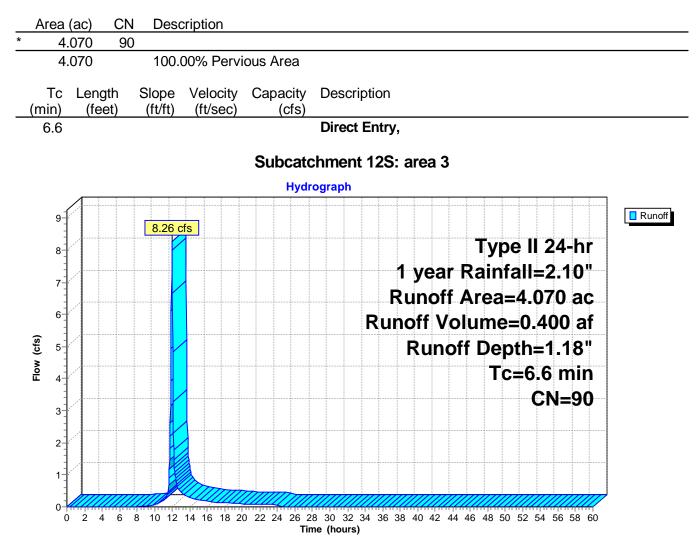
Runoff = 12.90 cfs @ 12.04 hrs, Volume= 0.756 af, Depth= 0.67"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-60.00 hrs, dt= 0.03 hrs Type II 24-hr 1 year Rainfall=2.10"

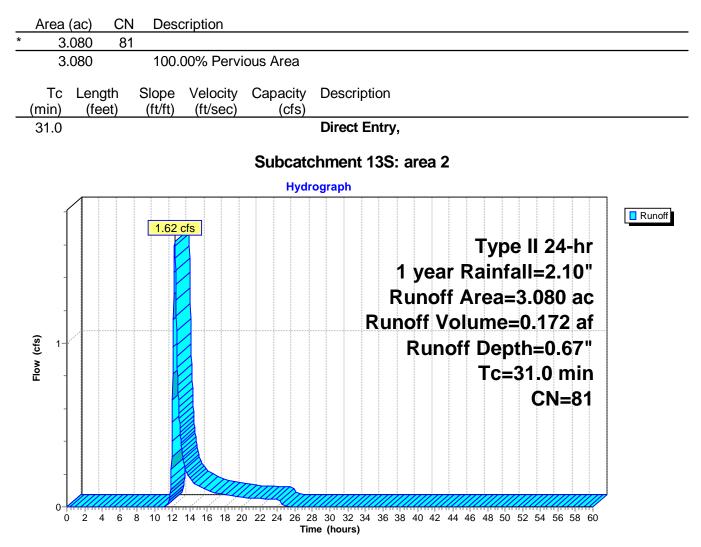
Area	(ac)	CN	Desc	cription		
1.	854	70	Woo	ds, Good,	HSG C	
8.	554	77	Woo	ds, Good,	HSG D	
3.	154	98	Pave	ed parking	& roofs	
13.	562	81	Weig	ghted Aver	age	
10.4	408		76.74	4% Pervio	us Area	
3.	154		23.26	6% Imperv	vious Area	
-			<u>.</u>		a	
Tc	Lengt		Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet	t)	(ft/ft)	(ft/sec)	(cfs)	
11.3	1,20	0 0	0.1000	1.78		Lag/CN Method,


Subcatchment 10S: I89 C1-3

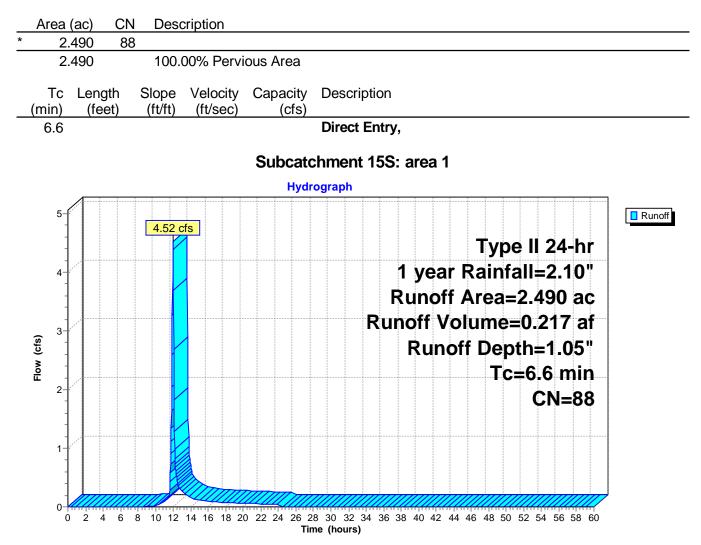
Summary for Subcatchment 11S: Vtrans Median B


Runoff = 0.74 cfs @ 11.95 hrs, Volume= 0.033 af, Depth= 0.54"

Area (ac)	CN	Desc	Description					
0.197	98	98 Paved parking, HSG C						
0.530	71	Mead	Meadow, non-grazed, HSG C					
0.727	0.727 78 Weighted Average							
0.530		72.90	0% Pervio	us Area				
0.197		27.10	0% Imperv	vious Area				
Tc Leng (min) (fe	gth et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
3.7 1	27 0	.0300	0.57		Lag/CN Method,			
	Subcatchment 11S: Vtrans Median B							


Summary for Subcatchment 12S: area 3

Runoff = 8.26 cfs @ 11.98 hrs, Volume= 0.400 af, Depth= 1.18"


Summary for Subcatchment 13S: area 2

Runoff = 1.62 cfs @ 12.28 hrs, Volume= 0.172 af, Depth= 0.67"

Summary for Subcatchment 15S: area 1

Runoff = 4.52 cfs @ 11.98 hrs, Volume= 0.217 af, Depth= 1.05"

Summary for Subcatchment 33S: Planeta

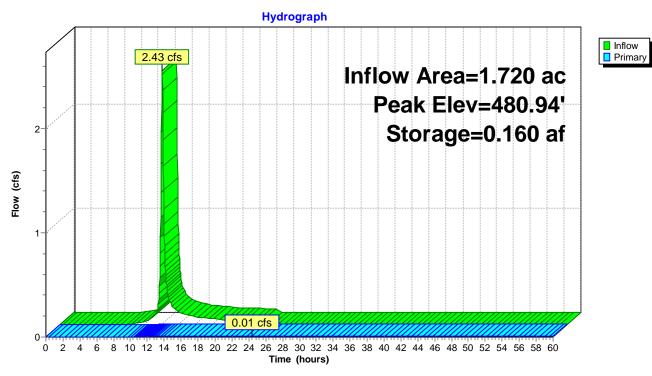
Runoff = 5.60 cfs @ 12.00 hrs, Volume= 0.294 af, Depth= 1.41"

	. <u>510 9</u> .510	0 <u>3</u> 100.00% Per	vious Area	
Tc nin)	Length (feet)	Slope Velocit (ft/ft) (ft/sec		
8.4				Direct Entry,
			Subcatc	chment 33S: Planeta
			Hydr	drograph
6-		5.60 cfs		Type II 24-hr
5				1 year Rainfall=2.10" Runoff Area=2.510 ac
4-				Runoff Volume=0.294 af Runoff Depth=1.41"
3-				Tc=8.4 min CN=93
2-				
1- - -			TITITITI	

Summary for Pond 2P: CPv

Inflow Are	a =	1.720 ac,	0.00% Impervious, Inflow D	epth = 1.18" for 1 year event		
Inflow	=	2.43 cfs @	12.10 hrs, Volume=	0.169 af		
Outflow	=	0.01 cfs @	24.33 hrs, Volume=	0.034 af, Atten= 100%, Lag= 733.9 min		
Primary	=	0.01 cfs @	24.33 hrs, Volume=	0.034 af		

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.03 hrs Peak Elev= 480.94' @ 24.33 hrs Surf.Area= 0.170 ac Storage= 0.160 af


Plug-Flow detention time= 1,457.8 min calculated for 0.034 af (20% of inflow) Center-of-Mass det. time= 1,315.9 min (2,147.7 - 831.7)

Volume	Inve	ert A	vail.Stora	ge St	orage Description
#1	480.0)0'	0.340	af C	ustom Stage Data (Prismatic) Listed below (Recalc)
Elevatio	on Su	rf.Area		c.Store	
(fee	et)	acres)	(acı	re-feet)	(acre-feet)
480.0	0	0.170		0.000	0.000
481.0	0	0.170		0.170	0.170
482.0	0	0.170		0.170	0.340
Device	Routing		Invert	Outlet	Devices
#1	Primary		480.00'	1.0" F	Round Culvert
	-			L= 10.	0' CPP, end-section conforming to fill, Ke= 0.500
				Inlet /	Outlet Invert= 480.00' / 479.50' S= 0.0500 '/' Cc= 0.900
				n= 0.0	25 Corrugated metal, Flow Area= 0.01 sf
#2	Primary		481.00'	5.0' lo	ng x 5.0' breadth Broad-Crested Rectangular Weir
				Head	(feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
				2.50	3.00 3.50 4.00 4.50 5.00 5.50
				Coef.	(English) 2.34 2.50 2.70 2.68 2.68 2.66 2.65 2.65 2.65 2.65
				2.67	2.66 2.68 2.70 2.74 2.79 2.88

Primary OutFlow Max=0.01 cfs @ 24.33 hrs HW=480.94' (Free Discharge) **1=Culvert** (Barrel Controls 0.01 cfs @ 1.62 fps)

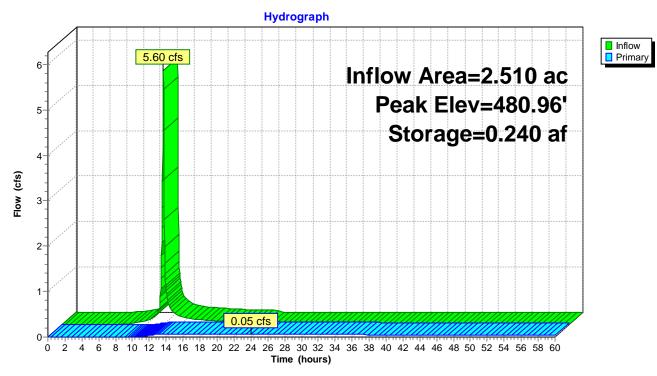
-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 2P: CPv

Summary for Pond 4P: CPv

Inflow Area	=	2.510 ac,	0.00% Impervious, Inflow D	Depth = 1.41" for 1 year event
Inflow	=	5.60 cfs @	12.00 hrs, Volume=	0.294 af
Outflow	=	0.05 cfs @	24.03 hrs, Volume=	0.192 af, Atten= 99%, Lag= 721.8 min
Primary	=	0.05 cfs @	24.03 hrs, Volume=	0.192 af

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.03 hrs Peak Elev= 480.96' @ 24.03 hrs Surf.Area= 0.250 ac Storage= 0.240 af


Plug-Flow detention time= 1,374.0 min calculated for 0.192 af (65% of inflow) Center-of-Mass det. time= 1,271.4 min (2,078.7 - 807.3)

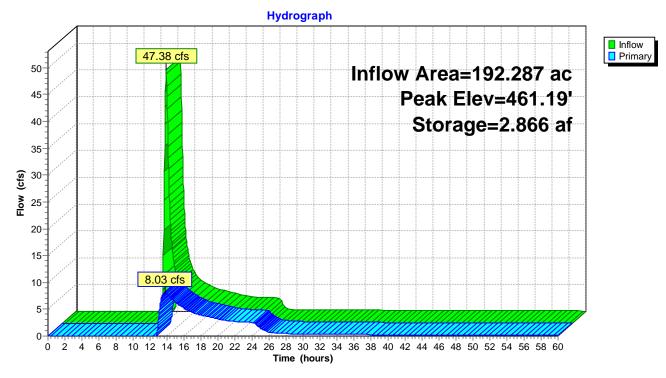
Volume	Inve	ert A	vail.Stora	ge S	torage Description
#1	480.0	0'	0.500	af C	custom Stage Data (Prismatic) Listed below (Recalc)
_	-			•	
Elevatio		f.Area	In	c.Store	
(fee	t) (acres)	(acı	re-feet	(acre-feet)
480.0	0	0.250		0.000	0.000
481.0	0	0.250		0.250	0.250
482.0	0	0.250		0.250	0.500
Device	Routing		Invert	Outle	t Devices
#1	Primary		480.00'	2.0"	Round Culvert
	-			L= 10	.0' CPP, end-section conforming to fill, Ke= 0.500
				Inlet /	Outlet Invert= 480.00' / 479.50' S= 0.0500 '/' Cc= 0.900
				n= 0.0	025 Corrugated metal, Flow Area= 0.02 sf
#2	Primary		481.00'	5.0' lo	ong x 5.0' breadth Broad-Crested Rectangular Weir
	-			Head	(feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
				2.50	3.00 3.50 4.00 4.50 5.00 5.50
				Coef.	(English) 2.34 2.50 2.70 2.68 2.68 2.66 2.65 2.65 2.65 2.65
				2.67	2.66 2.68 2.70 2.74 2.79 2.88

Primary OutFlow Max=0.05 cfs @ 24.03 hrs HW=480.96' (Free Discharge) ←1=Culvert (Barrel Controls 0.05 cfs @ 2.43 fps)

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 4P: CPv

Summary for Pond 5P: CPv Pond

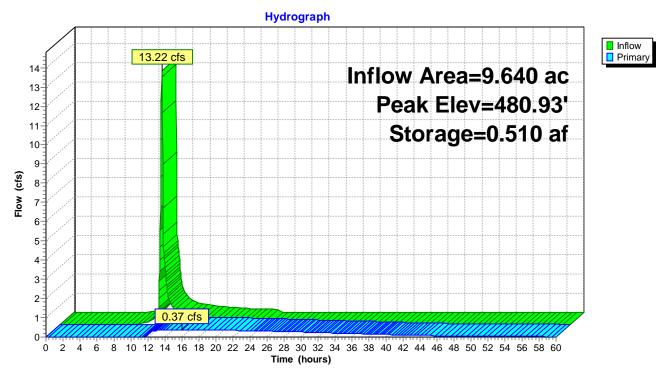

Inflow Area = Inflow = Outflow = Primary =	47.38 cfs @ 1 8.03 cfs @ 1	.86% Impervious, Inflow Depth > 0.45" for 1 year event 2.24 hrs, Volume= 7.150 af 3.76 hrs, Volume= 4.734 af, Atten= 83%, Lag= 91.2 min 3.76 hrs, Volume= 4.734 af				
Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.03 hrs Peak Elev= 461.19' @ 13.76 hrs Surf.Area= 2.400 ac Storage= 2.866 af						
Center-of-Mass	Plug-Flow detention time= 418.4 min calculated for 4.732 af (66% of inflow) Center-of-Mass det. time= 197.4 min (1,220.5 - 1,023.1)					
<u>Volume I</u> r	nvert Avail.Stor	age Storage Description				
#1 46	0.00' 4.80	0 af Custom Stage Data (Prismatic) Listed below (Recalc) x 0.3				
Elevation	Surf.Area li	nc.Store Cum.Store				
(feet)	(acres) (ad	cre-feet) (acre-feet)				
460.00	8.000	0.000 0.000				
461.00	8.000	8.000 8.000				
462.00	8.000	8.000 16.000				
Device Routir	ng Invert	Outlet Devices				
#1 Prima	ry 460.00'	18.0" Round Culvert X 0.00				
		L= 10.0' CPP, end-section conforming to fill, Ke= 0.500				
		Inlet / Outlet Invert= 460.00' / 460.00' S= 0.0000 '/' Cc= 0.900				
		n= 0.025 Corrugated metal, Flow Area= 1.77 sf				
#2 Prima	rv 461.00'	40.0' long x 5.0' breadth Broad-Crested Rectangular Weir				

 #2
 Primary
 461.00'
 40.0' long x 5.0' breadth Broad-Crested Rectangular Weir Head (feet)
 9.20
 0.40
 0.60
 0.80
 1.00
 1.20
 1.40
 1.60
 1.80
 2.00
 2.50
 3.00
 3.50
 4.00
 4.50
 5.00
 5.50
 5.60
 Coef. (English)
 2.34
 2.50
 2.70
 2.68
 2.66
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65
 2.65</th

Primary OutFlow Max=8.02 cfs @ 13.76 hrs HW=461.19' (Free Discharge) -1=Culvert (Controls 0.00 cfs)

-2=Broad-Crested Rectangular Weir (Weir Controls 8.02 cfs @ 1.03 fps)

Pond 5P: CPv Pond


Summary for Pond 16P: CPv

Inflow Ar Inflow Outflow Primary	= 13.2 = 0.3	22 cfs @ 11 37 cfs @ 16	00% Impervious, Inflow Depth = 0.98" for 1 year event 1.98 hrs, Volume= 0.789 af 6.05 hrs, Volume= 0.738 af, Atten= 97%, Lag= 244.1 min 6.05 hrs, Volume= 0.738 af			
			Span= 0.00-60.00 hrs, dt= 0.03 hrs Surf.Area= 0.550 ac Storage= 0.510 af			
	Plug-Flow detention time= 792.3 min calculated for 0.738 af (93% of inflow) Center-of-Mass det. time= 756.7 min (1,594.3 - 837.6)					
Volume	Invert	Avail.Stora	ge Storage Description			
#1	480.00'		af Custom Stage Data (Prismatic) Listed below (Recalc)			
Elevatio	n Surf.Ar	rea In	c.Store Cum.Store			
(feet	t) (acre	es) (ac	re-feet) (acre-feet)			
480.0	0 0.5	50	0.000 0.000			
481.0	0 0.5	50	0.550 0.550			
482.0	0 0.5	50	0.550 1.100			
Device	Routing	Invert	Outlet Devices			
#1	Primary	480.00'	4.0" Round Culvert			
#2	Primary	481.00'	L= 10.0' CPP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 480.00' / 478.50' S= 0.1500 '/' Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 0.09 sf 5.0' long x 5.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.34 2.50 2.70 2.68 2.68 2.66 2.65 2.65 2.65 2.65 2.67 2.66 2.68 2.70 2.74 2.79 2.88	5		

Primary OutFlow Max=0.37 cfs @ 16.05 hrs HW=480.93' (Free Discharge) 1=Culvert (Inlet Controls 0.37 cfs @ 4.20 fps)

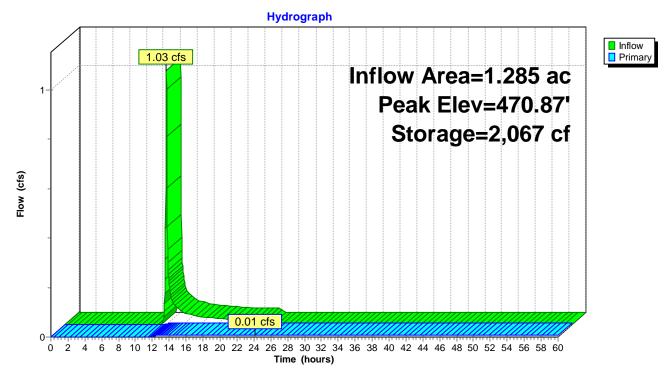
-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 16P: CPv

Summary for Pond 20P: VTrans Median A CPv Pond

Inflow Area =	1.285 ac, 22.18% Impervious, Inflo	w Depth = 0.50" for 1 year event
Inflow =	1.03 cfs @ 12.00 hrs, Volume=	0.054 af
Outflow =	0.01 cfs @ 24.12 hrs, Volume=	0.025 af, Atten= 99%, Lag= 727.1 min
Primary =	0.01 cfs @ 24.12 hrs, Volume=	0.025 af

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.03 hrs Peak Elev= 470.87' @ 24.12 hrs Surf.Area= 4,824 sf Storage= 2,067 cf


Plug-Flow detention time= 1,414.3 min calculated for 0.025 af (46% of inflow) Center-of-Mass det. time= 1,261.8 min (2,140.6 - 878.7)

Volume	Invert	Avail.Storage	Storage Description
#1	470.00'	6,300 cf	386.00'L x 1.50'H Prismatoid Z=7.0
Device	Routing	Invert Ou	tlet Devices
#1	Primary	470.00' 1.0	" Round Culvert
	-	L=	10.0' CPP, end-section conforming to fill, Ke= 0.500
		Inle	et / Outlet Invert= 470.00' / 470.00' S= 0.0000 '/' Cc= 0.900
		n=	0.025 Corrugated metal, Flow Area= 0.01 sf
#2	Primary	471.50' 5.0	' long x 5.0' breadth Broad-Crested Rectangular Weir
		He	ad (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
		2.5	0 3.00 3.50 4.00 4.50 5.00 5.50
		Co	ef. (English) 2.34 2.50 2.70 2.68 2.68 2.66 2.65 2.65 2.65 2.65
		2.6	7 2.66 2.68 2.70 2.74 2.79 2.88
Primary	OutFlow Ma	x=0.01 cfs @ 24	.12 hrs HW=470.87' (Free Discharge)

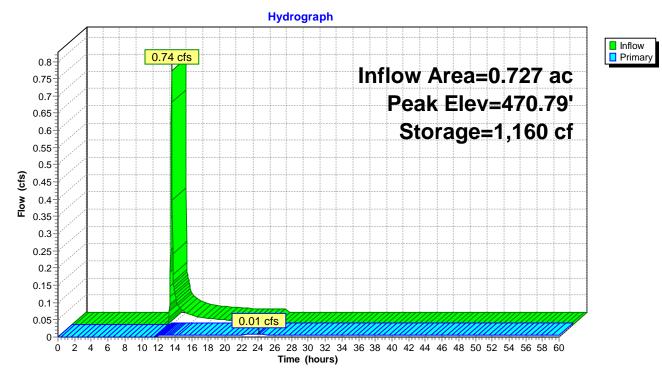
-1=Culvert (Barrel Controls 0.01 cfs @ 1.23 fps)

2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 20P: VTrans Median A CPv Pond

Summary for Pond 32P: Vtrans Median B CPv Pond

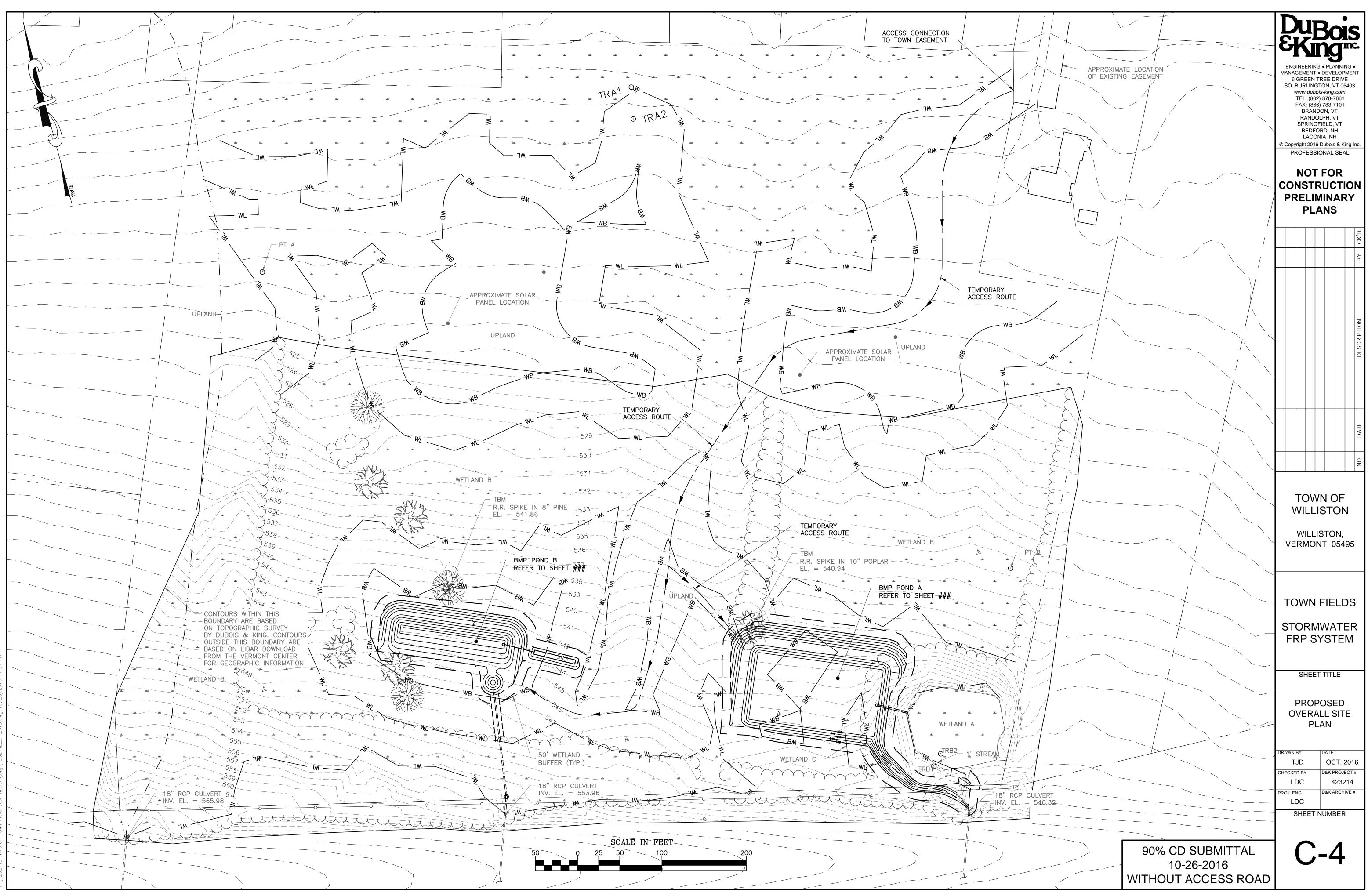
Inflow Area =	0.727 ac, 27.10% Impervious, Inflow	Depth = 0.54" for 1 year event
Inflow =	0.74 cfs @ 11.95 hrs, Volume=	0.033 af
Outflow =	0.01 cfs @ 24.04 hrs, Volume=	0.023 af, Atten= 99%, Lag= 725.3 min
Primary =	0.01 cfs @ 24.04 hrs, Volume=	0.023 af

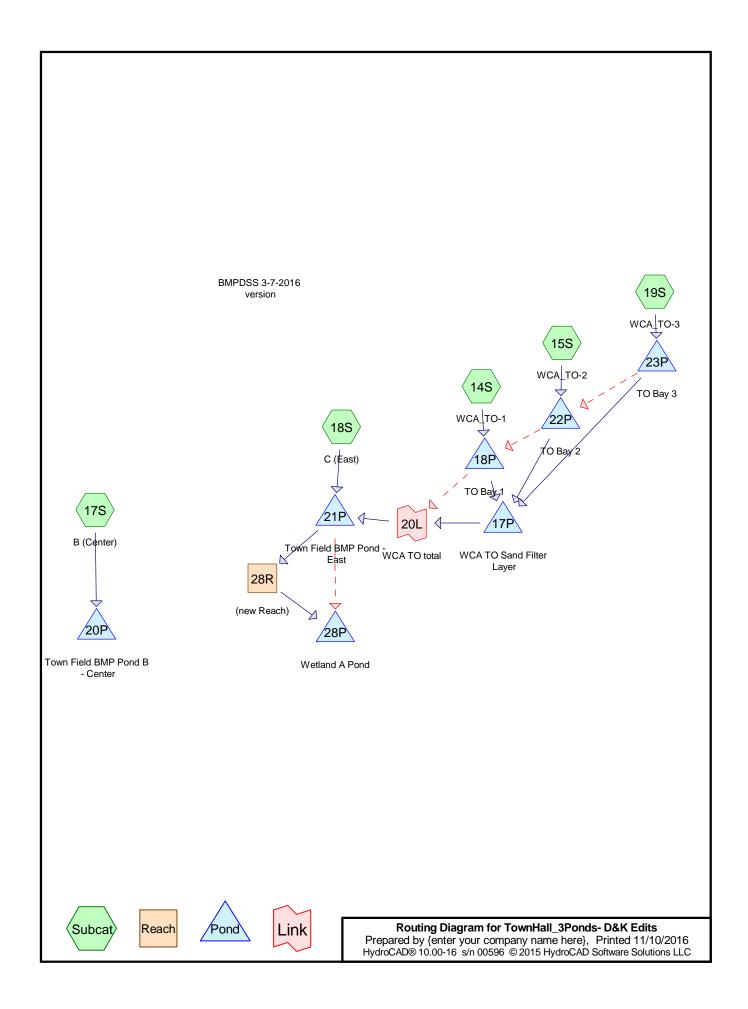

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.03 hrs Peak Elev= 470.79' @ 24.04 hrs Surf.Area= 2,961 sf Storage= 1,160 cf

Plug-Flow detention time= 1,345.7 min calculated for 0.023 af (70% of inflow) Center-of-Mass det. time= 1,230.2 min (2,100.9 - 870.7)

Volume	Invert	Avail.Storage	Storage Description	
#1	470.00'	4,237 cf	255.00'L x 1.50'H Prismatoid Z=7.0	
Device	Routing	Invert Ou	tlet Devices	
#1	Primary	470.00' 1.0	" Round Culvert	
	-	L=	10.0' CPP, end-section conforming to fill, Ke= 0.500	
		Inle	et / Outlet Invert= 470.00' / 470.00' S= 0.0000 '/' Cc= 0.900	
		n=	0.025 Corrugated metal, Flow Area= 0.01 sf	
#2	Primary	471.50' 5.0	long x 5.0' breadth Broad-Crested Rectangular Weir	
	-	He	ad (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00	
		2.5	0 3.00 3.50 4.00 4.50 5.00 5.50	
		Co	ef. (English) 2.34 2.50 2.70 2.68 2.68 2.66 2.65 2.65 2.65 2.65	
		2.6	7 2.66 2.68 2.70 2.74 2.79 2.88	
Primary OutFlow Max=0.01 cfs @ 24.04 hrs HW=470.79' (Free Discharge)				

-1=Culvert (Barrel Controls 0.01 cfs @ 1.17 fps)


2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)


Pond 32P: Vtrans Median B CPv Pond

WILLISTON PARCEL: TOWN OFFICES FIELD

:3214L Williston Town Field Stormwater\dwg\423214L_SP_01B.dwg 10/25/2016

Area Listing (selected nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
3.041	74	>75% Grass cover, Good, HSG C (14S, 15S, 17S, 18S, 19S)
0.220	80	>75% Grass cover, Good, HSG D (17S)
4.130	98	Paved parking, HSG C (14S, 15S, 17S, 18S, 19S)
27.610	70	Woods, Good, HSG C (17S, 18S)
1.900	77	Woods, Good, HSG D (17S, 18S)
36.901	74	TOTAL AREA

Soil Listing (selected nodes)

Area	Soil	Subcatchment	
(acres)	Group	Numbers	
0.000	HSG A		
0.000	HSG B		
34.781	HSG C	14S, 15S, 17S, 18S, 19S	
2.120	HSG D	17S, 18S	
0.000	Other		
36.901		TOTAL AREA	

Prepared by {enter your company name here} HydroCAD® 10.00-16 s/n 00596 © 2015 HydroCAD Software Solutions LLC

 HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
 0.000	0.000	3.041	0.220	0.000	3.261	>75% Grass cover, Good	17S, 18S,
0.000	0.000	4.130	0.000	0.000	4.130	Paved parking	19S 14S, 15S, 17S, 18S, 19S
0.000	0.000	27.610	1.900	0.000	29.510	Woods, Good	193
0.000	0.000	34.781	2.120	0.000	36.901	TOTAL AREA	17S, 18S

Ground Covers (selected nodes)

Prepared by {enter	your company name here}
HydroCAD® 10.00-16	s/n 00596 © 2015 HydroCAD Software Solutions LLC

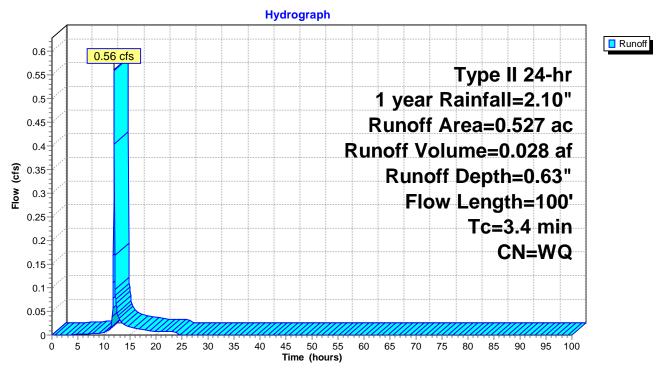
		ripe Listing (selected hodes)								
	Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
_	1	28R	542.00	541.75	50.0	0.0050	0.010	15.0	0.0	0.0

Pipe Listing (selected nodes)

Time span=0.00-100.00 hrs, dt=0.05 hrs, 2001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 14S: WCA_TO-1	Runoff Area=0.527 ac 15.56% Impervious Runoff Depth=0.63" Flow Length=100' Tc=3.4 min CN=WQ Runoff=0.56 cfs 0.028 af
Subcatchment 15S: WCA_TO-2	Runoff Area=0.686 ac 17.78% Impervious Runoff Depth=0.66" Flow Length=100' Tc=3.4 min CN=WQ Runoff=0.77 cfs 0.038 af
Subcatchment 17S: B (Center) Flow Length=3,320	Runoff Area=7.900 ac 17.59% Impervious Runoff Depth=0.61" ' Slope=0.0810 '/' Tc=31.9 min CN=WQ Runoff=3.29 cfs 0.404 af
Subcatchment 18S: C (East) Flow Length=3,585	Runoff Area=27.105 ac 8.95% Impervious Runoff Depth=0.43" ' Slope=0.0790 '/' Tc=38.6 min CN=WQ Runoff=6.25 cfs 0.974 af
Subcatchment 19S: WCA_TO-3	Runoff Area=0.683 ac 16.25% Impervious Runoff Depth=0.64" Flow Length=100' Tc=3.4 min CN=WQ Runoff=0.74 cfs 0.036 af
Reach 28R: (new Reach) 15.0" Round Pipe n=0.010	Avg. Flow Depth=0.24' Max Vel=2.93 fps Inflow=0.49 cfs 0.932 af L=50.0' S=0.0050 '/' Capacity=5.94 cfs Outflow=0.49 cfs 0.932 af
Pond 17P: WCA TO Sand Filter Layer	Peak Elev=555.49' Storage=0.022 af Inflow=0.06 cfs 0.102 af Outflow=0.05 cfs 0.102 af
Pond 18P: TO Bay 1 Primary=0.01 c	Peak Elev=556.98' Storage=0.015 af Inflow=0.56 cfs 0.028 af fs 0.028 af Secondary=0.00 cfs 0.000 af Outflow=0.01 cfs 0.028 af
Pond 20P: Town Field BMP Pond B - Cente	r Peak Elev=545.00' Storage=6,651 cf Inflow=3.29 cfs 0.404 af Outflow=0.49 cfs 0.404 af
Pond 21P: Town Field BMP Pond - East Primary=0.49 c	Peak Elev=543.53' Storage=26,147 cf Inflow=6.28 cfs 1.076 af fs 0.932 af Secondary=0.00 cfs 0.000 af Outflow=0.49 cfs 0.932 af
Pond 22P: TO Bay 2 Primary=0.02 c	Peak Elev=558.85' Storage=0.019 af Inflow=0.77 cfs 0.038 af fs 0.038 af Secondary=0.00 cfs 0.000 af Outflow=0.02 cfs 0.038 af
Pond 23P: TO Bay 3 Primary=0.02 c	Peak Elev=560.92' Storage=0.019 af Inflow=0.74 cfs 0.036 af fs 0.036 af Secondary=0.00 cfs 0.000 af Outflow=0.02 cfs 0.036 af
Pond 28P: Wetland A Pond	Peak Elev=542.56' Storage=5,611 cf Inflow=0.49 cfs 0.932 af Outflow=0.49 cfs 0.932 af
Link 20L: WCA TO total	Inflow=0.05 cfs 0.102 af Primary=0.05 cfs 0.102 af
Total Runoff Area = 36.907	1 ac Runoff Volume = 1.479 af Average Runoff Depth = 0.48" 88.81% Pervious = 32.771 ac 11.19% Impervious = 4.130 ac

Summary for Subcatchment 14S: WCA_TO-1


[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.56 cfs @ 11.95 hrs, Volume= 0.028 af, Depth= 0.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Type II 24-hr 1 year Rainfall=2.10"

_	Area	(ac) C	N Des	cription						
	0.	445 7	74 >75	75% Grass cover, Good, HSG C						
_	0.	082 9	98 Pav	ed parking	, HSG C					
	0.527 Weighted Average									
	0.	445	84.4	4% Pervio	us Area					
	0.	082	15.5	6% Imperv	ious Area					
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	0.8	57	0.0300	1.20		Sheet Flow, WCA_4-1				
						Smooth Surfaces n= 0.011 P2= 2.20"				
	2.6	43	0.4100	0.27		Sheet Flow, WCA_4-2				
_						Grass: Dense n= 0.240 P2= 2.20"				
	3.4	100	Total							

Subcatchment 14S: WCA_TO-1

Summary for Subcatchment 15S: WCA_TO-2

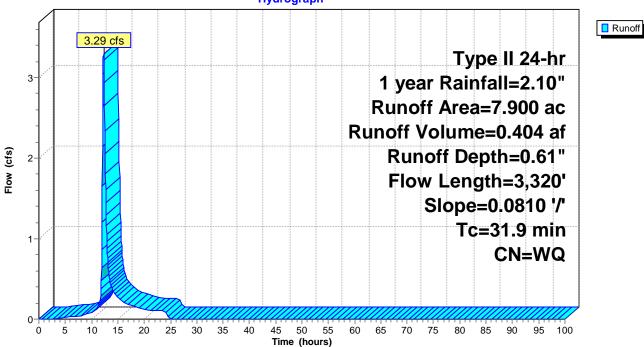

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.77 cfs @ 11.95 hrs, Volume= 0.038 af, Depth= 0.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Type II 24-hr 1 year Rainfall=2.10"

Area	(ac) C	N Des	cription						
0.	564	74 >75	75% Grass cover, Good, HSG C						
0.	0.122 98 Paved parking, HSG C								
0.	0.686 Weighted Average								
0.	564	82.2	2% Pervio	us Area					
0.	.122	17.7	8% Imperv	vious Area					
Tc	Length	Slope		Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
0.8	57	0.0300	1.20		Sheet Flow, WCA_4-1				
					Smooth surfaces n= 0.011 P2= 2.20"				
2.6	43	0.4100	0.27		Sheet Flow, WCA_4-2				
					Grass: Dense n= 0.240 P2= 2.20"				
3.4	100	Total							

Subcatchment 15S: WCA_TO-2


Summary for Subcatchment 17S: B (Center)

Runoff = 3.29 cfs @ 12.28 hrs, Volume= 0.404 af, Depth= 0.61"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Type II 24-hr 1 year Rainfall=2.10"

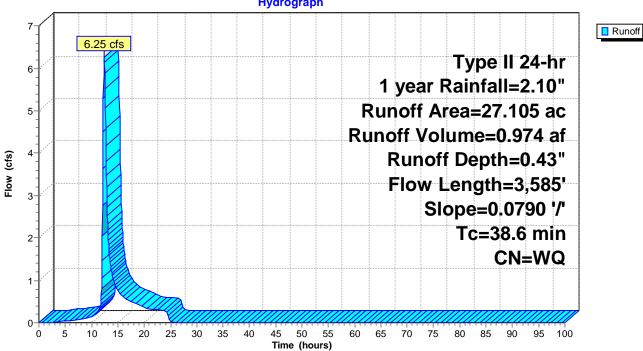
Area	(ac)	CN	Desc	ription				
1.	390	98	Pave	d parking,	HSG C			
0.	220	80	>75%	6 Grass co	over, Good,	HSG D		
0.	450	74	>75%	6 Grass co	over, Good,	HSG C		
1.	300	77	Woo	Woods, Good, HSG D				
4.	540	70	Woo	ds, Good,	HSG C			
7.	7.900 Weighted Average							
6.	510		82.41	1% Pervio	us Area			
1.390 17.59% Impervious Area				9% Imperv	vious Area			
Tc	Length		Slope	Velocity	Capacity	Description		
(min)	(feet))	(ft/ft)	(ft/sec)	(cfs)			
31.9	3,320) ().	0810	1.73		Lag/CN Method,		

Subcatchment 17S: B (Center)

Hydrograph

Prepared by {enter your company name here} HydroCAD® 10.00-16 s/n 00596 © 2015 HydroCAD Software Solutions LLC

Summary for Subcatchment 18S: C (East)


Areas lowered based on drainage to VTrans BMP

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Type II 24-hr 1 year Rainfall=2.10"

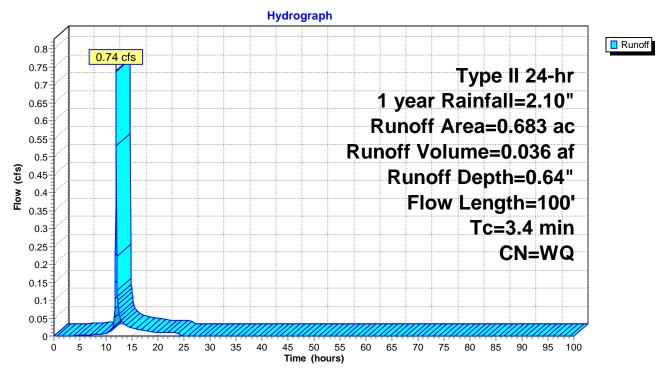
Area (ac)	CN	Description					
2.425	98	Paved parking, HSG C					
1.010	74	>75% Grass cover, Good, HSG C					
0.600	77	Woods, Good, HSG D					
23.070	70	Woods, Good, HSG C					
27.105		Weighted Average					
24.680		91.05% Pervious Area					
2.425	2.425 8.95% Impervious Area						
Tc Len		Slope Velocity Capacity Description					

	(cfs)		(ft/ft)	(feet)	(min)
Lag/CN Method,		1.55	0.0790	3,585	38.6

Subcatchment 18S: C (East)

Hydrograph

Summary for Subcatchment 19S: WCA_TO-3


[49] Hint: Tc<2dt may require smaller dt

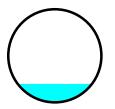
Runoff = 0.74 cfs @ 11.95 hrs, Volume= 0.036 af, Depth= 0.64"

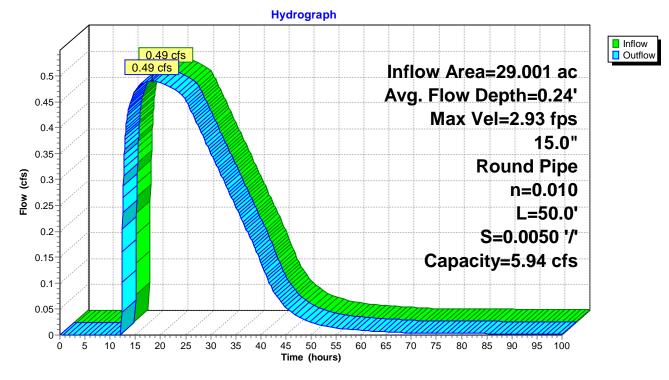
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Type II 24-hr 1 year Rainfall=2.10"

_	Area	(ac) C	N Des	cription						
	0.	572 7	74 >75°	75% Grass cover, Good, HSG C						
	0.	111 9	8 Pave	ed parking	, HSG C					
	0.683 Weighted Average									
	0.	572	83.7	5% Pervio	us Area					
	0.	111	16.2	5% Imperv	vious Area					
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	0.8	57	0.0300	1.20		Sheet Flow, WCA_4-1				
						Smooth Surfaces n= 0.011 P2= 2.20"				
	2.6	43	0.4100	0.27		Sheet Flow, WCA_4-2				
_						Grass: Dense n= 0.240 P2= 2.20"				
_	3.4	100	Total							

Subcatchment 19S: WCA_TO-3

Summary for Reach 28R: (new Reach)


[52] Hint: Inlet/Outlet conditions not evaluated[79] Warning: Submerged Pond 21P Primary device # 1 by 0.24'


Inflow Area	= 2	29.001 ac,	9.45% Imp	ervious,	Inflow	Depth >	0.39"	for 1 y	ear event
Inflow =	= (0.49 cfs @	18.41 hrs,	Volume	=	0.932	af		
Outflow =	= (0.49 cfs @	18.41 hrs,	Volume	=	0.932	af, Att	en= 0%,	Lag= 0.5 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Max. Velocity= 2.93 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.43 fps, Avg. Travel Time= 0.6 min

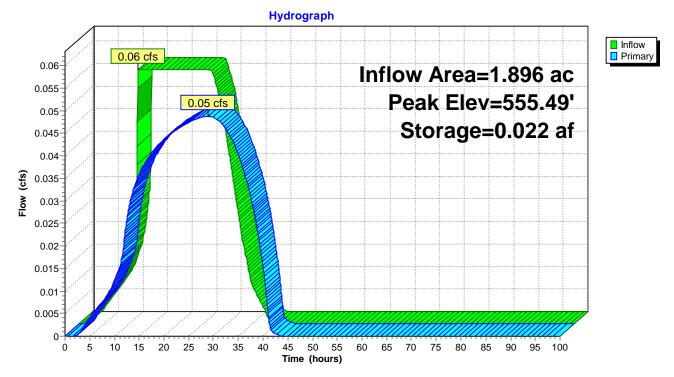
Peak Storage= 8 cf @ 18.41 hrs Average Depth at Peak Storage= 0.24' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 5.94 cfs

15.0" Round Pipe n= 0.010 PVC, smooth interior Length= 50.0' Slope= 0.0050 '/' Inlet Invert= 542.00', Outlet Invert= 541.75'

Reach 28R: (new Reach)

Summary for Pond 17P: WCA TO Sand Filter Layer

Inflow Area	a =	1.896 ac, 16.61% Impervious, Inflow Depth = 0.64" for 1 year event
Inflow	=	0.06 cfs @ 11.90 hrs, Volume= 0.102 af
Outflow	=	0.05 cfs @ 28.81 hrs, Volume= 0.102 af, Atten= 13%, Lag= 1,014.5 min
Primary	=	0.05 cfs @ 28.81 hrs, Volume= 0.102 af
-		


Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Peak Elev= 555.49' @ 28.81 hrs Surf.Area= 0.030 ac Storage= 0.022 af

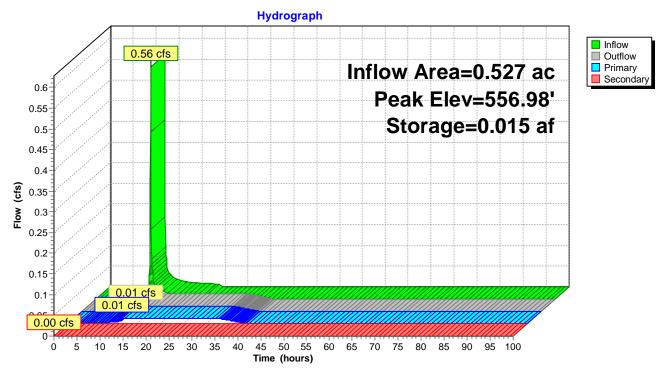
Plug-Flow detention time= 235.3 min calculated for 0.102 af (100% of inflow) Center-of-Mass det. time= 235.3 min (1,500.4 - 1,265.1)

Volume	Invert	Avail.Storage	e Storage Description	
#1	552.00'	0.024 af	f 1.00'W x 342.00'L x 3	3.75'H Prismatoid Z=0.4
			0.074 af Overall x 3	3.0% Voids
Device	Routing	Invert C	Dutlet Devices	
#1	Primary	552.00' 1	.0" Vert. Orifice/Grate	C= 0.600
	-			

Primary OutFlow Max=0.05 cfs @ 28.81 hrs HW=555.49′ (Free Discharge) ←1=Orifice/Grate (Orifice Controls 0.05 cfs @ 8.94 fps)

Pond 17P: WCA TO Sand Filter Layer

Summary for Pond 18P: TO Bay 1


Inflow Area =	0.527 ac, 15.56% Impervious, Inflow D	epth = 0.63" for 1 year event
Inflow =	0.56 cfs @ 11.95 hrs, Volume=	0.028 af
Outflow =	0.01 cfs @ 11.85 hrs, Volume=	0.028 af, Atten= 98%, Lag= 0.0 min
Primary =	0.01 cfs @ 11.85 hrs, Volume=	0.028 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Peak Elev= 556.98' @ 16.43 hrs Surf.Area= 0.037 ac Storage= 0.015 af

Plug-Flow detention time= 541.1 min calculated for 0.028 af (100% of inflow) Center-of-Mass det. time= 541.1 min (1,370.7 - 829.6)

Volume	Invert A	vail.Storage	Storage Description
#1	556.00'	0.083 af	Custom Stage Data (Prismatic) Listed below (Recalc)
Elevatio			
(fee	t) (acres)	(acre-f	feet) (acre-feet)
556.0	0.000	0.	.000 0.000
556.5	0 0.013	0.	.003 0.003
557.0	0 0.038	0.	.013 0.016
557.5	0 0.067	0.	.026 0.042
558.0	0 0.095	0.	.041 0.083
Device	Routing	Invert O	utlet Devices
#1	Primary	556.00' 1.	000 in/hr Exfiltration over Surface area below 556.50'
#2	Secondary	557.50' 47	7.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
	OutFlow Max= filtration (Exfiltred)		1.85 hrs HW=556.50' (Free Discharge) Is 0.01 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=556.00' (Free Discharge)

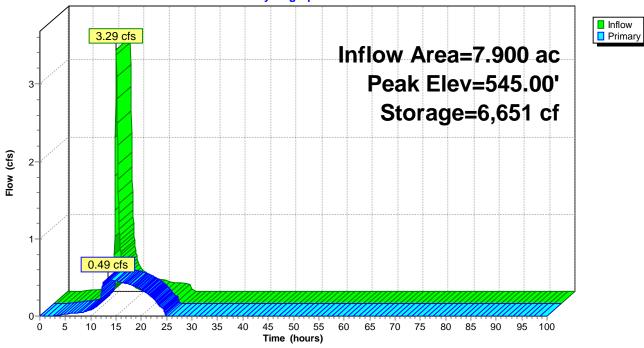
Pond 18P: TO Bay 1

Summary for Pond 20P: Town Field BMP Pond B - Center

Inflow Area =	7.900 ac, 17.59% Impervious,	Inflow Depth = 0.61" for 1 year event
Inflow =	3.29 cfs @ 12.28 hrs, Volume	= 0.404 af
Outflow =	0.49 cfs @ 13.48 hrs, Volume	= 0.404 af, Atten= 85%, Lag= 71.8 min
Primary =	0.49 cfs @ 13.48 hrs, Volume	= 0.404 af

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Peak Elev= 545.00' @ 13.48 hrs Surf.Area= 3,461 sf Storage= 6,651 cf

Plug-Flow detention time= 136.5 min calculated for 0.403 af (100% of inflow) Center-of-Mass det. time= 136.4 min (986.4 - 850.0)


Volume	Inve	ert Avail.Sto	rage Storage	Description	
#1	541.(00' 10,5	47 cf Custom	Stage Data (Pri	ismatic) Listed below (Recalc)
Elevatio		Surf.Area	Inc.Store	Cum.Store	
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)	
541.0	-	0	0	0	
542.0)0	725	363	363	
546.0)0	4,367	10,184	10,547	
Device	Routing	Invert	Outlet Device	s	
#1	Primary	541.00'	3.0" Vert. Ori	fice/Grate C=	0.600
#2	Primary	545.00'	2.0" x 2.0" Ho	oriz. Orifice/Gra	te X 6.00 columns
			X 6 rows C=	0.600 in 24.0" x	24.0" Grate (25% open area)
				ir flow at low he	
#3	Primary	545.50'			ad-Crested Rectangular Weir
	· ·····ary	0.000	-		0.80 1.00 1.20 1.40 1.60 1.80 2.00
			· · ·	50 4.00 4.50 5	
					70 2.68 2.68 2.66 2.65 2.65 2.65 2.65
			· •	,	
			2.07 2.00 2.	68 2.70 2.74 2	19 2.00
			.	·· - · - · · · · · ·	

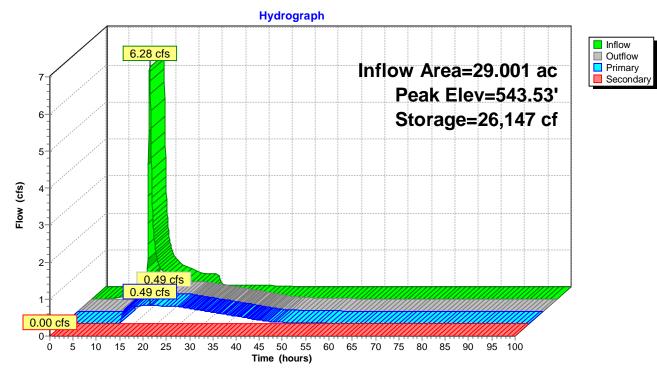
Primary OutFlow Max=0.47 cfs @ 13.48 hrs HW=545.00' (Free Discharge)

-1=Orifice/Grate (Orifice Controls 0.47 cfs @ 9.48 fps)

-2=Orifice/Grate (Weir Controls 0.01 cfs @ 0.22 fps)

-3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 21P: Town Field BMP Pond - East


Inflow Area =	29.001 ac,	9.45% Impervious, Inflow D	Pepth = 0.45" for 1 year event
Inflow =	6.28 cfs @	12.40 hrs, Volume=	1.076 af
Outflow =	0.49 cfs @	18.41 hrs, Volume=	0.932 af, Atten= 92%, Lag= 360.5 min
Primary =	0.49 cfs @	18.41 hrs, Volume=	0.932 af
Secondary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Peak Elev= 543.53' @ 18.41 hrs Surf.Area= 14,274 sf Storage= 26,147 cf

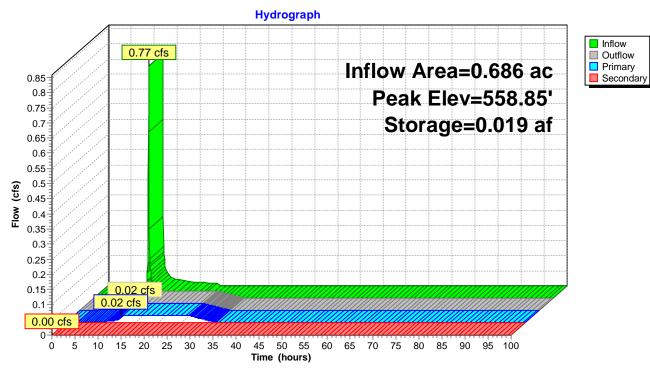
Plug-Flow detention time= 727.4 min calculated for 0.932 af (87% of inflow) Center-of-Mass det. time= 631.9 min (1,574.9 - 943.0)

Volume	Invert	Avail.Stor	rage Storage	Description	
#1	541.00'	48,77	71 cf Custom	Stage Data (Pri	smatic) Listed below (Recalc)
Elevatio (fee		Area sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
541.0	0	150	0	0	
542.0	0 12	2,000	6,075	6,075	
545.0	0 16	5,464	42,696	48,771	
Device	Routing	Invert	Outlet Devices	6	
#1	Primary	542.00'		ice/Grate C=	
#2	Primary	543.75'			te X 6.00 columns
					24.0" Grate (25% open area)
				r flow at low he	
#3	Secondary	544.50'	-		ad-Crested Rectangular Weir
			· · ·	.20 0.40 0.60	0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00		
			· •) 2.69 2.72 2.	75 2.85 2.98 3.08 3.20 3.28 3.31 3.30
			3.31 3.32		
Primary OutFlow Max=0.49 cfs @ 18.41 hrs HW=543.53' (Free Discharge) 1=Orifice/Grate (Orifice Controls 0.49 cfs @ 5.62 fps) -2=Orifice/Grate (Controls 0.00 cfs)					
	x -		/		

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=541.00' (Free Discharge) -3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 21P: Town Field BMP Pond - East

Summary for Pond 22P: TO Bay 2


Inflow Area =	0.686 ac, 17.78% Impervious, Inflow D	epth = 0.66" for 1 year event
Inflow =	0.77 cfs @ 11.95 hrs, Volume=	0.038 af
Outflow =	0.02 cfs @ 11.90 hrs, Volume=	0.038 af, Atten= 97%, Lag= 0.0 min
Primary =	0.02 cfs @ 11.90 hrs, Volume=	0.038 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Peak Elev= 558.85' @ 14.91 hrs Surf.Area= 0.052 ac Storage= 0.019 af

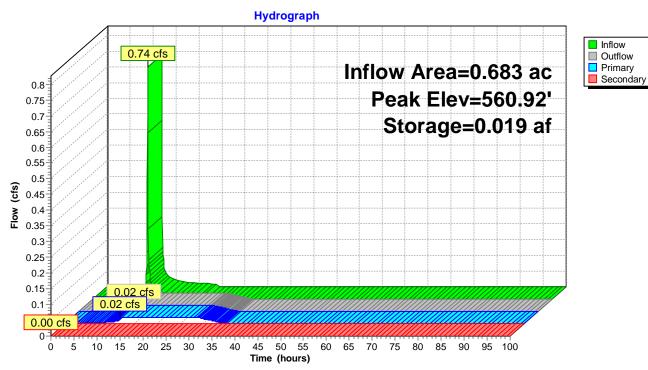
Plug-Flow detention time= 372.7 min calculated for 0.038 af (100% of inflow) Center-of-Mass det. time= 372.8 min (1,197.2 - 824.4)

Volume	Invert A	vail.Storage	e Storage Description
#1	558.00'	0.136 af	f Custom Stage Data (Prismatic) Listed below (Recalc)
Els año			
Elevatio	n Surf.Area	inc.S	Store Cum.Store
(fee	t) (acres)	(acre-f	-feet) (acre-feet)
558.0	0.000	0.	0.000 0.000
558.5	0 0.023	0.	0.006 0.006
559.0	0 0.065	0.	0.022 0.028
559.5	0 0.107	· 0.	0.043 0.071
560.0	0 0.155	0.	0.065 0.136
Dovice	Douting	Invort O	Dutlet Devices
Device	Routing	Invert O	Juliet Devices
#1	Primary	558.00' 1.	.000 in/hr Exfiltration over Surface area below 558.50'
#2	Secondary	559.50' 60	60.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
	OutFlow Max= filtration (Exfiltr		11.90 hrs HW=558.53' (Free Discharge) bls 0.02 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=558.00' (Free Discharge)

Pond 22P: TO Bay 2

Summary for Pond 23P: TO Bay 3


Inflow Area =	0.683 ac, 16.25% Impervious, Inflow D	epth = 0.64" for 1 year event
Inflow =	0.74 cfs @ 11.95 hrs, Volume=	0.036 af
Outflow =	0.02 cfs @ 11.90 hrs, Volume=	0.036 af, Atten= 97%, Lag= 0.0 min
Primary =	0.02 cfs @ 11.90 hrs, Volume=	0.036 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Peak Elev= 560.92' @ 15.46 hrs Surf.Area= 0.046 ac Storage= 0.019 af

Plug-Flow detention time= 427.4 min calculated for 0.036 af (100% of inflow) Center-of-Mass det. time= 427.5 min (1,255.4 - 827.9)

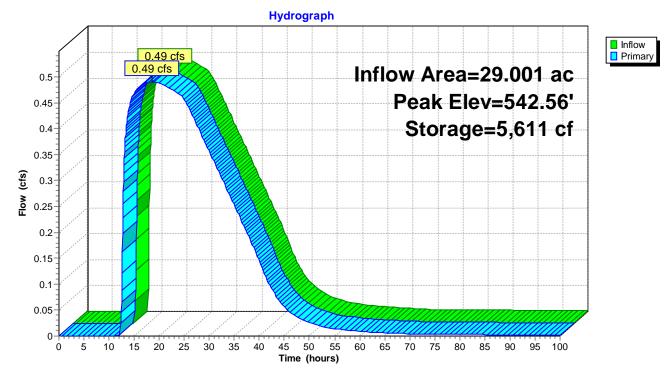
Volume	Invert A	vail.Storage	e Storage Description		
#1	560.00'	0.112 af	f Custom Stage Data (Prismatic) Listed below (Recalc)		
Elevatio	n Surf.Area	Inc.S	Store Cum.Store		
(fee	t) (acres)	(acre-f	-feet) (acre-feet)		
560.0	0.000	0.	0.000 0.000		
560.5	0 0.020	0.	0.005 0.005		
561.0	0 0.051	0.	0.018 0.023		
561.5	0.086	0.	0.034 0.057		
562.0	0 0.135	0.	0.055 0.112		
Device	Routing	Invert O	Dutlet Devices		
#1	Primary	560.00' 1.	1.000 in/hr Exfiltration over Surface area below 560.50'		
#2	Secondary	561.50' 65	55.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)		
Primary OutFlow Max=0.02 cfs @ 11.90 hrs HW=560.55' (Free Discharge)					

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=560.00' (Free Discharge)

Pond 23P: TO Bay 3

Summary for Pond 28P: Wetland A Pond

[63] Warning: Exceeded Reach 28R INLET depth by 0.50' @ 0.00 hrs

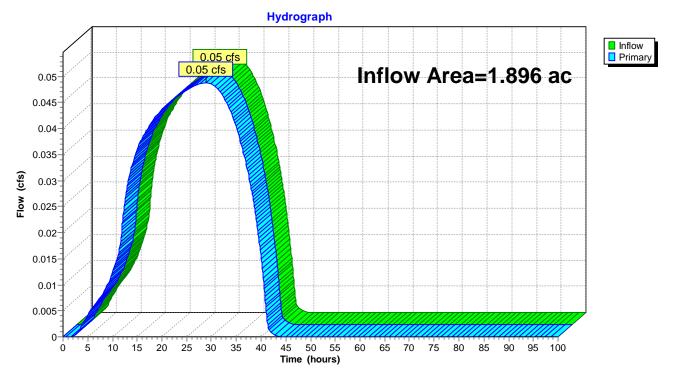

Inflow Area = 29.001 ac, 9.45% Impervious, Inflow Depth > 0.39" for 1 year ev	ent
Inflow = 0.49 cfs @ 18.41 hrs, Volume= 0.932 af	
Outflow = 0.49 cfs @ 18.60 hrs, Volume= 0.932 af, Atten= 0%, Lag=	11.4 min
Primary = 0.49 cfs @ 18.60 hrs, Volume= 0.932 af	

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Starting Elev= 542.50' Surf.Area= 6,939 sf Storage= 5,204 cf Peak Elev= 542.56' @ 18.60 hrs Surf.Area= 7,205 sf Storage= 5,611 cf (407 cf above start)

Plug-Flow detention time= 293.1 min calculated for 0.813 af (87% of inflow) Center-of-Mass det. time= 15.1 min (1,590.6 - 1,575.5)

Volume	Inver	t Avail.Sto	rage Storage	Description	
#1	541.00)' 31,86	65 cf Custom	n Stage Data (Pr	ismatic) Listed below (Recalc)
Elevatior (feet		ourf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
541.00	C	0	0	0	
543.00	C	9,252	9,252	9,252	
545.00	C	13,361	22,613	31,865	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	542.50'	15.0' long x	5.0' breadth Bro	bad-Crested Rectangular Weir
	,		•		0.80 1.00 1.20 1.40 1.60 1.80 2.00
2.50 3.00 3.50 4.00 4.50 5.00 5.50					
			Coef. (Englis	h) 2.34 2.50 2	.70 2.68 2.68 2.66 2.65 2.65 2.65 2.65
				68 2.70 2.74 2	

Primary OutFlow Max=0.48 cfs @ 18.60 hrs HW=542.56' (Free Discharge) ←1=Broad-Crested Rectangular Weir (Weir Controls 0.48 cfs @ 0.56 fps)

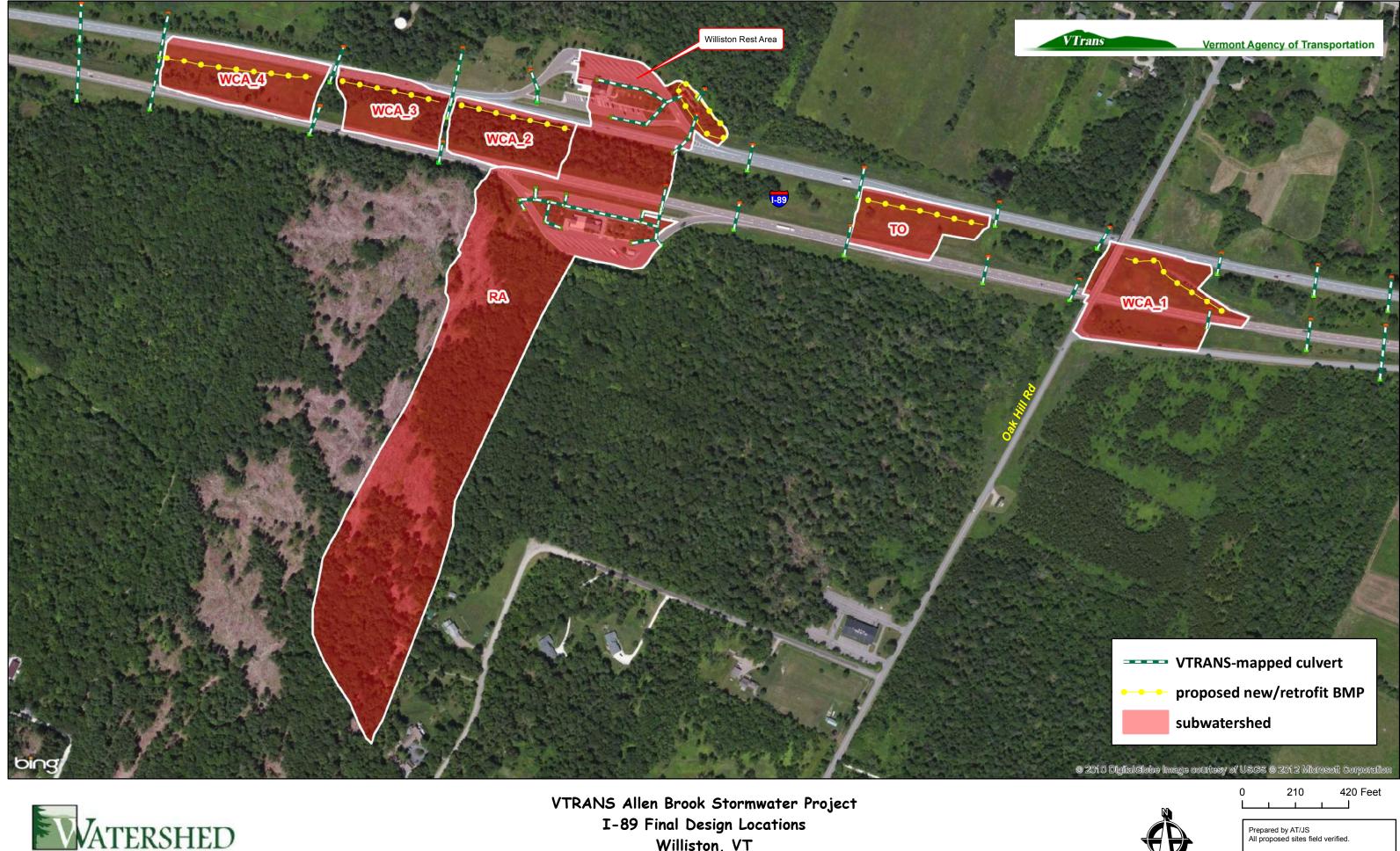


Pond 28P: Wetland A Pond

Summary for Link 20L: WCA TO total

Inflow Area =	1.896 ac, 16.61% Impervious, Inflow D	Depth = 0.64" for 1 year event
Inflow =	0.05 cfs @ 28.81 hrs, Volume=	0.102 af
Primary =	0.05 cfs @ 28.81 hrs, Volume=	0.102 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-100.00 hrs, dt= 0.05 hrs


Link 20L: WCA TO total

APPENDIX D

VTRANS I-89 BMP SITES

AERIAL MAPS AND CPv BMP MODELS

Williston, VT 9/27/12

Aerial Photo provided by Bing Maps 2011 Georeferenced to NAD 1983 VT State plane coordiante system.

MEMORANDUM

To: Craig Digiammarino (VTrans)

From: Andres Torizzo, CPESC, CPSWQ

Date: 9/28/2012

Re: VTRANS Allen Brook Stormwater Improvement Project: Final Summary Report

Cc: Jennifer Callahan; Jon Armstrong (VTrans)

Dear Craig,

Watershed Consulting Associates, LLC (WCA) has prepared this letter report to summarize the final design recommendations of a stormwater upgrade project along a section of Interstate 89 in the Town of Williston, Vermont including several median sites and a retrofit of the existing Williston Rest Area wet pond. The goal of the proposed project is to reduce flows and improve water quality of runoff going to Allen Brook in an effort to meet EPA Total Maximum Daily Load (TMDL) Targets, and ultimately remove Allen Brook from the State's Stormwater Impaired List. The project was funded by the Vermont Agency of Transportation (VTrans), under VTrans Environmental services contract #PS0155.

Project Scope

The Project included the design of five median stormwater improvement structures and retrofit of the existing Williston Rest Area wet pond, with the purpose of managing runoff from adjacent highway road surfaces. A feasibility assessment of eight median sites identified by DuBois & King and thirteen additional sites identified by WCA was conducted for site selection. The five recommended sites were assessed depending on the extent to which each site 1) could be easily retrofitted based on slope, depth, and drainage configuration, 2) provided a substantial amount of impervious area drainage to maximize flow reduction benefits, and 3) avoided sensitive natural resource areas and existing utilities/drains. A runoff analysis was prepared to facilitate the design of the structures and to quantify the amount of flow reduction achieved. A series of final design plans along with construction details were then prepared, to allow VTRANS to construct the structures. Construction stakeout will be necessary to properly implement the designs.

Median Structure Description

The median structures are equivalent to Dry Swales as defined in the Vermont Stormwater Management Manual (VSWMM, 2002). The structures will be located in existing vegetated stormwater conveyances in the I-89 median. Outlet for the structures will be provided by either existing catch basins and

culverts, or by a surface discharge, depending on the site location. Key features of the structures include earthen check dams designed to create up to 1.5' of ponding depth behind each dam, amended soils consisting of a 50/50 blend of sand and native soil at the surface, and a pure sand filter below. A perforated underdrain wrapped in stone will be located below the sand filter, which will be connected to the outlet structure or daylighted.

Treatment/Flow Reduction Potential

The priority of the median and pond retrofit designs were to maximize Channel Protection Volume (CP_v) mitigation, in lieu of the Flow Restoration Plan to be implemented under the new MS4 permit, which will require reduction of high flows (Q 0.3%) to meet TMDL targets in Allen Brook. The pond retrofit has been designed to meet or exceed the Engineering Feasibility Analysis (EFA, 2004) Standards.

Median Structures

Specifically, Water Quality Volumes (WQ_v) will be captured and filtered through the subsurface sand medium prior to discharge to the underdrain. CP_v volumes will also be retained in the swale system. Overbank Flood Protection flows will be reduced significantly, and will either be partially retained and infiltrated, or partially bypassed through a raised outlet structure (with the exception of WCA-2 and 3 which do not provide reduction of Qp10 flow). Extreme storm events will pass safely through the system. It is not possible to accommodate the Recharge Volume in the median without compromising the interstate select gravel subbase.

Pond Retrofit

The Williston rest area pond retrofit was designed according to the P-3 Wet Extended Detention pond variant as listed in the Vermont Stormwater Management Manual: Vol. I (VSMM 2002). The design meets the (WQ_v) storage requirement of 50% in the permanent pool and 50% in extended detention (VSMM 2002). The total calculated WQ_v for the Rest Area was 16,596 cuft, of which 11,298 cuft is provided in permanent storage. The remaining WQv is provided via extended detention in the pond. Each inlet forebay will hold greater than 10% percent of the WQ_v. Additional WQ_v treatment is provided within the rest area drainage system through vegetated disconnection and grass swales. In addition, the Virginia DCR Stormwater design manual for Wet Ponds (VA DCR 2011) was reviewed, from which the design of a wetland shelf was incorporated into the pond retrofit to provide additional WQ_v treatment.

The pond design is in full compliance with the CP_v requirement. Additionally, the design ensures that the 1-yr 24-hour storm is released over 24 hours as the pond appears to drain to a wetland area, and thus a warm water habitat. The calculated CP_v based on the modeling analysis is 29,172 cf.

While not specifically required under the Engineering Feasibility Analysis procedure, the Overbank Flood Protection flow (10-yr storm) was evaluated. The 10-yr storm peak discharge will be reduced by 30%. The pond was also designed to provide adequate free board and safely pass the Extreme Storm events (100-yr storm). The pond retrofit was not designed to specifically address GW recharge (GW_{re}). However, GW_{re} is currently provided on site by means of grass swales and vegetated disconnections.

Water Quality Treatment and Channel Protection Volume Reductions

Annual load reductions of particulate solids (ie. suspended solids, TSS), total solids (suspended and dissolved, TS) and total phosphorus (TP) were estimated using the source loading analysis model, WinSLAMM v.10 (Table 1). Each median site structure and the rest area pond were modeled individually over the course of a year, using local rainfall data. For each site, initial freeway dirt loading per mile was calculated based on an average daily traffic of 26,900 vehicles per day on I-89 from Exit 11 to Exit 12 (VTrans 2008). The proposed improvements would enhance water quality treatment of runoff to Allen Brook through 74% average reductions in TSS and 55% average reductions in TP on an annual basis. The CP_v reductions are also summarized in Table 1 below:

Table 1: Water Quality Treatment and Channel Protection Volume Reductions for Recommended Sites:						
Site	WCA Impervious Area (ac)	Runoff Area (ac)	CPv Storage (cf)	Total Suspended Solids Percent Annual Reduction (%)	Total Solids Percent Annual Reduction (%)	Total Phosphorus Percent Annual Reduction (%)
RA	4.39	26.5	29172	82%	28%	19%
WCA_1	1.12	4.49	7643	57%	46%	40%
WCA_4	0.73	3.24	4404	72%	66%	64%
то	0.33	2.22	2660	93%	91%	89%
WCA_2	0.44	2.50	1852	75%	66%	63%
WCA_3	0.54	2.30	1318	64%	58%	57%
	WCA SUBTOTAL		47049			

Comparison Between D&K and WCA Reporting

As a part of the Draft Allen Brook Flow Restoration Plan (February 2012), prepared by DuBois & King (D&K) for the Town of Williston, locations where Stormwater BMP's could be implemented were identified within the I-89 ROW. In addition, subwatershed mapping and a runoff analysis was conducted by DuBois & King for eight median sites (Medians A-G and Town Offices site) and the Williston Rest Area.

Site selection for BMP implementation was performed by analyzing the recommended D&K sites, in addition to thirteen additional sites. Subwatershed delineations for each location were prepared in GIS and field verified, including the D&K sites, using topographic contours derived from LIDAR data obtained from VTRANS. The subwatershed mapping conducted by WCA for the D&K sites differed substantially from the original delineations, most likely due to the use of more refined topographic data.

A runoff analysis was performed for each site to facilitate the design of the BMP's and to quantify the CP_v reductions expected for each median structure and the rest area pond. The CP_v storage estimates

prepared by WCA varied from the D&K estimates due to several reasons including differences in subwatershed mapping, design of the structures, and the use of mapped soil groups rather than a generic selection of Hydrologic Soil Group C.

The final design recommendations presented by WCA will mitigate VTRANS CP_v storage requirement as outlined in the FRP with the implementation of 4 median BMP's and the pond retrofit, rather than the 7 median BMP's and pond retrofit recommended by D&K. The WCA design recommendation will mitigate 47,049 cf of CP_v , which is 2,121 more than estimated by D&K (Table 2). The reduction in required BMP implementation is primarily as a result of WCA's refined subwatershed mapping, use of mapped soils, and feasibility assessment for site selection.

Table 2: Comparison Between D&K and WCA Estimated CPv Storage for Project				
	CPv Storage (cf)			
DuBois & King	44928			
WCA	47049			
Additional CP _v above FRP Requirement				
for VTrans sites	2121			

Typical Median System Maintenance Tasks

- The swale and check dams should be kept mowed during the growing season as necessary to maintain heights between 4 to 6 inches. (Note: Surface of sand filter at bottom of median swale may be softer under mower tires. Minor rutting is acceptable, but major ruts should be rolled out.)
- Annually inspect the base of the swale, check dam approach, check dam spillway, downstream check dam toe, and catch basin inlet for signs of erosion. Revegetate or otherwise repair to original design specification as necessary.
- Annually inspect for flow bypassing around check dams or end dams.
- Annually inspect for collected debris and sediment upstream of the check dams. Sediment should be removed when it exceeds 4" of depth.
- Annually inspect for collected debris at the catch basin grates. Organic and woody debris should be removed.
- If residual ponding is observed greater than 24-hours after a storm event, check orifice plate for blockage. The orifice plate is located on the end of the underdrain pipe. If no blockage exists and ponding continues, service underdrain cleanout locations. If ponding appears to be a result of

surface conditions, remove silty sediment, and roto till any residual silty sediment into the sand/soil mixture to restore the permeability.

Typical Pond Maintenance Tasks

- Check inlets and outlets for blockage, structural integrity, and evidence of erosion. Repair erosion by adding stone or re-vegetating as necessary.
- Inspect pilot channels and stone armoring for evidence of undermining, slumping, and scouring. Replace stone material as per specification.
- Inspect wetland shelves and main pool for sediment accumulation. Dispose of sediment material in an upland location away from surface waters.
- Replace dead or diseased plantings. Remove invasive species as necessary.

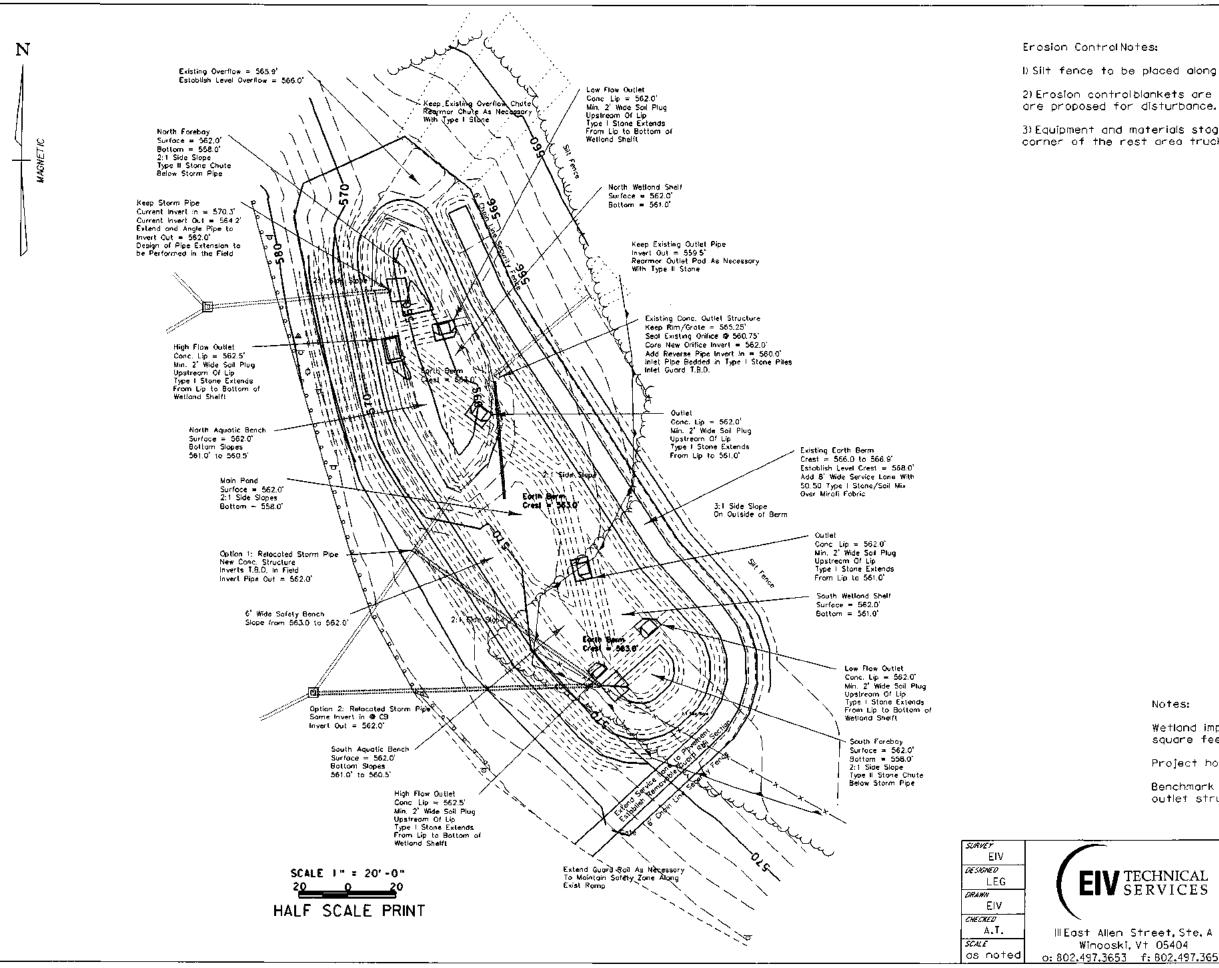
Please contact me should you have any questions.

Sincerely,

Cladra Jorno

Andres Torizzo, CPESC, CPSWQ Principal

References


Dubois & King (D&K). (2012). "Town of Williston Allen Brook Flow Restoration Plan Draft Report.

Vermont ANR. (2002). Vermont Stormwater Management Manual: Volume I- Stormwater Treatment Standards.

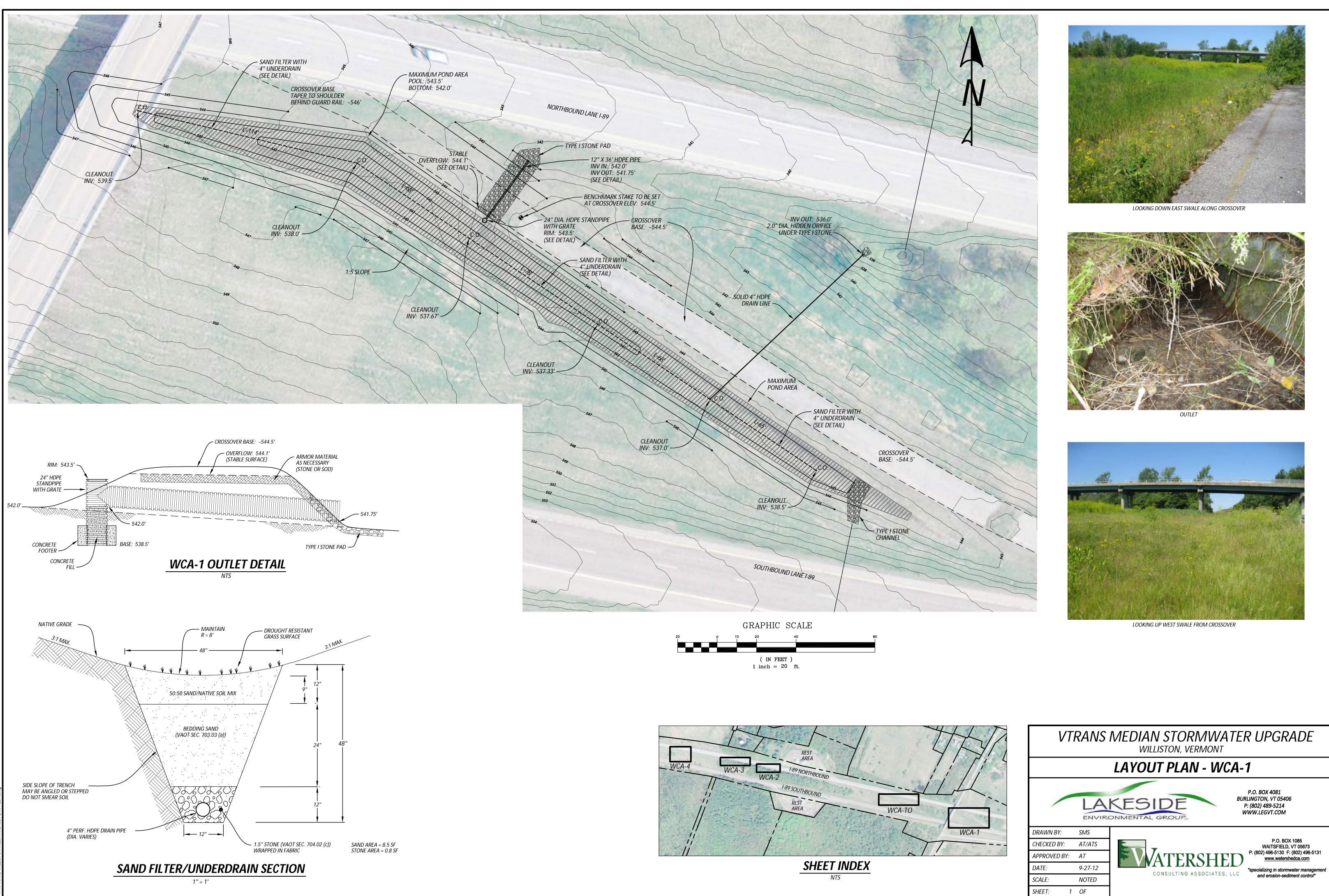
Vermont ANR. (2004). VTDEC Procedure for Evaluation of Stormwater Discharges and Offsets in Stormwater Impaired Watersheds.

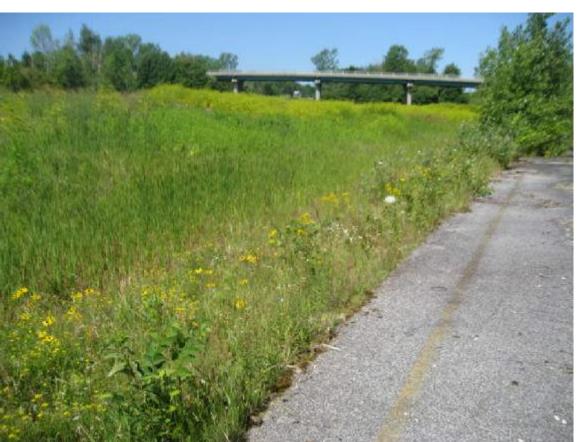
Virginia Department of Conservation & Recreation (VA DCR). (2011). "VA DCR Stormwater Design Specification No. 14: Wet Pond". http://chesapeakestormwater.net/wp-content/uploads/downloads/2012/02/DCR-BMP-Spec-No-14_WET-PONDS_Final-Draft_v1-9_03012011.pdf>(August 16th, 2012)

Vermont Agency of Transportation (VTrans). (2008). Annual Average Daily Traffic (AADT's) State Highways Route Logs. http://www.ccrpcvt.org/library/I89/Exit12B/Exit12B_Interstate_Access_Analysis_Report_2010 1119.pdf>(Sept 21st, 2012).

1) Silt fence to be placed along toe of slope of the proposed earthen berm. 2) Erosion controlblankets are to be placed on all slopes 3: for greater which

3) Equipment and materials staging is to be established in the northeast corner of the rest area truck parking lot.

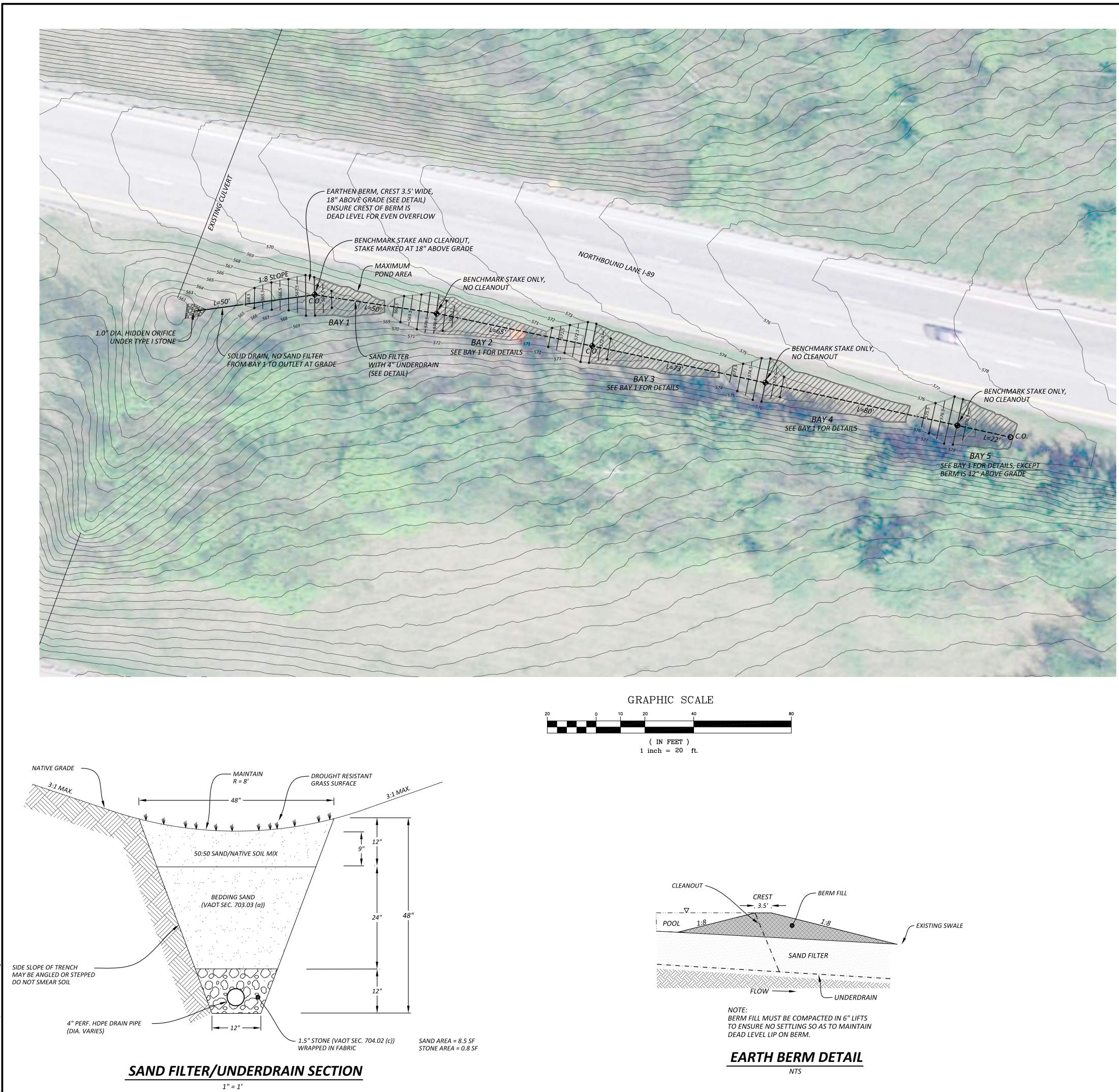

Notes:

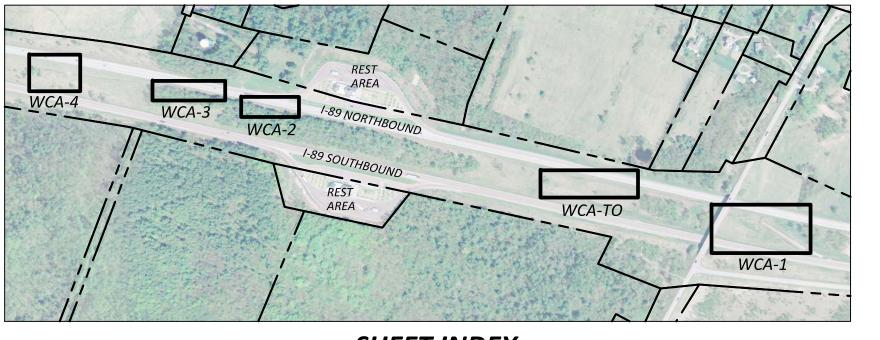

Wetland impact of design is calculated to be 7,650 square feet.

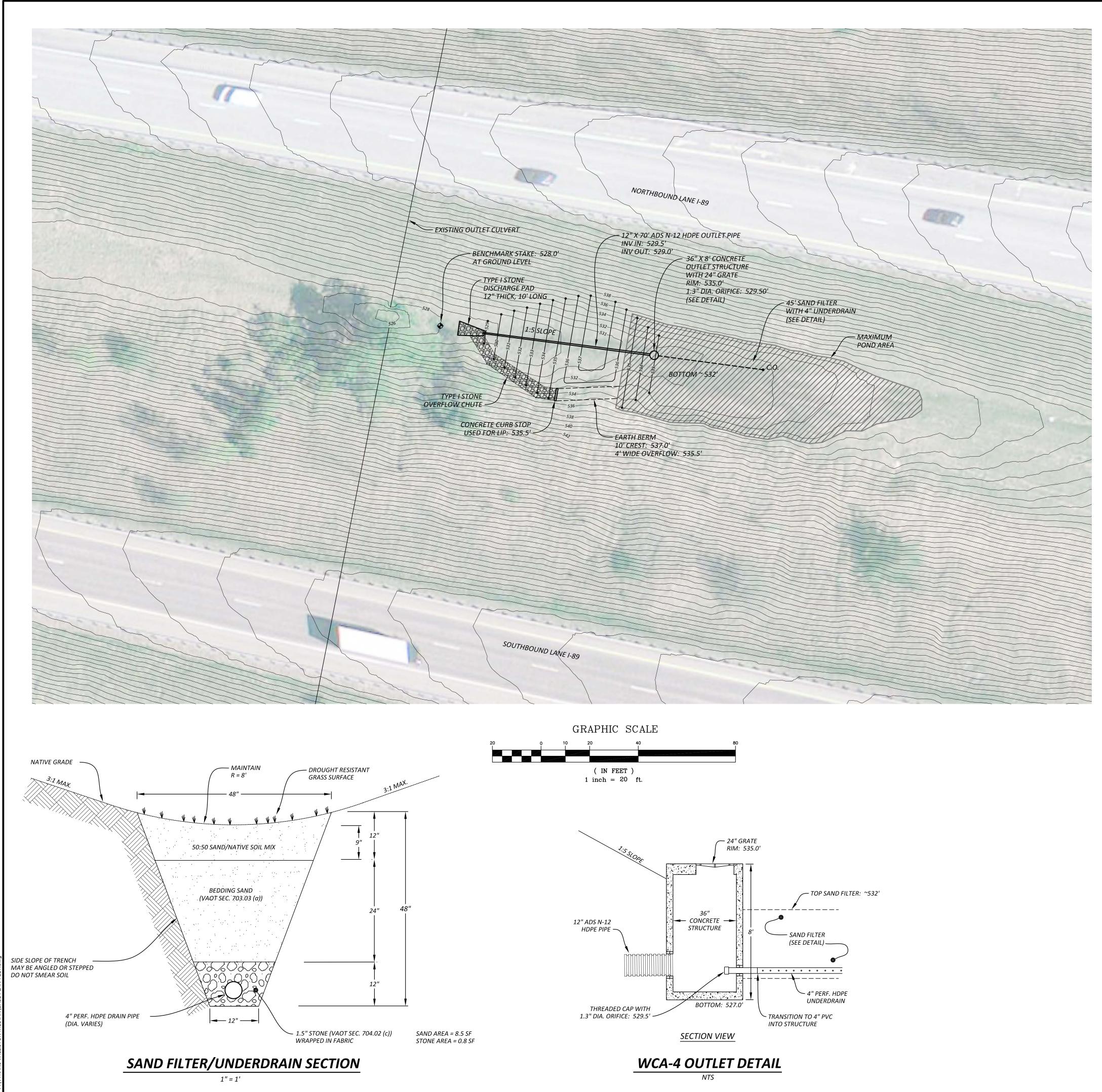
Project horizontal and vertical datum is assumed.

Benchmark is the concrete top of the existing pond outlet structure


	Site Plan	<i>041E</i> 9/26/12
ECHNICAL	· · · · · · · · · · · · · · · · · · ·	ORAWING NO.
ERVICES	I-89 Northbound	SHEET 2 OF 4
	Rest Area	PROJECT NO.
Street, Ste. A Vt 05404	Stormwater Treatment Pond	1675
f: B02.497.3656	<u> </u>	

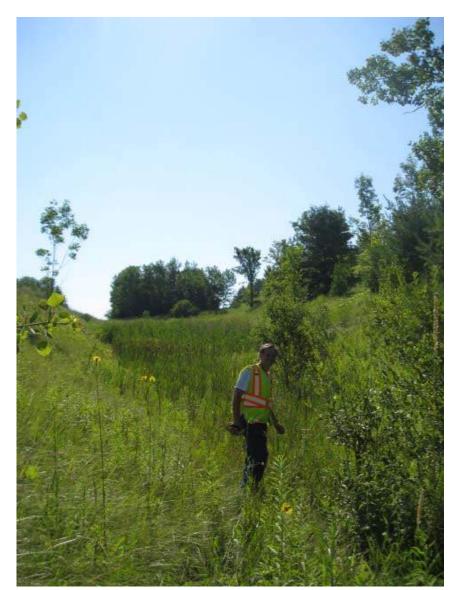


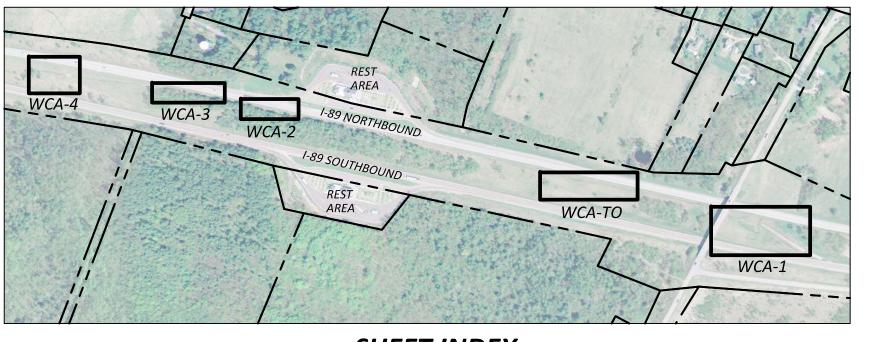



LOOKING UP SWALE FROM OUTLET

SHEET INDEX

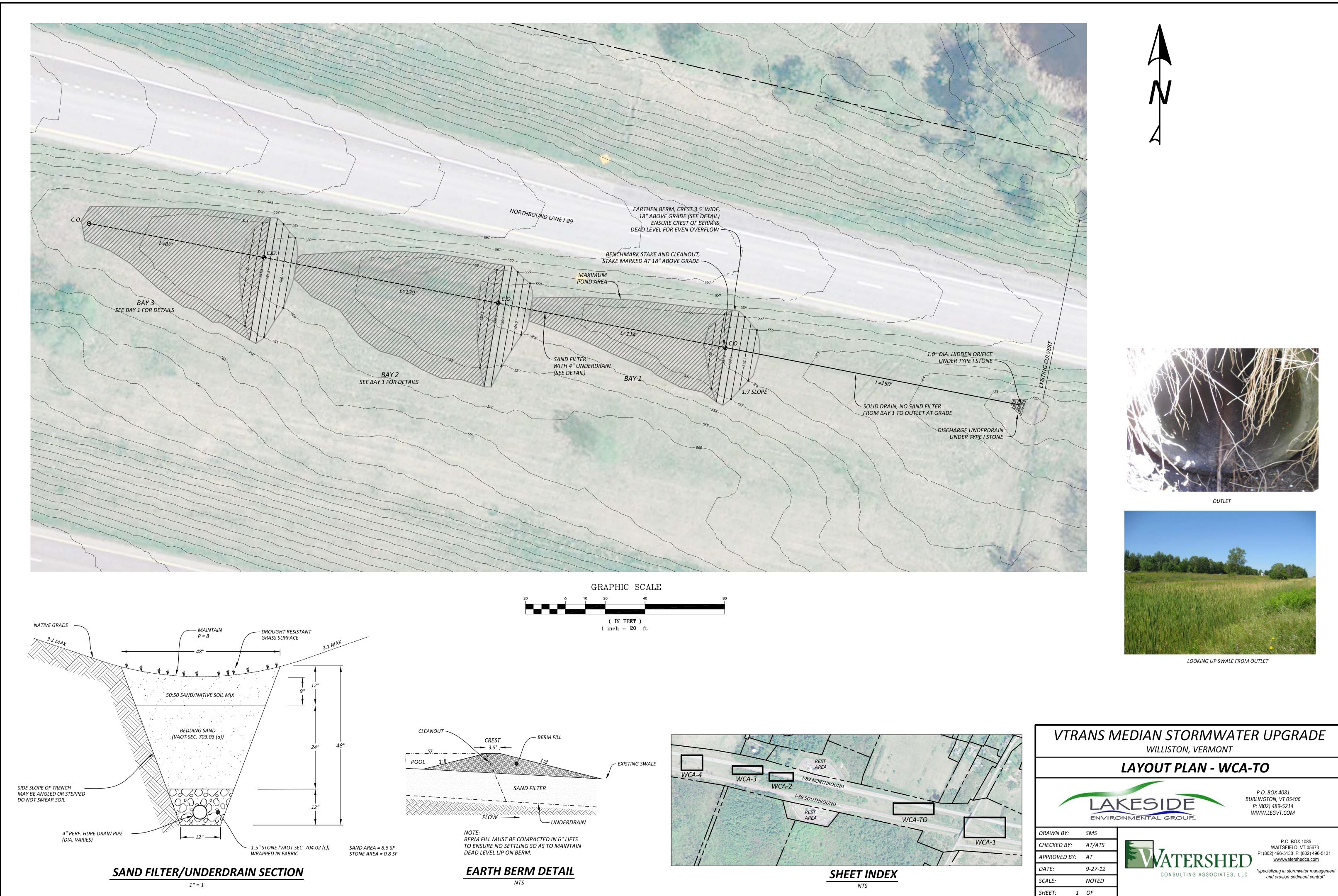
VTRA	ANS N	MEDIAN STORMWAT WILLISTON, VERMONT	TER UPGRADE
		LAYOUT PLAN - WC	A-3
		KESIDE	P.O. BOX 4081 BURLINGTON, VT 05406 P: (802) 489-5214 WWW.LEGVT.COM
DRAWN BY:	SMS		
CHECKED BY:	AT/ATS		P.O. BOX 1085 WAITSFIELD, VT 05673
APPROVED BY:	AT	VATERSHE	P: (802) 496-5130 F: (802) 496-5131 www.watershedca.com
DATE:	9-27-12	CONSULTING ASSOCIATES, I	*specializing in stormwater management
SCALE:	NOTED	CONSULTING ASSOCIATES, L	and erosion-sediment control*
SHEET: 1	OF		





LOOKING DOWN SWALE FROM DIVIDE

OUTLET



LOOKING UP SWALE FROM OUTLET

SHEET INDEX	(
NTS	_

VTRANS MEDIAN STORMWATER UPGRADE WILLISTON, VERMONT					
	LAYOUT PLAN - WCA-4				
	P.O. BOX 4081 BURLINGTON, VT 05406 P: (802) 489-5214 WWW.LEGVT.COM				
DRAWN BY: SMS					
CHECKED BY: AT/ATS	P.O. BOX 1085 WAITSFIELD, VT 05673				
APPROVED BY: AT	P: (802) 496-5130 F: (802) 496-5131 www.watershedca.com				
DATE: 9-27-12	*specializing in stormwater management				
SCALE: NOTED	and erosion-sediment control*				
SHEET: 1 OF					

APPENDIX E

VTDEC MODEL RUN SUMMARY

		Area (sq.	Normalized flow (cfs/ sq mi)		Unadjusted flow (cfs)		% of TMDL
Input file	Description	mi.)	Q 0.3	Q 95	Q 0.3	Q 95	Target
	Base model with pre 2002 BMPs. Modified						
	subwatersheds near Meadowridge based on						
Allen_base_9-19-2016	EFA and field data.	9.81	13.429	0.2079	131.740	2.040	
	Current Scenario model. Altered some						
	subwatershed and drainage area boundaries						18.9%
Allen_post_9-20-2016	to conform with the other models.	9.82	13.328	0.2087	130.920	2.050	10.9%
% Change vs Base					-0.62%	0.49%	
	Updated EFA information from the Town of						
	Williston through 9/2016. ERROR: this run						102.6%
Allen_FRP_9-20-2016	did not include Town Field A & B BMPs	9.82	12.957	0.2077	127.280	2.040	
% Change vs Base					-3.39%	0.00%	
	Added VTrans median BMPs A, B,E, F, G, H, I						
Allen_FRP_VTrans_10-6-2016	back in from the 2012 Draft FRP.	9.82	12.920	0.2077	126.910	2.040	111.1%
% Change vs Base					-3.67%	0.00%	
h unangu tu basu					010770	010070	
	Same as Allen_FRP_VTrans_10-6-2016, but						402.451
Allen_FRP_10-6-2016_noTownField	the Town Field BMPs are not included	9.82	12.959	0.2077	127.300	2.040	102.1%
% Change vs Base					-3.37%	0.00%	

 TMDL Waste Load Allocation (% change vs base)
 -3.30%
 7.40%

	Development	EFA Docu	ments Available	Gis							
Permit No.	Name	Plans	Hydrocad Files	Drainage Area, acre	Williston Notes	DEC Notes	HydroCAD provided?) ' Designer		Date of Most Recent HydroCAD	Changed since 3/15/2016 version?
1-0664	South Ridge Estates	Yes	Yes	68.74	4 ponds	upgrade of existing ponds	x	Lamoureux & Dickinson		9/26/2014	No Change
1-0963	Whitney Hill	Yes	Yes	8.18		upgrade of existing pond	х	Krebs and Lansing	Bill Nedde	4/26/2016	probably changed
1-1047	Pinecrest Village				Determined no storage necessary.		no	n/a	n/a	n/a	n/a
1-1052	Williston Commons	Yes	Yes	23.82		upgrade of existing pond	X	Krebs and Lansing	Bill Nedde	4/28/2016	storage and orifice change
1-1230.9508	Allen Brook Elementary School	Yes	Yes	20.02		upgrade of existing pond	x	Donald Hamlin Consulting	Dii Noddo	5/12/2016	storage and orifice change
1-1258	Heritage Meadows	Yes	Yes	16.79	aka: Wildflower Circle	upgrade of existing pond	x	Lamoureux & Dickinson		1/16/2015	No Change
1-1272 s/n 2	Brennan Woods	Yes	yes	71.41		upgrade of existing pond	x	Lamoureux & Dickinson		9/21/2014	No Change
1-1507	Coyote Run	Yes	Yes	20.5		upgrade of existing ponds	x	Krebs and Lansing	Scott Holmstead	4/13/2014	storage and orifice change
1-1307		103	103	20.3		Different BMP location and drainage area from	^	Kiebs and Earising	Scott Holmstead	4/13/2010	
2-0231	Pleasant Acres	Yes	Yes	2.2		3/2015 EFA. New swale.	x	Krebs and Lansing	Scott Holmstead	4/13/2016	new "pond" and drainage area
2-0231	Allenbrook Meadows	Yes	Yes	4.03		new bioretention	~	WCA	SCOLL HOIMSLEAD	10/15/2014	· · ·
2-0954		res	res	4.03			no	VVCA		10/15/2014	No Change
						3 new ponds. March 2016 submittal had 4 ponds.					storage and orifice change. Possibly
2-1107	Meadow Ridge	Yes	Yes	219.93		Drainage areas have changed.	х	Trudell		4/29/2016	drainage area changes as well.
2-1146	Old Stage Estates	Yes	yes	30.21	2 Ponds		Х	Lamoureux & Dickinson		1/1/2015	No Change
											orifice change. Defined slightly
2-1180	Golf Links	Yes	yes	57.23	4 ponds		х	Lamoureux & Dickinson		1/30/2015	more storage
2-1190	Meadow Run - Forest Run	Yes	Yes	17.65	2 ponds, 1 grass swale		Х	Lamoureux & Dickinson		1/21/2015	No Change
1-0932	Williston Central School	yes	Yes		4 ponds		x	Donald Hamlin Consulting		5/5/2016	change only. Pond 2b orifice change and slight storage change. No information provided for pond 3.
TAFT FARMS											
						originall permitted under 1-0513, but most recent					
1-0513	Tafts Farm	Yes	Yes	12.94		coverage under 1-1275. Covers lots A & B.	х	Lamoureux & Dickinson		~3/2015	No Change
	Condo Pond	Yes	Yes	4.72		upgrade of existing pond	Х	Krebs and Lansing	Bill Nedde	4/28/2016	storage changed
	Lot C-D	Yes	Yes	1.45		upgrade of existing pond	х	Krebs and Lansing	Bill Nedde	4/27/2016	storage and orifice change
	Lot F-G, Respite House Pond	Yes	Yes	4.36		upgrade of existing pond	х	Krebs and Lansing		4/28/2016	storage and orifice change
	Lot H	Yes	Yes	2.41		upgrade of existing pond	х	Krebs and Lansing		4/27/2016	storage and orifice change
						upgrade of existing pond in recreation area. Small pond on Wilson lane was not upgraded as part of		5			
1-1217	Taft Farms Indian Ridge	Yes	Yes	16.69		EFA	х	Krebs and Lansing		4/28/2016	storage and orifice change
TURTLE POND											
2-1191	Turtle Pond	Yes	Yes	11.01		upgrade of existing pond	Х	Lamoureux & Dickinson		2/2/2015	orifice change only
						kept 3/2015 EFA version in the model. Two new					
1-0792	Turtle Crossing	Yes	Yes	2.64	Dry Swale/Infiltration trenches; no final plans	dry swales.	no	?		?	?
HURRICANE LANE											
						new pond. Perhaps there was an existing depression, but it was not included in the base					
1-0530 S/N 2	Hillside East Lot 5	Yes	Yes			model.	х	Krebs and Lansing	Bill Nedde	4/26/2016	storage changed
1-0754	Hillside Park Lot 14	Yes	Yes			upgrade of existing tanks	х	Krebs and Lansing	Bill Nedde	9/19/2014	No Change
1-1078	Lots 10A	Yes	Yes	2.42	Changed name from Lots 10, 11, 15 to Lot 10A		X	Krebs and Lansing	Bill Nedde	4/26/2016	storage and orifice change
1-1205	Lot 7	Yes	Yes	2.1		upgrade of existing pond	X	Krebs and Lansing	Bill Nedde	4/28/2016	minor storage and orifice change
1-1245	Lots 16 & 17	Yes	Yes	5.41		upgrade of existing pond	X	Krebs and Lansing	Bill Nedde	4/28/2016	storage and orifice change
1-1301	Lots 12, 13, 13A	Yes	Yes	8.07		upgrade of existing pond	X	Krebs and Lansing	Bill Nedde	6/28/2016	storage and orifice change
						No previous EFA was provided to DEC, so the	~				
2 1172	Accoss Dood			2.22	Remove BMP from FR Model	existing basin with minimal treatment was left in the model.					
2-1172	Access Road			2.23	Remove Divip II offi FR Wodel	line model.	no				

Allen Brook Modeling Update

1 message

Schelley, Emily < Emily.Schelley@vermont.gov>

Tue, Sep 20, 2016 at 4:11 PM To: "James Sherrard (jsherrard@willistonvt.org)" <jsherrard@willistonvt.org>, Dave Conger <dconger@dubois-king.com>,

Matt Mears <mmears@dubois-king.com> Cc: "Callahan, Jennifer" < Jennifer. Callahan@vermont.gov>, Andres Torizzo < andres@watershedca.com>, "'Kerrie Garvey' (kerrie@watershedca.com)" <kerrie@watershedca.com>

Hello All,

I have attached the results from the latest batch of information submitted to me by the town. A run summary is included as well as flow duration curves for the base, post 2002 (current), and the FRP scenario. I have also updated the EFA info spreadsheet that was provided with the HydroCADs with some additional notes and information.

Subwatershed and Drainage Area shapefiles area available here: ftp://ftp.anr.state.vt.us/BMPDSS/Allen%20Brook/

Username: waterq

Password: redolent

Our IT department sporadically cleans out the FTP site, so I can't guarantee how long the information will stay available.

Let me know if you need additional information or would like to discuss.

Emily Schelley, Environmental Analyst, Stormwater Section 1 National Life Drive, Main 2

Montpelier, VT 05620-3522

802-490-6172 / Emily.Schellev@vermont.gov www.watershedmanagement.vermont.gov

5 attachments

Williston FRP Data Summary - ELS 9-20-2016.xlsx 16K

APPENDIX F

TETRA TECH CONSTRUCTION COST ESTIMATING MEMO 10-30-2007

Tetra Tech, Inc. 10306 Eaton Place, Suite 340 Fairfax, VA 22030 Telephone (703) 385-6000 Fax (703) 385-6007 *Water Resources Group*

MEMORANUM

Date:October 30, 2007From:Tham SaravanapavanTo:Jennifer Callahan, Vermont Department of Environmental ConservationRe:BMP Cost Function in Vermont's BMPDSS

Defining Cost Function and Variables

When refer to the cost of stormwater best management practices (BMP), generally it includes construction cost, maintenance and inspection cost, and land opportunity cost (Wossink and Hunt, 2003). In BMPDSS (Cheng et al., 2006), a generic cost function is employed as described below.

Total Cost = Installation Cost [I] + Land Cost [L] + Fixed Cost [F]

Installation Cost **[I]** represents the material and labor expenses related to the construction of the BMP. Land Cost **[L]** represents the land value. It is important to note that L is negligible if the BMP were installed in small areas, such as bioretention or infiltration, and underground storages. Fixed Cost **[F]** represents the cost associated with design and permitting activities. Due to the unavailability of the cost information on maintenance and inspection, these costs were not included in the equation.

In Vermont BMPDSS, a detention BMP (assumed a wet pond) represents to control the flood flow and a bio-infiltration BMP represents to control the low flow. The following equations represent the selected BMPs.

Detention BMP: Cost = \mathbf{I} * Detention Volume (ft³) + Detention Surface Area (acre)* \mathbf{L} + \mathbf{F}

I =\$5 per ft³ and L =\$ 217,800 per acre, were based on USEPA (1999a) similar to the Prince George's County model.

 $\mathbf{F} = [\$ 2,000 \text{ x} \text{ number of eligible parcels within a sub-watershed}]$ (Assuming each parcel will install a separate BMP and it will cost \$ 2,000 for permitting and design of these BMPs)

Infiltraion BMP:

 $Cost = I * BMP volume (ft^3) + F$

I =\$6 per ft³, was based on USEPA (1999b) similar to the Prince George's County model. F =[\$ 2,000 x number of eligible parcels within a sub-watershed] (Assuming each parcel will install a separate BMP and it will cost \$ 2,000 for permitting and design of these BMPs)

Discussion on Selection of Cost Function and Variables

One of the challenges to apply BMPDSS in Vermont is to identify appropriate cost variables to be input into BMPDSS that represent Vermont's site specific environment. Tetra Tech, along with Vermont Department of Environmental Conservation, has conducted a limited research on BMP cost information available for Vermont environment, including data and reports from University of Vermont (UVM) and the City of South Burlington.

The cost information available at the City of South Burlington excludes the resources that were directly provided by the City (For example, the staff time of City employees, the use of City owned equipments, etc.). Therefore, the data is not complete enough to be represented in BMPDSS. A review further revealed that the cost information available at UVM Redesigning American Neighborhood (RAN) program are based on USEPA (1999 a & b) that is the same information of the Prince George's County BMPDSS.

Due to the unavailability of the site-specific cost data for Vermont and USEPA (1999 a & b) data are presently used in UVM RAN program, Tetra Tech has employed the cost information of existing BMPDSS model. As and when more site specific information available, the variables can be easily updated in BMPDSS. Although the changes in these variables will result in changes in the total cost for implementing BMP, the optimization and other BMPDSS results, such as sizing and locations, have no impact due the changes.

Reference:

Cheng, M.S., C.A. Akinbobola, J. Zhen, J. Riverson, K. Alvi, and L. Shoemaker. 2006. BMP decision support system for evaluating watershed-based stormwater management alternatives. In *Proc. 2006 World Environmental and Water Resources Congress*, May 21-25, 2006, Omaha, Nebraska.

United States Environmental Protection Agency, 1999a. Stormwater Technology Fact Sheet: Wet Detention Pond, EPA 832-F-99-048.

United States Environmental Protection Agency, 1999b. Stormwater Technology Fact Sheet: Bioretention, EPA 832-F-99-012.

University of Vermont, Redesigning the American Neighborhood (RAN) Toolbox. http://www.uvm.edu/~ran/ran/toolbox/bmp/index.php, (accessed May 2007).

Wossink, A. and B. Hunt, 2003. An evaluation of cost and benefits of structural stormwater BMPs in North Carolina, NC State Corporative Extension.

APPENDIX H

VTRANS INTER-MS4 COOPERATIVE AGREEMENT

STATE OF VERMONT INTER-MS4 COOPERATIVE AGREEMENT

1. *Parties.* This is a Cooperative Agreement between the State of Vermont, Agency of Transportation (hereafter called "VTRANS"), and the Town of Williston, VT, (hereafter called Williston").

2. *Subject Matter*. The subject matter of this Cooperative Agreement is generally on the subject of a collaborative compliance approach to the Federal Phase II Stormwater Regulations and NPDES General Permit for Stormwater Discharges from MS4S (**GP-3-9014**) specifically related to the TMDL flow restoration requirements in the Allen Brook watershed. Details of the Cooperative Agreement are described in Attachment A.

3. *Agreement Term.* The period of Williston's performance shall begin on May 6, 2011 and end on May 6, 2011.

4. *Amendment.* No changes, modifications, or amendments in the terms and conditions of this Agreement shall be effective unless reduced to writing, numbered and signed by the duly authorized representative of VTRANS and Williston.

5. *Cancellation*. This Agreement may be canceled by either party by giving written notice at least 90 days in advance, or upon submittal of a satisfactory FRP to ANR, whichever is sooner.

6. Entire Agreement: This Agreement represents the entire agreement between the parties on the subject matter. All prior agreements, representations, statements, negotiations, and understandings shall have no effect.

7. Applicable Law: This Agreement will be governed by the laws of the State of Vermont.

8. *Attachments*. This Cooperative Agreement consists of 5 pages including the following attachment which are incorporated herein: Attachment A - Specifications of the Cooperative Agreement

WE THE UNDERSIGNED PARTIES AGREE TO BE BOUND BY THIS COOPERATIVE AGREEMENT.

By the State of Vermont, Agency of Transportation:

5/11/11 Date: Signature: Name: Brian Searles Title: Secretary of Transportation

By the Town of Williston: Date: 5-5-11 Signature: Zintal Um Sh Name: Richard McGuire Title: Town Manager

ATTACHMENT A – Specifications of the Cooperative Agreement

INTER-MS4 COOPERATIVE AGREEMENT REGARDING A COLLABORATIVE COMPLIANCE APPROACH TO THE FEDERAL PHASE II STORMWATER REGULATIONS AND NPDES GENERAL PERMIT FOR STORMWATER DISCHARGES FROM MS4S (GP-3-9014) SPECIFICALLY RELATED TO THE TMDL FLOW RESTORATION REQUIREMENTS IN THE ALLEN BROOK WATERSHED (MOA)

WHEREAS; the United States Environmental Protection Agency (EPA) National Pollutant Elimination System (NPDES) Phase II Federal Stormwater Regulations (40 CFR Sections 122 and 123) require regulated Municipal Separate Storm Sewer System (MS4s) operators in urbanized areas to obtain a permit; and

WHEREAS; the Vermont Agency of Natural Resources (VANR), via EPA authorization, has been delegated to administer the NPDES Phase II requirements; and

WHEREAS; in Vermont, those designated as Municipal Separate Storm Sewer Systems (MS4s) are required to obtain and comply with the VANR NPDES General Permit for Stormwater Discharges from MS4s (GP-3-9014) and any amendments thereto; and

WHEREAS; the State of Vermont Agency of Transportation (VTRANS) and the Town of Williston (WILLISTON) have been designated as operating a MS4s regulated under VANR NPDES General Permit for Stormwater Discharges from MS4s (GP-3-9014), and have coverage under GP-3-9014; and

WHEREAS; the VANR pursuant to the Secretary's federally-delegated NPDES program is proposing to reissue the NPDES General Permit for the Discharge of Stormwater from certain small MS4s to waters within the State of Vermont. Upon its effective date, this permit will replace the existing MS4 GP-3-9014 issued in 2003, amended in February, 2004 and subsequently modified by the Vermont Water Resources Board in July 2005; and

WHEREAS; the current and proposed re-issued MS4 permit will apply to the following regulated MS4s: Burlington, Colchester, Essex, Essex Junction, Milton, Shelburne, South Burlington, Williston, Winooski, the University of Vermont, the Burlington International Airport and the Vermont Agency of Transportation. This permit will also provide coverage for any additional small MS4s designated by the Secretary pursuant to 40 CFR 123.35(b) or 122.32(a)(2); and

WHEREAS; the permit includes provisions to ensure that discharges do not cause or contribute to exceedances of Vermont water quality standards; and

WHEREAS; pursuant to federal regulation, Vermont must develop a list of water bodies that are not meeting the water quality standards applicable to the water body. This list, the "303(d) List", refers to the section of the Clean Water Act (CWA) that requires the listing of the water bodies. Vermont must update its 303(d) list every two years; and

WHEREAS; Federal regulations require that Total Maximum Daily Loads (TMDLs) be developed for water bodies not meeting applicable standards (see 40 CFR § 130.7 for the regulations associated with TMDLs). A TMDL specifies the maximum amount of a pollutant that a water body can receive and still meet water quality standards. The TMDL allocates pollutant loadings to the impaired waterbody from all point and non-point pollutant sources. Regulations at 40 CFR §130.2 define the TMDL as "the sum of the individual wasteload allocations (WLA) for point sources and load allocations (LAs) for non-point sources"; and

WHEREAS; a TMDL may establish a specific waste load allocation (WLA) for a specific source, or may establish an aggregate WLA that applies to numerous sources. Typically stormwater sources are expressed as an aggregate in a WLA; and

WHEREAS; MS4 permittees must identify in its MS4 Stormwater Management Plan (SWMP) how it will achieve any applicable WLA established in the TMDL. This will include specific BMPs and specific measures to meet the WLA, if applicable. The permittees demonstration of meeting the requirements of the WLA should focus on evidence that shows that the BMPs are implemented properly and adequately maintained. This demonstration may be an iterative process; and

WHEREAS; the Federal EPA approved stormwater TMDLS have been issued for a number of waters into which certain regulated MS4s discharge. The Allen Brook watershed in Williston is one of these waters; and

WHEREAS; each of these TMDLs includes an aggregate point source WLA and does not specify MS4specific WLAs. Each TMDL contains an individual waterbody description, problem assessment and a generalized discussion of potential implementation actions, including permits that may be necessary to regulate stormwater consistent with established WLAs. The Secretary has considered the stormwater TMDLs, including the aggregate WLA, in the development of permit requirements necessary to protect water quality. The Secretary considers these permit requirements, including but not limited to the stormwater TMDL implementation requirements in Part IV of the draft permit, to be consistent with the assumptions and requirements of the TMDLs and necessary to support the achievement of the WLAs; and

WHEREAS; the draft permit recommends that each MS4 permittee, in consultation with the Agency, should consider working cooperatively with any other MS4 permittees that discharge into the same stormwater impaired watershed to develop and submit a single, comprehensive Flow Restoration Plan (FRP) for the stormwater impaired watershed. The FRP shall be submitted within the first three years of the permit term. The FRP will include:

- Identification of the suite of necessary stormwater Best Management/Stormwater Treatment Practices (BM/STPs) to achieve the flow restoration targets; and
- A design and construction schedule for the identified suite of stormwater BM/STPs which
 provides for implementation of the BMPs no later than 10 years from the effective date of the
 permit; and
- A financing plan that estimates the costs for implementing the Flow Reduction Plan and describes a strategy for financing the Plan; and

- A regulatory analysis that identifies and describes what, if any additional regulatory authorities, including the authority to require low impact development BMPs, the permittee will need to effectively implement the Flow Reduction Plan; and
- An identification of regulatory assistance that the permittee will need in order to effectively implement the Flow Reduction Plan (e.g. use of residual designation authority by the Secretary); and

WHEREAS; parties to this MOA own & control regulated impervious surface within the designated Stormwater Impaired Allen Brook Watershed; and

WHEREAS; VTrans owns 16% of the total impervious surface in Stormwater Impaired Allen Brook comprised of I-89, US2, US2A and I-89 Welcome Centers. The remaining 84% is owned & controlled by Williston and its residents, businesses and commercial developments; and

WHEREAS; in the MS4 draft re-issued permit, MS4 permittees are required to contribute its proportional share of the costs in the development and implementation of the FRP; and

WHEREAS; parties to this MOA agree to use percent impervious surface within the limits of the Stormwater Impaired Allen Brook Watershed as the basis for determining proportional share for each party to this MOA; and

WHEREAS; the parties to this MOA recognizes that it is advantageous to participate in a coordinated approach with each other in developing a FRP for the Stormwater Impaired Allen Brook Watershed; and

WHEREAS; parties to this MOA wish to commence a collaborative FRP process effort even though MS4 Permit requirement is pending with ANR using the DRAFT MS4 GP-3-9014 (re-issuance) as a guide; and

WHEREAS; parties to this MOA agree to an FRP BM/STP decision making process that is targeted at meeting the TMDL targets established by VANR under the Stormwater Impaired Allen Brook TMDL. It is further agreed that decisions will be based on constructability; impact to roadway infrastructure, utilities, and public/private property; the most reasonable and practical alternative and considers buy in from all parties in terms of location, payment, operation and maintenance. BM/STPs must be acceptable to the party who owns/controls the land upon which the stormwater BM/STP is proposed; and

NOW THEREFORE; parties to this MOA shall be solely responsible and liable for its own activities under this MOA, for obtaining and maintaining its current and future permit coverage under GP-3-9014, and for the preparation, implementation, operation and maintenance of its own stormwater management program, including but not limited to, the required minimum control measures and applicable Best Management Practices for Pollutants of Concern; and THEREFORE; Parties to the MOA agree to participate in a collaborative process in order to achieve compliance with the MS4 FRP requirements for the Stormwater Impaired Allen Brook Watershed; and

THEREFORE; due to State and Federal contracting requirements, VTrans will contract directly with DuBoise & King (D&K) instead of co-signing with Williston on a single contract with D&K. VTrans will contract FRP services with D&K for its proportional share under its Environmental General Services Retainer Contract (GSRC) with D&K for a maximum of \$6,185 of the total Flow Restoration Planning Services agreed upon between Williston, VTrans and D&K for inclusion of its impervious surface in the Allen Brook FRP process. All services under the Environmental GSRC with VTrans will be completed and invoiced to VTrans before June 30, 2011 (the termination date of the current Environmental GSRC).

THEREFORE; Parties agree to an FRP process that, at a minimum, includes the following:

- Equal representation in and under all MS4 FRP requirements; and
- Inclusion of VTrans impervious surfaces in the Williston FRP process and documents; and
- Equal access to D&K as necessary to discuss FRP; and
- Equal opportunity to participate in all scheduled meetings with D&K and/or ANR; and
- Equal opportunity to review propose BMP's at all stages in the FRP process; and
- Equal opportunity to review draft and Final FRP and to make comment; and
- Two paper copies and one PDF version of the final FRP; and

THEREFORE; VTRANS will actively participate in FRP process; and

THEREFORE; Parties agree that due to the contracting issues, to include each other in meetings, discussions, and decision making under each of the two contracts with D&K; and

THEREFORE; if any provision, paragraph, sentence or clause of this MOA shall be held invalid or unenforceable, for any reason, the invalidity or unenforceability of such provision, paragraph, sentence or clause shall not affect the remainder of this MOA. This MOA shall be construed and enforced, consistent with its expressed purposes, as if such invalid and unenforceable provision, paragraph, sentence, or clause had not been contained in the MOA. APPENDIX G

STORMWATER AGREEMENTS

STORMWATER AGREEMENT

This AGREEMENT, made this \underline{FiYsf} day of $\underline{\sqrt{2000}}$, 2016, by and between the Town of Williston, (hereinafter referred to as "Town"), and the $\underline{Allenbrook}$ Homeowner's Association, (hereinafter referred to as "Owner").

WHEREAS, the Owner has an expired Stormwater Permit benefitting Owner's stormwater discharge system; and

WHEREAS, Town has agreed to accept responsibility for maintenance and future upgrades of Owner's stormwater system providing the conditions in this Agreement have been satisfied.

NOW, THEREFORE, in consideration of the mutual promises herein set forth and other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, the parties hereto agree as follows:

1. <u>OWNER'S STORMWATER SYSTEM</u>. Owner's stormwater system covered by Discharge Permit #______ and the components thereof are more particularly described in the Final Design Plan appended hereto and incorporated herein by reference as Exhibit A (hereinafter the "stormwater system").

2. <u>OWNER'S IMPROVEMENTS</u>. Owner shall take all necessary and appropriate action to improve/repair the stormwater system to the extent such system lies within its property and/or Owner has legal access thereto so that it complies with the Final Design Plan submitted and accepted by the Town as of the date of this Agreement (hereinafter "Owner's improvements"). (Prior to the execution of this Agreement, Owner shall advise Town if Owner does not have legal access to any portion of the stormwater system.) At Owner's request, Town agrees to review the Final Design Plan to determine if the plan complies with Town's Public Water Standards as adopted by the Williston Selectboard and in place at the time of this Agreement (hereinafter "Town's Public Works Standards"). Any construction/installation shall be in accord with any State or Town permits/approvals issued to Owner for such construction. Any changes in zoning bylaws or any other regulations which result in supplementary requirements for the Owner's stormwater system arising subsequent to

the Town's acceptance and approval of the Owner's Final Design Plan shall be the sole responsibility of the Town, and the Owner shall have no further obligation to revise its Final Design Plan or alter, add to or supplement its construction of any modifications, improvements or repairs as part of this Agreement.

3. <u>SCHEDULE</u>. The Owner shall complete Owner's improvements by <u>December</u> (month) of <u>3020</u> (year) [<u>4</u> years].

4. <u>PERMITS/APPROVALS</u>. Owner shall be solely responsible for securing all required permits/approvals for the construction of Owner's improvements to the stormwater system.

5. <u>FAILURE TO CONSTRUCT</u>. If the Owner fails to construct or install Owner's improvements covered by this Agreement within the time frame established, the Town, after thirty (30) days' written notice to the Owner, may ask the State to exercise its power under the Residual Designation Authority to ensure the Owner completes the required improvements. The Owner shall be responsible for any and all costs, including fines, penalties and/or attorney's fees, that may be imposed by the State for non-compliance of this Agreement. Town shall have no obligation to take over the stormwater system and to incur any expense on account thereof unless and until: (a) the Owner has completed the Owner's improvements described in Exhibit A; (b) all applicable permits/approvals have been issued therefor; and (c) the required certification set forth in Section 6 has been received by Town.

6. <u>NOTICE OF COMPLETION OF REQUIRED REPAIRS</u>. Owner shall notify Town when all of Owner's improvements to the stormwater system have been made. Such notice shall be accompanied by the certification by a Vermont licensed engineer certifying that all required Owner improvements described in Exhibit A have been made and that the stormwater system is in compliance with the Final Design Plan and any Town or State permits and all other requirements in this Agreement.

7. <u>ACCEPTANCE BY TOWN</u>. The Town shall formally accept the stormwater system within forty-five (45) days of submission of the engineer's certification referred to in Section 6 to the Town and the submission of the legal documents executed in proper form specified in Paragraph 8. Formal acceptance of the stormwater system by the Town will be in

the form of a written document as recommended by the Director of Public Works and his/her designee and signed by the Town Manager or his/her designee. As part of its formal acceptance of the stormwater system, the Town shall represent to Owner that all future repairs, maintenance, modifications and improvements related to the stormwater system shall be the sole responsibility of the Town. If the Town does not accept the stormwater system by virtue of Owner's failure to comply with this Agreement, Owner shall continue being responsible for the repair, maintenance and permit compliance of the stormwater system.

8. <u>OWNER'S EASEMENT TO TOWN</u>. Prior to Town's acceptance, Owner shall grant to Town the necessary easements and/or licenses to access the stormwater system from a public right of way in form and substance acceptable to Town's attorney and the Owner's attorney. The Town will provide model language to the Owner. The Easement Deed(s) and/or licenses shall be accompanied by a mylar prepaid at Owner's expense suitable for recording depicting the easements/licenses described in the transfer instrument and by the opinion of an attorney licensed to practice law in Vermont certifying that Owner has good and marketable title to the easement/license area free and clear of all material liens and encumbrances and has the authority to convey such easement/license.

9. <u>TOWN'S RESPONSIBILITY POST-ACCEPTANCE</u>. After Town accepts the stormwater system, it shall be solely responsible, at its own cost and expense for (a) maintaining and repairing the stormwater system in accordance with applicable law including the payment of fees (if any) arising after Town's acceptance of the system and submitting all required engineering certifications and statements of compliance, if any, that may be required by applicable law; and (b) for future upgrades to the stormwater system should they be required by applicable law.

10. INDEMNIFICATION. The Owner, its successors and/or assigns, shall indemnify and hold harmless the Town and its officers, agents and employees for any and all damages, accidents, casualties, occurrences, claims or attorney's fees arising prior to the Town's acceptance of the stormwater control facilities subject to the Agreement. In the event a claim is asserted against the Town, its officers, agents or employees, the Town shall notify Owner and the Owner shall defend at Owner's expense any suit based on such claim arising

out of any occurrence prior to the Town's acceptance of the system. (Owner shall have no obligation of indemnity on account of maintenance and repairs performed or which were required to be performed under this Agreement by Town. If any judgment or claims arising from an occurrence prior to the Town's acceptance of the stormwater system shall be allowed, the Owner shall pay all costs (including reasonable attorney's fees) and expenses in connection therewith. Notwithstanding the foregoing, Owner shall have no obligation to the Town hereunder for claims arising from the Town's gross negligence or willful misconduct.

11. <u>AGREEMENT RUNS WITH LAND</u>. This Agreement runs with the land/permit to which it applies. It is binding on the Owner and its successors and assigns and on the Town and its successors and assigns. The Owner shall not be able to transfer, assign or modify its responsibilities with respect to this Agreement without the Town's written consent. Nothing herein shall be construed to prohibit a transfer by Owner. If either party learns that an assignment, sale, conveyance, foreclosure, lease or any other event is likely to change the identity of any party, that party shall provide written notice to the other party within 48 hours of such change, and shall provide the other party with copies of all documents relating to the transfer of interest in the agreement.

12. <u>INSPECTIONS</u>. It is understood that the signature of the Owner in this Agreement constitutes permission for representatives of the Town to enter onto the private property for the purpose of completing the necessary inspections. The Owner further agrees to provide the Town with reasonable entry into locked areas, if any. Prior to the turnover of the system, the Owner will also, at its expense, provide the opportunity for the Town to discuss work on the improvements with contractors, designers and employees retained by the Owner. A final inspection schedule consistent with the Public Works Standards will be set at the pre-construction meeting, the date, time and place for which will be set by mutual agreement of the Town and the Owner.

13. <u>AS-BUILTS</u>. As-built drawings for the Owner's improvements described in Exhibit A must be provided to the Town as required by the Town's Public Works Standards.

14. <u>NOTICES</u>. Any notice or other communication to be given hereunder shall be in writing and mailed by certified mail, return receipt requested, to the address set forth below:

If to Town:	Town of Williston 7900 Williston Road Williston, VT 05495
If to Owner:	Allenbrook Homeowners Association
	160 Lefebrie Ln Williston, VT 05495
Copy to Attorney:	Roger Scharf PD: Box 340
	Hinesburg, VT 05461

or to such other person and address as the party entitled to such notice or communication shall have specified by notice to the other party. Any such notice or other communication shall be deemed given if mailed, when deposited in the United States mail, sent by certified mail, return receipt requested.

15. <u>WAIVER OF RULE OF CONSTRUCTION</u>. The parties waive the benefit of any rule that this Agreement is to be construed strictly against one party or the other.

16. <u>ENTIRE AGREEMENTS, APPLICABLE LAW</u>. This Agreement contains the entire agreement of the parties and no representations, inducements, promises or agreements not embodied herein shall be of any force or effect, unless the same were in writing and signed by or on behalf of the party to be charged. The captions of particular sections are inserted as a matter of convenience only and are in no way to affect or define the scope or intent of this Agreement or any provision thereof. This Agreement shall be governed by and interpreted in accordance with the laws of the State of Vermont.

17. <u>SEVERABILITY</u>. In case one or more of the provisions contained in this Agreement shall be invalid, illegal or unenforceable in any respect under any law, the validity, legality and enforceability of the remaining provisions contained herein shall not in any way be affected or impaired thereby.

DATED this Trist day of yust, 20/6.

IN THE PRESENCE OF:

Witness

Town: TOWN OF WILLISTON

By:

Town Manager and Duly Authorized Agent

Print Name: Richard McGuive

DATED this First day of July

IN THE PRESENCE OF:

Owner: Aller & HOMEOWNER'S ASSOCIATION

, 20<u>16</u>.

By

Duly-appointed Agent of Owner

Print Name: REBECCA THARP

END OF DOCUMENT

STORMWATER AGREEMENT

This AGREEMENT, made this 24th day of June, 2016, by and between the Town of Williston, (hereinafter referred to as "Town"), and the Brennan Woods Homeowner's Association, (hereinafter referred to as "Owner").

WHEREAS, the Owner has an expired Stormwater Permit benefitting Owner's stormwater discharge system; and

WHEREAS, Town has agreed to accept responsibility for maintenance and future upgrades of Owner's stormwater system providing the conditions in this Agreement have been satisfied.

NOW, THEREFORE, in consideration of the mutual promises herein set forth and other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, the parties hereto agree as follows:

1. <u>OWNER'S STORMWATER SYSTEM</u>. Owner's stormwater system covered by Discharge Permit # 1-1272 and the components thereof are more particularly described in the Final Design Plan appended hereto and incorporated herein by reference as Exhibit A (hereinafter the "stormwater system").

2. <u>OWNER'S IMPROVEMENTS</u>. Owner shall take all necessary and appropriate action to improve/repair the stormwater system to the extent such system lies within its property and/or Owner has legal access thereto so that it complies with the Final Design Plan submitted and accepted by the Town as of the date of this Agreement (hereinafter "Owner's improvements"). (Prior to the execution of this Agreement, Owner shall advise Town if Owner does not have legal access to any portion of the stormwater system.) At Owner's request, Town agrees to review the Final Design Plan to determine if the plan complies with Town's Public Water Standards as adopted by the Williston Selectboard and in place at the time of this Agreement (hereinafter "Town's Public Works Standards"). Any construction/installation shall be in accord with any State or Town permits/approvals issued to Owner for such construction. Any changes in zoning bylaws or any other regulations which result in supplementary requirements for the Owner's stormwater system arising subsequent to the Town's acceptance and approval of the Owner's Final Design Plan shall be the sole responsibility of the Town, and the Owner shall have no further obligation to revise its Final Design Plan or alter, add to or supplement its construction of any modifications, improvements or repairs as part of this Agreement.

3. <u>SCHEDULE</u>. The Owner shall complete Owner's improvements by October (month) of 2022 (year) [6 years].

4. <u>PERMITS/APPROVALS</u>. Owner shall be solely responsible for securing all required permits/approvals for the construction of Owner's improvements to the stormwater system.

5. <u>FAILURE TO CONSTRUCT</u>. If the Owner fails to construct or install Owner's improvements covered by this Agreement within the time frame established, the Town, after thirty (30) days' written notice to the Owner, may ask the State to exercise its power under the Residual Designation Authority to ensure the Owner completes the required improvements. The Owner shall be responsible for any and all costs, including fines, penalties and/or attorney's fees, that may be imposed by the State for non-compliance of this Agreement. Town shall have no obligation to take over the stormwater system and to incur any expense on account thereof unless and until: (a) the Owner has completed the Owner's improvements described in Exhibit A; (b) all applicable permits/approvals have been issued therefor; and (c) the required certification set forth in Section 6 has been received by Town.

6. <u>NOTICE OF COMPLETION OF REQUIRED REPAIRS</u>. Owner shall notify Town when all of Owner's improvements to the stormwater system have been made. Such notice shall be accompanied by the certification by a Vermont licensed engineer certifying that all required Owner improvements described in Exhibit A have been made and that the stormwater system is in compliance with the Final Design Plan and any Town or State permits and all other requirements in this Agreement.

7. <u>ACCEPTANCE BY TOWN</u>. The Town shall formally accept the stormwater system within forty-five (45) days of submission of the engineer's certification referred to in Section 6 to the Town and the submission of the legal documents executed in proper form specified in Paragraph 8. Formal acceptance of the stormwater system by the Town will be in the form of a written document as recommended by the Director of Public Works and his/her designee and signed by the Town Manager or his/her designee. As part of its formal acceptance of the stormwater system, the Town shall represent to Owner that all future repairs, maintenance, modifications and improvements related to the stormwater system shall

be the sole responsibility of the Town. If the Town does not accept the stormwater system by virtue of Owner's failure to comply with this Agreement, Owner shall continue being responsible for the repair, maintenance and permit compliance of the stormwater system.
8. <u>OWNER'S EASEMENT TO TOWN</u>. Prior to Town's acceptance, Owner

shall grant to Town the necessary easements and/or licenses to access the stormwater system from a public right of way in form and substance acceptable to Town's attorney and the Owner's attorney. The Town will provide model language to the Owner. The Easement Deed(s) and/or licenses shall be accompanied by a mylar prepaid at Owner's expense suitable for recording depicting the easements/licenses described in the transfer instrument and by the opinion of an attorney licensed to practice law in Vermont certifying that Owner has good and marketable title to the easement/license area free and clear of all material liens and encumbrances and has the authority to convey such easement/license.

9. <u>TOWN'S RESPONSIBILITY POST-ACCEPTANCE</u>. After Town accepts the stormwater system, it shall be solely responsible, at its own cost and expense for (a) maintaining and repairing the stormwater system in accordance with applicable law including the payment of fees (if any) arising after Town's acceptance of the system and submitting all required engineering certifications and statements of compliance, if any, that may be required by applicable law; and (b) for future upgrades to the stormwater system should they be required by applicable law.

10. INDEMNIFICATION. The Owner, its successors and/or assigns, shall indemnify and hold harmless the Town and its officers, agents and employees for any and all damages, accidents, casualties, occurrences, claims or attorney's fees arising prior to the Town's acceptance of the stormwater control facilities subject to the Agreement. In the event a claim is asserted against the Town, its officers, agents or employees, the Town shall notify Owner and the Owner shall defend at Owner's expense any suit based on such claim arising

out of any occurrence prior to the Town's acceptance of the system. (Owner shall have no obligation of indemnity on account of maintenance and repairs performed or which were required to be performed under this Agreement by Town. If any judgment or claims arising from an occurrence prior to the Town's acceptance of the stormwater system shall be allowed, the Owner shall pay all costs (including reasonable attorney's fees) and expenses in connection therewith. Notwithstanding the foregoing, Owner shall have no obligation to the Town hereunder for claims arising from the Town's gross negligence or willful misconduct.

11. <u>AGREEMENT RUNS WITH LAND</u>. This Agreement runs with the land/permit to which it applies. It is binding on the Owner and its successors and assigns and on the Town and its successors and assigns. The Owner shall not be able to transfer, assign or modify its responsibilities with respect to this Agreement without the Town's written consent. Nothing herein shall be construed to prohibit a transfer by Owner. If either party learns that an assignment, sale, conveyance, foreclosure, lease or any other event is likely to change the identity of any party, that party shall provide written notice to the other party within 48 hours of such change, and shall provide the other party with copies of all documents relating to the transfer of interest in the agreement.

12. <u>INSPECTIONS</u>. It is understood that the signature of the Owner in this Agreement constitutes permission for representatives of the Town to enter onto the private property for the purpose of completing the necessary inspections. The Owner further agrees to provide the Town with reasonable entry into locked areas, if any. Prior to the turnover of the system, the Owner will also, at its expense, provide the opportunity for the Town to discuss work on the improvements with contractors, designers and employees retained by the Owner. A final inspection schedule consistent with the Public Works Standards will be set at the pre-construction meeting, the date, time and place for which will be set by mutual agreement of the Town and the Owner.

13. <u>AS-BUILTS</u>. As-built drawings for the Owner's improvements described in Exhibit A must be provided to the Town as required by the Town's Public Works Standards.

14. <u>NOTICES</u>. Any notice or other communication to be given hereunder shall be in writing and mailed by certified mail, return receipt requested, to the address set forth below:

Town of Williston				
7900 Williston Road				
Williston, VT 05495				
Brennan Woods Homeowners Association 726 Hanon Drive Williston, VT 05495				
N/A				
	7900 Williston Road Williston, VT 05495 Brennan Woods Homeowners Association 726 Hanon Drive Williston, VT 05495			

or to such other person and address as the party entitled to such notice or communication shall have specified by notice to the other party. Any such notice or other communication shall be deemed given if mailed, when deposited in the United States mail, sent by certified mail, return receipt requested.

15. <u>WAIVER OF RULE OF CONSTRUCTION</u>. The parties waive the benefit of any rule that this Agreement is to be construed strictly against one party or the other.

16. <u>ENTIRE AGREEMENTS, APPLICABLE LAW</u>. This Agreement contains the entire agreement of the parties and no representations, inducements, promises or agreements not embodied herein shall be of any force or effect, unless the same were in writing and signed by or on behalf of the party to be charged. The captions of particular sections are inserted as a matter of convenience only and are in no way to affect or define the scope or intent of this Agreement or any provision thereof. This Agreement shall be governed by and interpreted in accordance with the laws of the State of Vermont.

17. <u>SEVERABILITY</u>. In case one or more of the provisions contained in this Agreement shall be invalid, illegal or unenforceable in any respect under any law, the validity, legality and enforceability of the remaining provisions contained herein shall not in any way be affected or impaired thereby.

DATED	this 24 day of JUN	Æ, 20 <u>16</u> .
IN THE PRESE	CE OF:	Town: TOWN OF WILLISTON
front		By conthe fis
Witness		Town Manager and Duly Authorized Agent
V		Print Name: Richard McGuive
		qust, 2016.
IN THE PRESE	NCE OF:	Owner: Brennan Woods HOMEOWNER'S ASSOCIATION
0		

Witness Burghdrest

By: Duly-appointed Agent of Owner

Print Name: Lisa G. Roy

END OF DOCUMENT

STORMWATER AGREEMENT

This AGREEMENT, made this <u>Jack</u> day of <u>Jack</u>, 2016, by and between the Town of Williston, (hereinafter referred to as "Town"), and the <u>Cathedral Soyare Copyrighter Homeowner's Association</u>, (hereinafter referred to as "Owner").

WHEREAS, the Owner has an expired Stormwater Permit benefitting Owner's stormwater discharge system; and

WHEREAS, Town has agreed to accept responsibility for maintenance and future upgrades of Owner's stormwater system providing the conditions in this Agreement have been satisfied.

NOW, THEREFORE, in consideration of the mutual promises herein set forth and other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, the parties hereto agree as follows:

1. <u>OWNER'S STORMWATER SYSTEM</u>. Owner's stormwater system covered by Discharge Permit $\# / - \alpha \sqrt{2} / \sqrt{2}$ and the components thereof are more particularly described in the Final Design Plan appended hereto and incorporated herein by reference as Exhibit A (hereinafter the "stormwater system").

2. <u>OWNER'S IMPROVEMENTS</u>. Owner shall take all necessary and appropriate action to improve/repair the stormwater system to the extent such system lies within its property and/or Owner has legal access thereto so that it complies with the Final Design Plan submitted and accepted by the Town as of the date of this Agreement (hereinafter "Owner's improvements"). (Prior to the execution of this Agreement, Owner shall advise Town if Owner does not have legal access to any portion of the stormwater system.) At Owner's request, Town agrees to review the Final Design Plan to determine if the plan complies with Town's Public Water Standards as adopted by the Williston Selectboard and in place at the time of this Agreement (hereinafter "Town's Public Works Standards"). Any construction/installation shall be in accord with any State or Town permits/approvals issued to Owner for such construction. Any changes in zoning bylaws or any other regulations which result in supplementary requirements for the Owner's stormwater system arising subsequent to

LLISTON, VT TOWN CLERN'S DFFICE ceived Aus 01/2016 10/23A corded in VOL: 16 FG: 251- 25 Williston Land Records TEST: Deborah Beckett, Town Clerx the Town's acceptance and approval of the Owner's Final Design Plan shall be the sole responsibility of the Town, and the Owner shall have no further obligation to revise its Final Design Plan or alter, add to or supplement its construction of any modifications, improvements or repairs as part of this Agreement.

3. <u>SCHEDULE</u>. The Owner shall complete Owner's improvements by \underline{Cxtebe} (month) of $\underline{\partial}$ $\underline{O11}$ (year) [5], cars].

4. <u>PERMITS/APPROVALS</u>. Owner shall be solely responsible for securing all required permits/approvals for the construction of Owner's improvements to the stormwater system.

5. <u>FAILURE TO CONSTRUCT</u>. If the Owner fails to construct or install Owner's improvements covered by this Agreement within the time frame established, the Town, after thirty (30) days' written notice to the Owner, may ask the State to exercise its power under the Residual Designation Authority to ensure the Owner completes the required improvements. The Owner shall be responsible for any and all costs, including fines, penalties and/or attorney's fees, that may be imposed by the State for non-compliance of this Agreement. Town shall have no obligation to take over the stormwater system and to incur any expense on account thereof unless and until: (a) the Owner has completed the Owner's improvements described in Exhibit A; (b) all applicable permits/approvals have been issued therefor; and (c) the required certification set forth in Section 6 has been received by Town.

6. <u>NOTICE OF COMPLETION OF REQUIRED REPAIRS</u>. Owner shall notify Town when all of Owner's improvements to the stormwater system have been made. Such notice shall be accompanied by the certification by a Vermont licensed engineer certifying that all required Owner improvements described in Exhibit A have been made and that the stormwater system is in compliance with the Final Design Plan and any Town or State permits and all other requirements in this Agreement.

7. <u>ACCEPTANCE BY TOWN</u>. The Town shall formally accept the stormwater system within forty-five (45) days of submission of the engineer's certification referred to in Section 6 to the Town and the submission of the legal documents executed in proper form specified in Paragraph 8. Formal acceptance of the stormwater system by the Town will be in the form of a written document as recommended by the Director of Public Works and his/her designee and signed by the Town Manager or his/her designee. As part of its formal acceptance of the stormwater system, the Town shall represent to Owner that all future repairs, maintenance, modifications and improvements related to the stormwater system shall be the sole responsibility of the Town. If the Town does not accept the stormwater system by virtue of Owner's failure to comply with this Agreement, Owner shall continue being responsible for the repair, maintenance and permit compliance of the stormwater system.

8. <u>OWNER'S EASEMENT TO TOWN</u>. Prior to Town's acceptance, Owner shall grant to Town the necessary easements and/or licenses to access the stormwater system from a public right of way in form and substance acceptable to Town's attorney and the Owner's attorney. The Town will provide model language to the Owner. The Easement Deed(s) and/or licenses shall be accompanied by a mylar prepaid at Owner's expense suitable for recording depicting the easements/licenses described in the transfer instrument and by the opinion of an attorney licensed to practice law in Vermont certifying that Owner has good and marketable title to the easement/license area free and clear of all material liens and encumbrances and has the authority to convey such easement/license.

9. <u>TOWN'S RESPONSIBILITY POST-ACCEPTANCE</u>. After Town accepts the stormwater system, it shall be solely responsible, at its own cost and expense for (a) maintaining and repairing the stormwater system in accordance with applicable law including the payment of fees (if any) arising after Town's acceptance of the system and submitting all required engineering certifications and statements of compliance, if any, that may be required by applicable law; and (b) for future upgrades to the stormwater system should they be required by applicable law.

10. INDEMNIFICATION. The Owner, its successors and/or assigns, shall indemnify and hold harmless the Town and its officers, agents and employees for any and all damages, accidents, casualties, occurrences, claims or attorney's fees arising prior to the Town's acceptance of the stormwater control facilities subject to the Agreement. In the event a claim is asserted against the Town, its officers, agents or employees, the Town shall notify Owner and the Owner shall defend at Owner's expense any suit based on such claim arising

out of any occurrence prior to the Town's acceptance of the system. (Owner shall have no obligation of indemnity on account of maintenance and repairs performed or which were required to be performed under this Agreement by Town. If any judgment or claims arising from an occurrence prior to the Town's acceptance of the stormwater system shall be allowed, the Owner shall pay all costs (including reasonable attorney's fees) and expenses in connection therewith. Notwithstanding the foregoing, Owner shall have no obligation to the Town hereunder for claims arising from the Town's gross negligence or willful misconduct.

11. <u>AGREEMENT RUNS WITH LAND</u>. This Agreement runs with the land/permit to which it applies. It is binding on the Owner and its successors and assigns and on the Town and its successors and assigns. The Owner shall not be able to transfer, assign or modify its responsibilities with respect to this Agreement without the Town's written consent. Nothing herein shall be construed to prohibit a transfer by Owner. If either party learns that an assignment, sale, conveyance, foreclosure, lease or any other event is likely to change the identity of any party, that party shall provide written notice to the other party within 48 hours of such change, and shall provide the other party with copies of all documents relating to the transfer of interest in the agreement.

12. <u>INSPECTIONS</u>. It is understood that the signature of the Owner in this Agreement constitutes permission for representatives of the Town to enter onto the private property for the purpose of completing the necessary inspections. The Owner further agrees to provide the Town with reasonable entry into locked areas, if any. Prior to the turnover of the system, the Owner will also, at its expense, provide the opportunity for the Town to discuss work on the improvements with contractors, designers and employees retained by the Owner. A final inspection schedule consistent with the Public Works Standards will be set at the pre-construction meeting, the date, time and place for which will be set by mutual agreement of the Town and the Owner.

13. <u>AS-BUILTS</u>. As-built drawings for the Owner's improvements described in Exhibit A must be provided to the Town as required by the Town's Public Works Standards.

14. <u>NOTICES</u>. Any notice or other communication to be given hereunder shall be in writing and mailed by certified mail, return receipt requested, to the address set forth below:

If to Town:	Town of Williston 7900 Williston Road Williston, VT 05495
If to Owner:	Cathedral Square Corporation
	HIA Farrell Street, Sufc 100 South Burlington, VT 05403
Copy to Attorney:	

or to such other person and address as the party entitled to such notice or communication shall have specified by notice to the other party. Any such notice or other communication shall be deemed given if mailed, when deposited in the United States mail, sent by certified mail, return receipt requested.

15. <u>WAIVER OF RULE OF CONSTRUCTION</u>. The parties waive the benefit of any rule that this Agreement is to be construed strictly against one party or the other.

16. <u>ENTIRE AGREEMENTS, APPLICABLE LAW</u>. This Agreement contains the entire agreement of the parties and no representations, inducements, promises or agreements not embodied herein shall be of any force or effect, unless the same were in writing and signed by or on behalf of the party to be charged. The captions of particular sections are inserted as a matter of convenience only and arc in no way to affect or define the scope or intent of this Agreement or any provision thereof. This Agreement shall be governed by and interpreted in accordance with the laws of the State of Vermont.

17. <u>SEVERABILITY</u>. In case one or more of the provisions contained in this Agreement shall be invalid, illegal or unenforceable in any respect under any law, the validity, legality and enforceability of the remaining provisions contained herein shall not in any way be affected or impaired thereby.

DATED this 1st day of August, 2016.

IN THE PRESENCE OF:

Witness

Town: TOWN OF WILLISTON

By: Cinton Mr. Ane

Town Manager and Duly Authorized Agent

Print Name: Richard McGvire

DATED this _____ day of ______, 20/2: E PRESENCE OF: Cathedral Sovare Corporation Owner: ______ Owner: ______ HOMEOWNER'S ASSOCIATION

IN THE PRESENCE OF:

Witness Mirandia Lescare

By: ______ http://www. Duly-appointed Agent of Owner

Print Name: James While with

END OF DOCUMENT

STORMWATER AGREEMENT

This AGREEMENT, made this 29 day of JUNE, 2016, by

and between the Town of Williston, (hereinafter referred to as "Town"), and the COMSERV Homeowner's Association, (hereinafter referred to as "Owner").

WHEREAS, the Owner has an expired Stormwater Permit benefitting Owner's stormwater discharge system; and

WHEREAS, Town has agreed to accept responsibility for maintenance and future upgrades of Owner's stormwater system providing the conditions in this Agreement have been satisfied.

NOW, THEREFORE, in consideration of the mutual promises herein set forth and other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, the parties hereto agree as follows:

1. <u>OWNER'S STORMWATER SYSTEM</u>. Owner's stormwater system covered by Discharge Permit # / - /50 and the components thereof are more particularly described in the Final Design Plan appended hereto and incorporated herein by reference as Exhibit A (hereinafter the "stormwater system").

2. <u>OWNER'S IMPROVEMENTS</u>. Owner shall take all necessary and appropriate action to improve/repair the stormwater system to the extent such system lies within its property and/or Owner has legal access thereto so that it complies with the Final Design Plan submitted and accepted by the Town as of the date of this Agreement (hereinafter "Owner's improvements"). (Prior to the execution of this Agreement, Owner shall advise Town if Owner does not have legal access to any portion of the stormwater system.) At Owner's request, Town agrees to review the Final Design Plan to determine if the plan complies with Town's Public Water Standards as adopted by the Williston Selectboard and in place at the time of this Agreement (hereinafter "Town's Public Works Standards"). Any construction/installation shall be in accord with any State or Town permits/approvals issued to Owner for such construction. Any changes in zoning bylaws or any other regulations which result in supplementary requirements for the Owner's stormwater system arising subsequent to the Town's acceptance and approval of the Owner's Final Design Plan shall be the sole responsibility of the Town, and the Owner shall have no further obligation to revise its Final Design Plan or alter, add to or supplement its construction of any modifications, improvements or repairs as part of this Agreement.

3. <u>SCHEDULE</u>. The Owner shall complete Owner's improvements by $(\text{month}) 6^2 2 / (\text{year}) [3]$ years].

4. <u>PERMITS/APPROVALS</u>. Owner shall be solely responsible for securing all required permits/approvals for the construction of Owner's improvements to the stormwater system.

5. <u>FAILURE TO CONSTRUCT</u>. If the Owner fails to construct or install Owner's improvements covered by this Agreement within the time frame established, the Town, after thirty (30) days' written notice to the Owner, may ask the State to exercise its power under the Residual Designation Authority to ensure the Owner completes the required improvements. The Owner shall be responsible for any and all costs, including fines, penalties and/or attorney's fees, that may be imposed by the State for non-compliance of this Agreement. Town shall have no obligation to take over the stormwater system and to incur any expense on account thereof unless and until: (a) the Owner has completed the Owner's improvements described in Exhibit A; (b) all applicable permits/approvals have been issued therefor; and (c) the required certification set forth in Section 6 has been received by Town.

6. <u>NOTICE OF COMPLETION OF REQUIRED REPAIRS</u>. Owner shall notify Town when all of Owner's improvements to the stormwater system have been made. Such notice shall be accompanied by the certification by a Vermont licensed engineer certifying that all required Owner improvements described in Exhibit A have been made and that the stormwater system is in compliance with the Final Design Plan and any Town or State permits and all other requirements in this Agreement.

7. <u>ACCEPTANCE BY TOWN</u>. The Town shall formally accept the stormwater system within forty-five (45) days of submission of the engineer's certification referred to in Section 6 to the Town and the submission of the legal documents executed in proper form specified in Paragraph 8. Formal acceptance of the stormwater system by the Town will be in the form of a written document as recommended by the Director of Public Works and his/her designee and signed by the Town Manager or his/her designee. As part of its formal acceptance of the stormwater system, the Town shall represent to Owner that all future repairs, maintenance, modifications and improvements related to the stormwater system shall be the sole responsibility of the Town. If the Town does not accept the stormwater system by virtue of Owner's failure to comply with this Agreement, Owner shall continue being responsible for the repair, maintenance and permit compliance of the stormwater system.

8. <u>OWNER'S EASEMENT TO TOWN</u>. Prior to Town's acceptance, Owner shall grant to Town the necessary easements and/or licenses to access the stormwater system from a public right of way in form and substance acceptable to Town's attorney and the Owner's attorney. The Town will provide model language to the Owner. The Easement Deed(s) and/or licenses shall be accompanied by a mylar prepaid at Owner's expense suitable for recording depicting the easements/licenses described in the transfer instrument and by the opinion of an attorney licensed to practice law in Vermont certifying that Owner has good and marketable title to the easement/license area free and clear of all material liens and encumbrances and has the authority to convey such easement/license.

9. <u>TOWN'S RESPONSIBILITY POST-ACCEPTANCE</u>. After Town accepts the stormwater system, it shall be solely responsible, at its own cost and expense for (a) maintaining and repairing the stormwater system in accordance with applicable law including the payment of fees (if any) arising after Town's acceptance of the system and submitting all required engineering certifications and statements of compliance, if any, that may be required by applicable law; and (b) for future upgrades to the stormwater system should they be required by applicable law.

10. <u>INDEMNIFICATION</u>. The Owner, its successors and/or assigns, shall indemnify and hold harmless the Town and its officers, agents and employees for any and all damages, accidents, casualties, occurrences, claims or attorney's fees arising prior to the Town's acceptance of the stormwater control facilities subject to the Agreement. In the event a claim is asserted against the Town, its officers, agents or employees, the Town shall notify Owner and the Owner shall defend at Owner's expense any suit based on such claim arising

out of any occurrence prior to the Town's acceptance of the system. (Owner shall have no obligation of indemnity on account of maintenance and repairs performed or which were required to be performed under this Agreement by Town. If any judgment or claims arising from an occurrence prior to the Town's acceptance of the stormwater system shall be allowed, the Owner shall pay all costs (including reasonable attorney's fees) and expenses in connection therewith. Notwithstanding the foregoing, Owner shall have no obligation to the Town hereunder for claims arising from the Town's gross negligence or willful misconduct.

11. <u>AGREEMENT RUNS WITH LAND</u>. This Agreement runs with the land/permit to which it applies. It is binding on the Owner and its successors and assigns and on the Town and its successors and assigns. The Owner shall not be able to transfer, assign or modify its responsibilities with respect to this Agreement without the Town's written consent. Nothing herein shall be construed to prohibit a transfer by Owner. If either party learns that an assignment, sale, conveyance, foreclosure, lease or any other event is likely to change the identity of any party, that party shall provide written notice to the other party within 48 hours of such change, and shall provide the other party with copies of all documents relating to the transfer of interest in the agreement.

12. <u>INSPECTIONS</u>. It is understood that the signature of the Owner in this Agreement constitutes permission for representatives of the Town to enter onto the private property for the purpose of completing the necessary inspections. The Owner further agrees to provide the Town with reasonable entry into locked areas, if any. Prior to the turnover of the system, the Owner will also, at its expense, provide the opportunity for the Town to discuss work on the improvements with contractors, designers and employees retained by the Owner. A final inspection schedule consistent with the Public Works Standards will be set at the pre-construction meeting, the date, time and place for which will be set by mutual agreement of the Town and the Owner.

13. <u>AS-BUILTS</u>. As-built drawings for the Owner's improvements described in Exhibit A must be provided to the Town as required by the Town's Public Works Standards.

14. <u>NOTICES</u>. Any notice or other communication to be given hereunder shall be in writing and mailed by certified mail, return receipt requested, to the address set forth below:

If to Town:	Town of Williston
	7900 Williston Road
	Williston, VT 05495
If to Owner:	HERGENROTHER CONST LLC
	97 BLAKSLY PD STE 103
	COLCHESTER VY, 054416
Copy to Attorney:	ROGER KONN
	HINESBURG AT

or to such other person and address as the party entitled to such notice or communication shall have specified by notice to the other party. Any such notice or other communication shall be deemed given if mailed, when deposited in the United States mail, sent by certified mail, return receipt requested.

15. <u>WAIVER OF RULE OF CONSTRUCTION</u>. The parties waive the benefit of any rule that this Agreement is to be construed strictly against one party or the other.

16. <u>ENTIRE AGREEMENTS, APPLICABLE LAW</u>. This Agreement contains the entire agreement of the parties and no representations, inducements, promises or agreements not embodied herein shall be of any force or effect, unless the same were in writing and signed by or on behalf of the party to be charged. The captions of particular sections are inserted as a matter of convenience only and are in no way to affect or define the scope or intent of this Agreement or any provision thereof. This Agreement shall be governed by and interpreted in accordance with the laws of the State of Vermont.

17. <u>SEVERABILITY</u>. In case one or more of the provisions contained in this Agreement shall be invalid, illegal or unenforceable in any respect under any law, the validity, legality and enforceability of the remaining provisions contained herein shall not in any way be affected or impaired thereby.

DATED this 1st day of August ___,20<u>16</u>.

IN THE PRESENCE OF:

Witness

Town: TOWN OF WILLISTON

ha By: C

Town Manager and Duly Authorized Agent

Print Name: Richard McGuive

DATED this 29 day of TUNE, 2016

IN THE PRESENCE OF:

Owner: COYONE RUN/ HOMEOWNER'S ASSOCIATION

By: Duly²appointed Agent of Owner

Print Name: THOMAS HERGENROTTER SR

END OF DOCIMENT

STORMWATER AGREEMENT

stormwater discharge system; and

WHEREAS, Town has agreed to accept responsibility for maintenance and future upgrades of Owner's stormwater system providing the conditions in this Agreement have been satisfied.

NOW, THEREFORE, in consideration of the mutual promises herein set forth and other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, the parties hereto agree as follows:

 <u>OWNER'S STORMWATER SYSTEM</u>. Owner's stormwater system covered by Discharge Permit # <u>2-1120</u> and the components thereof are more particularly described in the Final Design Plan appended hereto and incorporated herein by reference as Exhibit A (hereinafter the "stormwater system").

2. <u>OWNER'S IMPROVEMENTS</u>. Owner shall take all necessary and appropriate action to improve/repair the stormwater system to the extent such system lies within its property and/or Owner has tegal access thereto so that it complies with the Final Design Plan submitted and accepted by the Town as of the date of this Agreement (hereinafter "Owner's improvements"). (Prior to the execution of this Agreement, Owner shall advise Town if Owner does not have legal access to any portion of the stormwater system.) At Owner's request, Town agrees to review the Final Design Plan to determine if the plan complies with Town's Public Water Standards as adopted by the Williston Selectboard and im place at the time of this Agreement (hereinafter "Town's Public Works Standards"). Any construction/installation shall be in accord with any State or Town permits/approvals issued to Owner for such construction. Any changes in zoning bylaws or any other regulations which result in supplementary requirements for the Owner's stormwater system arising subsequent to

the Town's acceptance and approval of the Owner's Final Design Plan shall be the sole responsibility of the Town, and the Owner shall have no further obligation to revise its Final Design Plan or alter, add to or supplement its construction of any modifications, improvements or repairs as part of this Agreement.

3. <u>SCHEDULE</u>. The Owner shall complete Owner's improvements by $\frac{2}{2}$ (month) of $\frac{222}{2}$ (year) $\frac{5}{2}$ years].

4. <u>PERMITS/APPROVALS</u>. Owner shall be solely responsible for securing all required permits/approvals for the construction of Owner's improvements to the stormwater system.

5. <u>FAILURE TO CONSTRUCT</u>. If the Owner fails to construct or install Owner's improvements covered by this Agreement within the time frame established, the Town, after thirty (30) days' written notice to the Owner, may ask the State to exercise its power under the Residual Designation Authority to ensure the Owner completes the required improvements. The Owner shall be responsible for any and all costs, including fines, penalties and/or attorney's fees, that may be imposed by the State for non-compliance of this Agreement. Town shall have no obligation to take over the stormwater system and to incur any expense on account thereof unless and until: (a) the Owner has completed the Owner's improvements described in Exhibit A; (b) all applicable permits/approvats have been issued therefor; and (c) the required certification set forth in Section 6 has been received by Town.

6. <u>NOTICE OF COMPLETION OF REQUIRED REPAIRS</u>. Owner shall notify Town when all of Owner's improvements to the stormwater system have been made. Such notice shall be accompanied by the certification by a Vermont licensed engineer certifying that all required Owner improvements described in Exhibit A have been made and that the stormwater system is in compliance with the Final Design Plan and any Town or State permits and all other requirements in this Agreement.

7. <u>ACCEPTANCE BY TOWN</u>. The Town shall formally accept the stormwater system within forty-five (45) days of submission of the engineer's certification referred to in Section 6 to the Town and the submission of the legal documents executed in proper form specified in Paragraph 8. Formal acceptance of the stormwater system by the Town will be in the form of a written document as recommended by the Director of Public Works and his/her designee and signed by the Town Manager or his/her designee. As part of its formal acceptance of the stormwater system, the Town shall represent to Owner that all future repairs, maintenance, modifications and improvements related to the stormwater system shall be the sole responsibility of the Town. If the Town does not accept the stormwater system by virtue of Owner's failure to compty with this Agreement, Owner shall continue being responsible for the repair, maintenance and permit compliance of the stormwater system.

8. <u>OWNER'S EASEMENT TO TOWN</u>. Prior to Town's acceptance, Owner shall grant to Town the necessary easements and/or licenses to access the stormwater system from a public right of way in form and substance acceptable to Town's attorney and the Owner's attorney. The Town will provide model language to the Owner. The Easement Deed(s) and/or licenses shall be accompanied by a mylar prepaid at Owner's expense suitable for recording depicting the easements/licenses described in the transfer instrument and by the opinion of an attorney licensed to practice law in Vermont certifying that Owner has good and marketable title to the easement/license area free and clear of all materiat liens and encumbrances and has the authority to convey such easement/license.

9. <u>TOWN'S RESPONSIBILITY POST-ACCEPTANCE</u>. After Town accepts the stormwater system, it shall be solely responsible, at its own cost and expense for (a) maintaining and repairing the stormwater system in accordance with applicable law including the payment of fees (if any) arising after Town's acceptance of the system and submitting all required engineering certifications and statements of compliance, if any, that may be required by applicable law; and (b) for future upgrades to the stormwater system should they be required by applicable law.

10. <u>INDEMNIFICATION</u>. The Owner, its successors and/or assigns, shall indemnify and hold harmless the Town and its officers, agents and employees for any and all damages, accidents, casualties, occurrences, claims or attorney's fees arising prior to the Town's acceptance of the stormwater comrol facilities subject to the Agreement. In the event a claim is asserted against the Town, its officers, agents or employees, the Town shall notify Owner and the Owner shall defend at Owner's expense any suit based on such claim arising

out of any occurrence prior to the Town's acceptance of the system. (Owner shall have no obligation of indemnity on account of maintenance and repairs performed or which were required to be performed under this Agreement by Town. If any judgment or claims arising from an occurrence prior to the Town's acceptance of the stormwater system shall be allowed, the Owner shall pay all costs (including reasonable attorney's fees) and expenses in connection therewith. Notwithstanding the foregoing, Owner shall have no obligation to the Town bereunder for claims arising from the Town's gross negligence or willful misconduct.

11. AGREEMENT RUNS WITH LAND. This Agreement runs with the land/permit to which it applies. It is binding on the Owner and its successors and assigns and on the Town and its successors and assigns. The Owner shall not be able to transfer, assign or modify its responsibilities with respect to this Agreement without the Town's written consent. Nothing herein shall be construed to prohibit a transfer by Owner. If either party learns that an assignment, sale, conveyance, foreclosure, lease or any other event is likely to change the identity of any party, that party shall provide written notice to the other party within 48 hours of such change, and shall provide the other party with copies of all documents relating to the transfer of interest in the agreement.

12. INSPECTIONS. It is understood that the signature of the Owner in this Agreement constitutes permission for representatives of the Town to enter onto the private property for the purpose of completing the necessary inspections. The Owner further agrees to provide the Town with reasonable entry into locked areas, if any. Prior to the turnover of the system, the Owner will also, at its expense, provide the opportunity for the Town to discuss work on the improvements with contractors, designers and employees retained by the Owner. A final inspection schedule consistent with the Public Works Standards will be set at the pre-construction meeting, the date, time and place for which will be set by mutual agreement of the Town and the Owner.

 <u>AS-BUILTS</u>. As built drawings for the Owner's improvements described in Exhibit A must be provided to the Town as required by the Town's Public Works Standards.

14. <u>NOTICES</u>. Any notice or other communication to be given hereunder shall be in writing and mailed by certified mail, return receipt requested, to the address set forth below:

lf to Town:	Town of Williston 7900 Williston Road Williston, VT 05495
If to Owner:	CARON M. DAVIS 172 TAMARACE DR. W: 11:5400 05495
Copy to Attorney:	

or to such other person and address as the party entitled to such notice or communication shall have specified by notice to the other party. Any such notice or other communication shall be deemed given if mailed, when deposited in the United States mail, sent by certified mail, return receipt requested.

15. <u>WAIVER OF RULE OF CONSTRUCTION</u>. The parties waive the benefit of any rule that this Agreement is to be construed strictly against one party or the other.

16. <u>ENTIRE AGREEMENTS, APPLICABLE LAW</u>. This Agreement contains the entire agreement of the parties and no representations, inducements, promises or agreements not embodied herein shall be of any force or effect, unless the same were in writing and signed by or on behalf of the party to be charged. The captions of particular sections are inserted as a matter of convenience only and are in no way to affect or define the scope or intent of this Agreement or any provision thereof. This Agreement shall be governed by and interpreted in accordance with the laws of the State of Vermont.

17. <u>SEVERABILITY</u>. In case one or more of the provisions contained in this Agreement shall be invalid, illegal or unenforceable in any respect under any law, the validity, legality and enforceability of the remaining provisions contained herein shall not in any way be affected or impaired thereby. VOL: 14 PG: 207 000: 00082242

DATED this $2 \binom{1}{2}$ day of 2016 5 vst Zold Town: TOWN OF WILLISTON IN THE PRESENCE OF:

(m) By:

Town Manager and Duly Authorized Agent

Prine Name: Richard McGuire

DATED this _____ day of ___ IN THE PRESENCE OF: iine rl nes

(20)off hinter Owner, **G** HOMEOWNER'S ASSOCIATION

Duly-appointed Agent of Owner

ROL M. DAVIS.

Print Name

By:

STORMWATER AGREEMENT

JUL 18 2016 This AGREEMENT, made this <u>18</u> m day of <u>3019</u>, 2016, by and between the Town of Williston, (hereinafter referred to as "Town"), and the

WILLISTON PUB MENDERS DEAN Cadow Homeowner's Association, (hereinafter referred to as "Owner").

WHEREAS, the Owner has an expired Stormwater Permit benefitting Owner's stormwater discharge system; and

WHEREAS, Town has agreed to accept responsibility for maintenance and future upgrades of Owner's stormwater system providing the conditions in this Agreement have been satisfied.

NOW, THEREFORE, in consideration of the mutual promises herein set forth and other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, the parties hereto agree as follows:

1. <u>OWNER'S STORMWATER SYSTEM</u>. Owner's stormwater system covered by Discharge Permit # | - | 25% and the components thereof are more particularly described in the Final Design Plan appended hereto and incorporated herein by reference as Exhibit A (hereinafter the "stormwater system").

2. <u>OWNER'S IMPROVEMENTS</u>. Owner shall take all necessary and appropriate action to improve/repair the stormwater system to the extent such system lies within its property and/or Owner has legal access thereto so that it complies with the Final Design Plan submitted and accepted by the Town as of the date of this Agreement (hereinafter "Owner's improvements"). (Prior to the execution of this Agreement, Owner shall advise Town if Owner does not have legal access to any portion of the stormwater system.) At Owner's request, Town agrees to review the Final Design Plan to determine if the plan complies with Town's Public Water Standards as adopted by the Williston Selectboard and in place at the time of this Agreement (hereinafter "Town's Public Works Standards"). Any construction/installation shall be in accord with any State or Town permits/approvals issued to Owner for such construction. Any changes in zoning bylaws or any other regulations which result in supplementary requirements for the Owner's stormwater system arising subsequent to

ECEIVE

the Town's acceptance and approval of the Owner's Final Design Plan shall be the sole responsibility of the Town, and the Owner shall have no further obligation to revise its Final Design Plan or alter, add to or supplement its construction of any modifications, improvements or repairs as part of this Agreement.

3. <u>SCHEDULE</u>. The Owner shall complete Owner's improvements by <u>July</u> (month) of <u>202(</u> (year) [10 years].

4. <u>PERMITS/APPROVALS</u>. Owner shall be solely responsible for securing all required permits/approvals for the construction of Owner's improvements to the stormwater system.

5. <u>FAILURE TO CONSTRUCT</u>. If the Owner fails to construct or install Owner's improvements covered by this Agreement within the time frame established, the Town, after thirty (30) days' written notice to the Owner, may ask the State to exercise its power under the Residual Designation Authority to ensure the Owner completes the required improvements. The Owner shall be responsible for any and all costs, including fines, penalties and/or attorney's fees, that may be imposed by the State for non-compliance of this Agreement. Town shall have no obligation to take over the stormwater system and to incur any expense on account thereof unless and until: (a) the Owner has completed the Owner's improvements described in Exhibit A; (b) all applicable permits/approvals have been issued therefor; and (c) the required certification set forth in Section 6 has been received by Town.

6. NOTICE OF COMPLETION OF REQUIRED REPAIRS. Owner shall notify Town when all of Owner's improvements to the stormwater system have been made. Such notice shall be accompanied by the certification by a Vermont licensed engineer certifying that all required Owner improvements described in Exhibit A have been made and that the stormwater system is in compliance with the Final Design Plan and any Town or State permits and all other requirements in this Agreement.

7. <u>ACCEPTANCE BY TOWN</u>. The Town shall formally accept the stormwater system within forty-five (45) days of submission of the engineer's certification referred to in Section 6 to the Town and the submission of the legal documents executed in proper form specified in Paragraph 8. Formal acceptance of the stormwater system by the Town will be in the form of a written document as recommended by the Director of Public Works and his/her designee and signed by the Town Manager or his/her designee. As part of its formal acceptance of the stormwater system, the Town shall represent to Owner that all future repairs, maintenance, modifications and improvements related to the stormwater system shall be the sole responsibility of the Town. If the Town does not accept the stormwater system by virtue of Owner's failure to comply with this Agreement, Owner shall continue being responsible for the repair, maintenance and permit compliance of the stormwater system.

8. <u>OWNER'S EASEMENT TO TOWN</u>. Prior to Town's acceptance, Owner shall grant to Town the necessary easements and/or licenses to access the stormwater system from a public right of way in form and substance acceptable to Town's attorney and the Owner's attorney. The Town will provide model language to the Owner. The Easement Deed(s) and/or licenses shall be accompanied by a mylar prepaid at Owner's expense suitable for recording depicting the easements/licenses described in the transfer instrument and by the opinion of an attorney licensed to practice law in Vermont certifying that Owner has good and marketable title to the easement/license area free and clear of all material liens and encumbrances and has the authority to convey such easement/license.

9. <u>TOWN'S RESPONSIBILITY POST-ACCEPTANCE</u>. After Town accepts the stormwater system, it shall be solely responsible, at its own cost and expense for (a) maintaining and repairing the stormwater system in accordance with applicable law including the payment of fees (if any) arising after Town's acceptance of the system and submitting all required engineering certifications and statements of compliance, if any, that may be required by applicable law; and (b) for future upgrades to the stormwater system should they be required by applicable law.

10. INDEMNIFICATION. The Owner, its successors and/or assigns, shall indemnify and hold harmless the Town and its officers, agents and employees for any and all damages, accidents, casualties, occurrences, claims or attorney's fees arising prior to the Town's acceptance of the stormwater control facilities subject to the Agreement. In the event a claim is asserted against the Town, its officers, agents or employees, the Town shall notify Owner and the Owner shall defend at Owner's expense any suit based on such claim arising

out of any occurrence prior to the Town's acceptance of the system. (Owner shall have no obligation of indemnity on account of maintenance and repairs performed or which were required to be performed under this Agreement by Town. If any judgment or claims arising from an occurrence prior to the Town's acceptance of the stormwater system shall be allowed, the Owner shall pay all costs (including reasonable attorney's fees) and expenses in connection therewith. Notwithstanding the foregoing, Owner shall have no obligation to the Town hereunder for claims arising from the Town's gross negligence or willful misconduct.

11. <u>AGREEMENT RUNS WITH LAND</u>. This Agreement runs with the land/permit to which it applies. It is binding on the Owner and its successors and assigns and on the Town and its successors and assigns. The Owner shall not be able to transfer, assign or modify its responsibilities with respect to this Agreement without the Town's written consent. Nothing herein shall be construed to prohibit a transfer by Owner. If either party learns that an assignment, sale, conveyance, foreclosure, lease or any other event is likely to change the identity of any party, that party shall provide written notice to the other party within 48 hours of such change, and shall provide the other party with copies of all documents relating to the transfer of interest in the agreement.

12. <u>INSPECTIONS</u>. It is understood that the signature of the Owner in this Agreement constitutes permission for representatives of the Town to enter onto the private property for the purpose of completing the necessary inspections. The Owner further agrees to provide the Town with reasonable entry into locked areas, if any. Prior to the turnover of the system, the Owner will also, at its expense, provide the opportunity for the Town to discuss work on the improvements with contractors, designers and employees retained by the Owner. A final inspection schedule consistent with the Public Works Standards will be set at the pre-construction meeting, the date, time and place for which will be set by mutual agreement of the Town and the Owner.

13. <u>AS-BUILTS</u>. As-built drawings for the Owner's improvements described in Exhibit A must be provided to the Town as required by the Town's Public Works Standards.

14. <u>NOTICES</u>. Any notice or other communication to be given hereunder shall be in writing and mailed by certified mail, return receipt requested, to the address set forth below:

If to Town:	Town of Williston 7900 Williston Road Williston, VT 05495
If to Owner:	Heridage Meadow Homeowner ASSID. P.O. Bax 1614 Willigon VT 05 495
Copy to Attorney:	Kohn Rath Dannon & Lynch, LLP RO. Box 340 Hinesburg VT 05461

or to such other person and address as the party entitled to such notice or communication shall have specified by notice to the other party. Any such notice or other communication shall be deemed given if mailed, when deposited in the United States mail, sent by certified mail, return receipt requested.

15. <u>WAIVER OF RULE OF CONSTRUCTION</u>. The parties waive the benefit of any rule that this Agreement is to be construed strictly against one party or the other.

16. <u>ENTIRE AGREEMENTS, APPLICABLE LAW</u>. This Agreement contains the entire agreement of the parties and no representations, inducements, promises or agreements not embodied herein shall be of any force or effect, unless the same were in writing and signed by or on behalf of the party to be charged. The captions of particular sections are inserted as a matter of convenience only and are in no way to affect or define the scope or intent of this Agreement or any provision thereof. This Agreement shall be governed by and interpreted in accordance with the laws of the State of Vermont.

17. <u>SEVERABILITY</u>. In case one or more of the provisions contained in this Agreement shall be invalid, illegal or unenforceable in any respect under any law, the validity, legality and enforceability of the remaining provisions contained herein shall not in any way be affected or impaired thereby. DATED this 18th day of July, 2016.

IN THE PRESENCE OF: Vitness

Town: TOWN OF WILLISTON

By: C

Town Manager and Duly Authorized Agent

Print Name: Richard Mc Guive

DATED this _____ day of ______, 20___.

IN THE PRESENCE OF:

Witness

Owner: Herbege MersenHOMEOWNER'S ASSOCIATION

Duly-appointed Agent of Owner By/

Print Name: Liza Pouliot

STORMWATER AGREEMENT

29th fune, 2016, by This AGREEMENT, made this day of and between the Town of Williston, (hereinafter referred to as "Town"), and the

TAFF Farms Homeowner's Association, (hereinafter referred to as "Owner").

WHEREAS, the Owner has an expired Stormwater Permit benefitting Owner's stormwater discharge system; and

WHEREAS, Town has agreed to accept responsibility for maintenance and future upgrades of Owner's stormwater system providing the conditions in this Agreement have been satisfied.

NOW, THEREFORE, in consideration of the mutual promises herein set forth and other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, the parties hereto agree as follows:

1. <u>OWNER'S STORMWATER SYSTEM</u>. Owner's stormwater system covered by Discharge Permit # 1 - 12/7

and the components thereof are more particularly described in the Final Design Plan appended hereto and incorporated herein by reference as Exhibit A (hereinafter the "stormwater system").

2. <u>OWNER'S IMPROVEMENTS</u>. Owner shall take all necessary and appropriate action to improve/repair the stormwater system to the extent such system lies within its property and/or Owner has legal access thereto so that it complies with the Final Design Plan submitted and accepted by the Town as of the date of this Agreement (hereinafter "Owner's improvements"). (Prior to the execution of this Agreement, Owner shall advise Town if Owner does not have legal access to any portion of the stormwater system.) At Owner's request, Town agrees to review the Final Design Plan to determine if the plan complies with Town's Public Water Standards as adopted by the Williston Selectboard and in place at the time of this Agreement (hereinafter "Town's Public Works Standards"). Any construction/installation shall be in accord with any State or Town permits/approvals issued to Owner for such construction. Any changes in zoning bylaws or any other regulations which result in supplementary requirements for the Owner's stormwater system arising subsequent to the Town's acceptance and approval of the Owner's Final Design Plan shall be the sole responsibility of the Town, and the Owner shall have no further obligation to revise its Final Design Plan or alter, add to or supplement its construction of any modifications, improvements or repairs as part of this Agreement.

3. <u>SCHEDULE</u>. The Owner shall complete Owner's improvements by (month) of <u>2023</u> (year) [<u>7</u> years]. 4. <u>PERMITS/APPROVALS</u>. Owner shall be solely responsible for securing all required permits/approvals for the construction of Owner's improvements to the stormwater system.

5. <u>FAILURE TO CONSTRUCT</u>. If the Owner fails to construct or install Owner's improvements covered by this Agreement within the time frame established, the Town, after thirty (30) days' written notice to the Owner, may ask the State to exercise its power under the Residual Designation Authority to ensure the Owner completes the required improvements. The Owner shall be responsible for any and all costs, including fines, penalties and/or attorney's fees, that may be imposed by the State for non-compliance of this Agreement. Town shall have no obligation to take over the stormwater system and to incur any expense on account thereof unless and until: (a) the Owner has completed the Owner's improvements described in Exhibit A; (b) all applicable permits/approvals have been issued therefor; and (c) the required certification set forth in Section 6 has been received by Town.

6. <u>NOTICE OF COMPLETION OF REQUIRED REPAIRS</u>. Owner shall notify Town when all of Owner's improvements to the stormwater system have been made. Such notice shall be accompanied by the certification by a Vermont licensed engineer certifying that all required Owner improvements described in Exhibit A have been made and that the stormwater system is in compliance with the Final Design Plan and any Town or State permits and all other requirements in this Agreement.

7. <u>ACCEPTANCE BY TOWN</u>. The Town shall formally accept the stormwater

system within forty-five (45) days of submission of the engineer's certification referred to in Section 6 to the Town and the submission of the legal documents executed in proper form specified in Paragraph 8. Formal acceptance of the stormwater system by the Town will be in the form of a written document as recommended by the Director of Public Works and his/her designee and signed by the Town Manager or his/her designee. As part of its formal acceptance of the stormwater system, the Town shall represent to Owner that all future repairs, maintenance, modifications and improvements related to the stormwater system shall be the sole responsibility of the Town. If the Town does not accept the stormwater system by virtue of Owner's failure to comply with this Agreement, Owner shall continue being responsible for the repair, maintenance and permit compliance of the stormwater system.

8. <u>OWNER'S EASEMENT TO TOWN</u>. Prior to Town's acceptance, Owner shall grant to Town the necessary easements and/or licenses to access the stormwater system from a public right of way in form and substance acceptable to Town's attorney and the Owner's attorney. The Town will provide model language to the Owner. The Easement Deed(s) and/or licenses shall be accompanied by a mylar prepaid at Owner's expense suitable for recording depicting the easements/licenses described in the transfer instrument and by the opinion of an attorney licensed to practice law in Vermont certifying that Owner has good and marketable title to the easement/license area free and clear of all material liens and encumbrances and has the authority to convey such easement/license.

9. <u>TOWN'S RESPONSIBILITY POST-ACCEPTANCE</u>. After Town accepts the stormwater system, it shall be solely responsible, at its own cost and expense for (a) maintaining and repairing the stormwater system in accordance with applicable law including the payment of fees (if any) arising after Town's acceptance of the system and submitting all required engineering certifications and statements of compliance, if any, that may be required by applicable law; and (b) for future upgrades to the stormwater system should they be required by applicable law.

10. INDEMNIFICATION. The Owner, its successors and/or assigns, shall indemnify and hold harmless the Town and its officers, agents and employees for any and all damages, accidents, casualties, occurrences, claims or attorney's fees arising prior to the

Town's acceptance of the stormwater control facilities subject to the Agreement. In the event a claim is asserted against the Town, its officers, agents or employees, the Town shall notify Owner and the Owner shall defend at Owner's expense any suit based on such claim arising out of any occurrence prior to the Town's acceptance of the system. (Owner shall have no obligation of indemnity on account of maintenance and repairs performed or which were required to be performed under this Agreement by Town. If any judgment or claims arising from an occurrence prior to the Town's acceptance of the stormwater system shall be allowed, the Owner shall pay all costs (including reasonable attorney's fees) and expenses in connection therewith. Notwithstanding the foregoing, Owner shall have no obligation to the Town hereunder for claims arising from the Town's gross negligence or willful misconduct.

11. <u>AGREEMENT RUNS WITH LAND</u>. This Agreement runs with the land/permit to which it applies. It is binding on the Owner and its successors and assigns and on the Town and its successors and assigns. The Owner shall not be able to transfer, assign or modify its responsibilities with respect to this Agreement without the Town's written consent. Nothing herein shall be construed to prohibit a transfer by Owner. If either party learns that an assignment, sale, conveyance, foreclosure, lease or any other event is likely to change the identity of any party, that party shall provide written notice to the other party within 48 hours of such change, and shall provide the other party with copies of all documents relating to the transfer of interest in the agreement.

12. <u>INSPECTIONS</u>. It is understood that the signature of the Owner in this Agreement constitutes permission for representatives of the Town to enter onto the private property for the purpose of completing the necessary inspections. The Owner further agrees to provide the Town with reasonable entry into locked areas, if any. Prior to the turnover of the system, the Owner will also, at its expense, provide the opportunity for the Town to discuss work on the improvements with contractors, designers and employees retained by the Owner. A final inspection schedule consistent with the Public Works Standards will be set at the pre-construction meeting, the date, time and place for which will be set by mutual agreement of the Town and the Owner.

13. <u>AS-BUILTS</u>. As-built drawings for the Owner's improvements described in

Exhibit A must be provided to the Town as required by the Town's Public Works Standards.

14. <u>NOTICES</u>. Any notice or other communication to be given hereunder shall be in writing and mailed by certified mail, return receipt requested, to the address set forth below:

> Town of Williston 7900 Williston Road Williston, VT 05495

If to Town:

If to Owner:

Copy to Attorney:

or to such other person and address as the party entitled to such notice or communication shall have specified by notice to the other party. Any such notice or other communication shall be deemed given if mailed, when deposited in the United States mail, sent by certified mail, return receipt requested.

15. <u>WAIVER OF RULE OF CONSTRUCTION</u>. The parties waive the benefit of any rule that this Agreement is to be construed strictly against one party or the other.

16. <u>ENTIRE AGREEMENTS, APPLICABLE LAW</u>. This Agreement contains the entire agreement of the parties and no representations, inducements, promises or agreements not embodied herein shall be of any force or effect, unless the same were in writing and signed by or on behalf of the party to be charged. The captions of particular sections are inserted as a matter of convenience only and are in no way to affect or define the scope or intent of this Agreement or any provision thereof. This Agreement shall be governed by and interpreted in accordance with the laws of the State of Vermont.

17. <u>SEVERABILITY</u>. In case one or more of the provisions contained in this Agreement shall be invalid, illegal or unenforceable in any respect under any law, the validity, legality and enforceability of the remaining provisions contained herein shall not in any way be affected or impaired thereby.

DATED this 1^{5t} day of August, 20/6.

Town: TOWN OF WILLISTON IN THE PRESENCE OF: By: 🗸 Town Manager and Duly Authorized Agent Vitness Print Name: Richard Mc Guise day of DATED this ,20/6 luc HOMEOWNER'S IN THE PRESENCE OF: Owner: Ing lian ASSOCIATION By: Duly-appointed Agent of Owner Witness / Print Name: Php

END OF DOCUMENT

STORMWATER AGREEMENT

 \mathbb{N}

5 2016

匡 (C) 匡

WILUSTON PUBLIC WORKS DEPT. This AGREEMENT, made this day of and between the Town of Williston, (hereinafter referred to as "Town"), and the Forset Rum Homeowner's Association, (hereinafter referred to as "Owner"). WHEREAS, the Owner has an expired Stormwater Permit benefitting Owner's stormwater discharge system; and

WHEREAS, Town has agreed to accept responsibility for maintenance and future upgrades of Owner's stormwater system providing the conditions in this Agreement have been satisfied.

NOW, THEREFORE, in consideration of the mutual promises herein set forth and other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, the parties hereto agree as follows:

1. <u>OWNER'S STORMWATER SYSTEM</u>. Owner's stormwater system covered by Discharge Permit # 2 - 1 9 0 and the components thereof are more particularly described in the Final Design Plan appended hereto and incorporated herein by reference as Exhibit A (hereinafter the "stormwater system").

2. <u>OWNER'S IMPROVEMENTS</u>. Owner shall take all necessary and appropriate action to improve/repair the stormwater system to the extent such system lies within its property and/or Owner has legal access thereto so that it complies with the Final Design Plan submitted and accepted by the Town as of the date of this Agreement (hereinafter "Owner's improvements"). (Prior to the execution of this Agreement, Owner shall advise Town if Owner does not have legal access to any portion of the stormwater system.) At Owner's request, Town agrees to review the Final Design Plan to determine if the plan complies with Town's Public Water Standards as adopted by the Williston Selectboard and in place at the time of this Agreement (hereinafter "Town's Public Works Standards"). Any construction/installation shall be in accord with any State or Town permits/approvals issued to Owner for such construction. Any changes in zoning bylaws or any other regulations which result in supplementary requirements for the Owner's stormwater system arising subsequent to the Town's acceptance and approval of the Owner's Final Design Plan shall be the sole responsibility of the Town, and the Owner shall have no further obligation to revise its Final Design Plan or alter, add to or supplement its construction of any modifications, improvements or repairs as part of this Agreement.

3. <u>SCHEDULE</u>. The Owner shall complete Owner's improvements by December (month) of <u>2024</u> (year) [**3** years].

4. <u>PERMITS/APPROVALS</u>. Owner shall be solely responsible for securing all required permits/approvals for the construction of Owner's improvements to the stormwater system.

5. <u>FAILURE TO CONSTRUCT</u>. If the Owner fails to construct or install Owner's improvements covered by this Agreement within the time frame established, the Town, after thirty (30) days' written notice to the Owner, may ask the State to exercise its power under the Residual Designation Authority to ensure the Owner completes the required improvements. The Owner shall be responsible for any and all costs, including fines, penalties and/or attorney's fees, that may be imposed by the State for non-compliance of this Agreement. Town shall have no obligation to take over the stormwater system and to incur any expense on account thereof unless and until: (a) the Owner has completed the Owner's improvements described in Exhibit A; (b) all applicable permits/approvals have been issued therefor; and (c) the required certification set forth in Section 6 has been received by Town.

6. <u>NOTICE OF COMPLETION OF REQUIRED REPAIRS</u>. Owner shall notify Town when all of Owner's improvements to the stormwater system have been made. Such notice shall be accompanied by the certification by a Vermont licensed engineer certifying that all required Owner improvements described in Exhibit A have been made and that the stormwater system is in compliance with the Final Design Plan and any Town or State permits and all other requirements in this Agreement.

7. <u>ACCEPTANCE BY TOWN</u>. The Town shall formally accept the stormwater system within forty-five (45) days of submission of the engineer's certification referred to in Section 6 to the Town and the submission of the legal documents executed in proper form specified in Paragraph 8. Formal acceptance of the stormwater system by the Town will be in

the form of a written document as recommended by the Director of Public Works and his/her designee and signed by the Town Manager or his/her designee. As part of its formal acceptance of the stormwater system, the Town shall represent to Owner that all future repairs, maintenance, modifications and improvements related to the stormwater system shall be the sole responsibility of the Town. If the Town does not accept the stormwater system by virtue of Owner's failure to comply with this Agreement, Owner shall continue being responsible for the repair, maintenance and permit compliance of the stormwater system.

8. <u>OWNER'S EASEMENT TO TOWN</u>. Prior to Town's acceptance, Owner shall grant to Town the necessary easements and/or licenses to access the stormwater system from a public right of way in form and substance acceptable to Town's attorney and the Owner's attorney. The Town will provide model language to the Owner. The Easement Deed(s) and/or licenses shall be accompanied by a mylar prepaid at Owner's expense suitable for recording depicting the easements/licenses described in the transfer instrument and by the opinion of an attorney licensed to practice law in Vermont certifying that Owner has good and marketable title to the easement/license area free and clear of all material liens and encumbrances and has the authority to convey such easement/license.

9. <u>TOWN'S RESPONSIBILITY POST-ACCEPTANCE</u>. After Town accepts the stormwater system, it shall be solely responsible, at its own cost and expense for (a) maintaining and repairing the stormwater system in accordance with applicable law including the payment of fees (if any) arising after Town's acceptance of the system and submitting all required engineering certifications and statements of compliance, if any, that may be required by applicable law; and (b) for future upgrades to the stormwater system should they be required by applicable law.

10. INDEMNIFICATION. The Owner, its successors and/or assigns, shall indemnify and hold harmless the Town and its officers, agents and employees for any and all damages, accidents, casualties, occurrences, claims or attorney's fees arising prior to the Town's acceptance of the stormwater control facilities subject to the Agreement. In the event a claim is asserted against the Town, its officers, agents or employees, the Town shall notify Owner and the Owner shall defend at Owner's expense any suit based on such claim arising out of any occurrence prior to the Town's acceptance of the system. (Owner shall have no obligation of indemnity on account of maintenance and repairs performed or which were required to be performed under this Agreement by Town. If any judgment or claims arising from an occurrence prior to the Town's acceptance of the stormwater system shall be allowed, the Owner shall pay all costs (including reasonable attorney's fees) and expenses in connection therewith. Notwithstanding the foregoing, Owner shall have no obligation to the Town hereunder for claims arising from the Town's gross negligence or willful misconduct.

11. <u>AGREEMENT RUNS WITH LAND</u>. This Agreement runs with the land/permit to which it applies. It is binding on the Owner and its successors and assigns and on the Town and its successors and assigns. The Owner shall not be able to transfer, assign or modify its responsibilities with respect to this Agreement without the Town's written consent. Nothing herein shall be construed to prohibit a transfer by Owner. If either party learns that an assignment, sale, conveyance, foreclosure, lease or any other event is likely to change the identity of any party, that party shall provide written notice to the other party within 48 hours of such change, and shall provide the other party with copies of all documents relating to the transfer of interest in the agreement.

12. <u>INSPECTIONS</u>. It is understood that the signature of the Owner in this Agreement constitutes permission for representatives of the Town to enter onto the private property for the purpose of completing the necessary inspections. The Owner further agrees to provide the Town with reasonable entry into locked areas, if any. Prior to the turnover of the system, the Owner will also, at its expense, provide the opportunity for the Town to discuss work on the improvements with contractors, designers and employees retained by the Owner. A final inspection schedule consistent with the Public Works Standards will be set at the pre-construction meeting, the date, time and place for which will be set by mutual agreement of the Town and the Owner.

13. <u>AS-BUILTS</u>. As-built drawings for the Owner's improvements described in Exhibit A must be provided to the Town as required by the Town's Public Works Standards.

14. <u>NOTICES</u>. Any notice or other communication to be given hereunder shall be in writing and mailed by certified mail, return receipt requested, to the address set forth below:

If to Town: Town of Williston 7900 Williston Road Williston, VT 05495 If to Ome Landan Kun Doceatte moliminu trope Men $\frac{1}{2}$ XX Copy to Atton (see below

or to such other person and address as the party entitled to such notice or communication shall have specified by notice to the other party. Any such notice or other communication shall be deemed given if mailed, when deposited in the United States mail, sent by certified mail, return receipt requested.

15. <u>WAIVER OF RULE OF CONSTRUCTION</u>. The parties waive the benefit of any rule that this Agreement is to be construed strictly against one party or the other.

16. <u>ENTIRE AGREEMENTS, APPLICABLE LAW</u>. This Agreement contains the entire agreement of the parties and no representations, inducements, promises or agreements not embodied herein shall be of any force or effect, unless the same were in writing and signed by or on behalf of the party to be charged. The captions of particular sections are inserted as a matter of convenience only and are in no way to affect or define the scope or intent of this Agreement or any provision thereof. This Agreement shall be governed by and interpreted in accordance with the laws of the State of Vermont.

17. <u>SEVERABILITY</u>. In case one or more of the provisions contained in this Agreement shall be invalid, illegal or unenforceable in any respect under any law, the validity, legality and enforceability of the remaining provisions contained herein shall not in any way be affected or impaired thereby.

XX Copy to Attorney: (arl H. Lismanesg. 5 BA Pine ST, Suite 5 Burlington, VT 05401 864-5756

DATED this 12t day of <u>August</u>, 2016. IN THE PRESENCE OF: Town: TOWN OF WILLISTON By: Call Ma Chro Town Manager and Duly Authorized Agent Witness Print Name: Richard Mc Grire DATED this Att day of ______, 2016. E PRESENCE OF: ________ HOMEOWNER'S ASSOCIATION IN THE PRESENCE OF: By: Jatrucia M Juffer Duly-appointed Agent of Owner Witness Print Name: PATRICIA M. GRIFFIN. Forest Run Homeowner's association Date: 10/29/16 By: <u>Elexpeth Merriel</u> Duey appointed agenta Ourner Print Name: Elizabeth Merrill Meader Run Condominium Witne

END OF DUCUMENT

STORMWATER AGREEMENT

This AGREEMENT, made this 28% day of June, 2016, by and between the Town of Williston, (hereinafter referred to as "Town"), and the <u>Meadowhidge</u> Homeowner's Association, (hereinafter referred to as "Owner").

WHEREAS, the Owner has an expired Stormwater Permit benefitting Owner's stormwater discharge system; and

WHEREAS, Town has agreed to accept responsibility for maintenance and future upgrades of Owner's stormwater system providing the conditions in this Agreement have been satisfied.

NOW, THEREFORE, in consideration of the mutual promises herein set forth and other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, the parties hereto agree as follows:

1. <u>OWNER'S STORMWATER SYSTEM</u>. Owner's stormwater system covered by Discharge Permit $\# (2 - 1/6)^{-7}$ and the components thereof are more particularly described in the Final Design Plan appended hereto and incorporated herein by reference as Exhibit A (hereinafter the "stormwater system").

2. <u>OWNER'S IMPROVEMENTS</u>. Owner shall take all necessary and appropriate action to improve/repair the stormwater system to the extent such system lies within its property and/or Owner has legal access thereto so that it complies with the Final Design Plan submitted and accepted by the Town as of the date of this Agreement (hereinafter "Owner's improvements"). (Prior to the execution of this Agreement, Owner shall advise Town if Owner does not have legal access to any portion of the stormwater system.) At Owner's request, Town agrees to review the Final Design Plan to determine if the plan complies with Town's Public Water Standards as adopted by the Williston Selectboard and in place at the time of this Agreement (hereinafter "Town's Public Works Standards"). Any construction/installation shall be in accord with any State or Town permits/approvals issued to Owner for such construction. Any changes in zoning bylaws or any other regulations which result in supplementary requirements for the Owner's stormwater system arising subsequent to the Town's acceptance and approval of the Owner's Final Design Plan shall be the sole responsibility of the Town, and the Owner shall have no further obligation to revise its Final Design Plan or alter, add to or supplement its construction of any modifications, improvements or repairs as part of this Agreement.

3. <u>SCHEDULE</u>. The Owner shall complete Owner's improvements by <u>October</u> (month) of <u>2026</u> (year) [<u>10</u> years].

4. <u>PERMITS/APPROVALS</u>. Owner shall be solely responsible for securing all required permits/approvals for the construction of Owner's improvements to the stormwater system.

5. <u>FAILURE TO CONSTRUCT</u>. If the Owner fails to construct or install Owner's improvements covered by this Agreement within the time frame established, the Town, after thirty (30) days' written notice to the Owner, may ask the State to exercise its power under the Residual Designation Authority to ensure the Owner completes the required improvements. The Owner shall be responsible for any and all costs, including fines, penalties and/or attorney's fees, that may be imposed by the State for non-compliance of this Agreement. Town shall have no obligation to take over the stormwater system and to incur any expense on account thereof unless and until: (a) the Owner has completed the Owner's improvements described in Exhibit A; (b) all applicable permits/approvals have been issued therefor; and (c) the required certification set forth in Section 6 has been received by Town.

6. <u>NOTICE OF COMPLETION OF REQUIRED REPAIRS</u>. Owner shall notify Town when all of Owner's improvements to the stormwater system have been made. Such notice shall be accompanied by the certification by a Vermont licensed engineer certifying that all required Owner improvements described in Exhibit A have been made and that the stormwater system is in compliance with the Final Design Plan and any Town or State permits and all other requirements in this Agreement.

7. <u>ACCEPTANCE BY TOWN</u>. The Town shall formally accept the stormwater system within forty-five (45) days of submission of the engineer's certification referred to in Section 6 to the Town and the submission of the legal documents executed in proper form specified in Paragraph 8. Formal acceptance of the stormwater system by the Town will be in the form of a written document as recommended by the Director of Public Works and his/her designee and signed by the Town Manager or his/her designee. As part of its formal acceptance of the stormwater system, the Town shall represent to Owner that all future repairs, maintenance, modifications and improvements related to the stormwater system shall be the sole responsibility of the Town. If the Town does not accept the stormwater system by virtue of Owner's failure to comply with this Agreement, Owner shall continue being responsible for the repair, maintenance and permit compliance of the stormwater system.

8. <u>OWNER'S EASEMENT TO TOWN</u>. Prior to Town's acceptance, Owner shall grant to Town the necessary easements and/or licenses to access the stormwater system from a public right of way in form and substance acceptable to Town's attorney and the Owner's attorney. The Town will provide model language to the Owner. The Easement Deed(s) and/or licenses shall be accompanied by a mylar prepaid at Owner's expense suitable for recording depicting the easements/licenses described in the transfer instrument and by the opinion of an attorney licensed to practice law in Vermont certifying that Owner has good and marketable title to the easement/license area free and clear of all material liens and encumbrances and has the authority to convey such easement/license,

9. <u>TOWN'S RESPONSIBILITY POST-ACCEPTANCE</u>. After Town accepts the stormwater system, it shall be solely responsible, at its own cost and expense for (a) maintaining and repairing the stormwater system in accordance with applicable law including the payment of fees (if any) arising after Town's acceptance of the system and submitting all required engineering certifications and statements of compliance, if any, that may be required by applicable law; and (b) for future upgrades to the stormwater system should they be required by applicable law.

10. INDEMNIFICATION. The Owner, its successors and/or assigns, shall indemnify and hold harmless the Town and its officers, agents and employees for any and all damages, accidents, casualties, occurrences, claims or attorney's fees arising prior to the Town's acceptance of the stormwater control facilities subject to the Agreement. In the event a claim is asserted against the Town, its officers, agents or employees, the Town shall notify Owner and the Owner shall defend at Owner's expense any suit based on such claim arising

out of any occurrence prior to the Town's acceptance of the system. (Owner shall have no obligation of indemnity on account of maintenance and repairs performed or which were required to be performed under this Agreement by Town. If any judgment or claims arising from an occurrence prior to the Town's acceptance of the stormwater system shall be allowed, the Owner shall pay all costs (including reasonable attorney's fees) and expenses in connection therewith. Notwithstanding the foregoing, Owner shall have no obligation to the Town hereunder for claims arising from the Town's gross negligence or willful misconduct.

11. <u>AGREEMENT RUNS WITH LAND</u>. This Agreement runs with the land/permit to which it applies. It is binding on the Owner and its successors and assigns and on the Town and its successors and assigns. The Owner shall not be able to transfer, assign or modify its responsibilities with respect to this Agreement without the Town's written consent. Nothing herein shall be construed to prohibit a transfer by Owner. If either party learns that an assignment, sale, conveyance, foreclosure, lease or any other event is likely to change the identity of any party, that party shall provide written notice to the other party within 48 hours of such change, and shall provide the other party with copies of all documents relating to the transfer of interest in the agreement.

12. <u>INSPECTIONS</u>. It is understood that the signature of the Owner in this Agreement constitutes permission for representatives of the Town to enter onto the private property for the purpose of completing the necessary inspections. The Owner further agrees to provide the Town with reasonable entry into locked areas, if any. Prior to the turnover of the system, the Owner will also, at its expense, provide the opportunity for the Town to discuss work on the improvements with contractors, designers and employees retained by the Owner. A final inspection schedule consistent with the Public Works Standards will be set at the pre-construction meeting, the date, time and place for which will be set by mutual agreement of the Town and the Owner.

13. <u>AS-BUILTS</u>. As-built drawings for the Owner's improvements described in Exhibit A must be provided to the Town as required by the Town's Public Works Standards.

(1, 1, 2, 3) = (1, 2, 3) + (1, 3, 3) + (

14. <u>NOTICES</u>. Any notice or other communication to be given hereunder shall be in writing and mailed by certified mail, return receipt requested, to the address set forth below:

If to Town:	Town of Williston
	7900 Williston Road
	Williston, VT 05495
If to Owner:	Arthur Secane
	83 Plateau Ril
	Williston, VT 05495
Copy to Attorney:	Paolo Weiser Yo Primmer Piper
	100 Fast State ST.
	Montpelier, VT 05601

or to such other person and address as the party entitled to such notice or communication shall have specified by notice to the other party. Any such notice or other communication shall be deemed given if mailed, when deposited in the United States mail, sent by certified mail, return receipt requested.

15. <u>WAIVER OF RULE OF CONSTRUCTION</u>. The parties waive the benefit of any rule that this Agreement is to be construed strictly against one party or the other.

16. ENTIRE AGREEMENTS, APPLICABLE LAW. This Agreement contains the entire agreement of the parties and no representations, inducements, promises or agreements not embodied herein shall be of any force or effect, unless the same were in writing and signed by or on behalf of the party to be charged. The captions of particular sections are inserted as a matter of convenience only and are in no way to affect or define the scope or intent of this Agreement or any provision thereof. This Agreement shall be governed by and interpreted in accordance with the laws of the State of Vermont.

17. <u>SEVERABILITY</u>. In case one or more of the provisions contained in this Agreement shall be invalid, illegal or unenforceable in any respect under any law, the validity, legality and enforceability of the remaining provisions contained herein shall not in any way be affected or impaired thereby.

DATED this 1St day of August, 20/6.

IN THE PRESENCE OF:

Town: TOWN OF WILLISTON

By:

Town Manager and Duly Authorized Agent

Print Name: Richard McGuire

DATED this 28 day of June, 2016.

IN THE PRESENCE OF:

Witness

Owner: Meadow Jidga HOMEOWNER'S ASSOCIATION

By: Duly-appointed Agent of Owner

Print Name: Arthup Sevane

STORMWATER AGREEMENT

This AGREEMENT, made this 19^{46} day of Aughst, 2016, by and between the Town of Williston, (hereinafter referred to as "Town"), and the <u>Old Stage Estates</u> Homeowner's Association, (hereinafter referred to as "Owner").

WHEREAS, the Owner has an expired Stormwater Permit benefitting Owner's stormwater discharge system; and

WHEREAS, Town has agreed to accept responsibility for maintenance and future upgrades of Owner's stormwater system providing the conditions in this Agreement have been satisfied.

NOW, THEREFORE, in consideration of the mutual promises herein set forth and other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, the parties hereto agree as follows:

1. <u>OWNER'S STORMWATER SYSTEM</u>. Owner's stormwater system covered by Discharge Permit # 2 - 1/4/6 and the components thereof are more particularly described in the Final Design Plan appended hereto and incorporated herein by reference as Exhibit A (hereinafter the "stormwater system").

2. <u>OWNER'S IMPROVEMENTS</u>. Owner shall take all necessary and appropriate action to improve/repair the stormwater system to the extent such system lies within its property and/or Owner has legal access thereto so that it complies with the Final Design Plan submitted and accepted by the Town as of the date of this Agreement (hereinafter "Owner's improvements"). (Prior to the execution of this Agreement, Owner shall advise Town if Owner does not have legal access to any portion of the stormwater system.) At Owner's request, Town agrees to review the Final Design Plan to determine if the plan complies with Town's Public Water Standards as adopted by the Williston Selectboard and in place at the time of this Agreement (hereinafter "Town's Public Works Standards"). Any construction/installation shall be in accord with any State or Town permits/approvals issued to Owner for such construction. Any changes in zoning bylaws or any other regulations which result in supplementary requirements for the Owner's stormwater system arising subsequent to the Town's acceptance and approval of the Owner's Final Design Plan shall be the sole responsibility of the Town, and the Owner shall have no further obligation to revise its Final Design Plan or alter, add to or supplement its construction of any modifications, improvements or repairs as part of this Agreement.

3. <u>SCHEDULE</u>. The Owner shall complete Owner's improvements by <u>August</u> (month) of <u>2026</u> (year) [<u>10</u> years].

4. <u>PERMITS/APPROVALS</u>. Owner shall be solely responsible for securing all required permits/approvals for the construction of Owner's improvements to the stormwater system.

5. <u>FAILURE TO CONSTRUCT</u>. If the Owner fails to construct or install Owner's improvements covered by this Agreement within the time frame established, the Town, after thirty (30) days' written notice to the Owner, may ask the State to exercise its power under the Residual Designation Authority to ensure the Owner completes the required improvements. The Owner shall be responsible for any and all costs, including fines, penalties and/or attorney's fees, that may be imposed by the State for non-compliance of this Agreement. Town shall have no obligation to take over the stormwater system and to incur any expense on account thereof unless and until: (a) the Owner has completed the Owner's improvements described in Exhibit A; (b) all applicable permits/approvals have been issued therefor; and (c) the required certification set forth in Section 6 has been received by Town.

6. NOTICE OF COMPLETION OF REQUIRED REPAIRS. Owner shall notify Town when all of Owner's improvements to the stormwater system have been made. Such notice shall be accompanied by the certification by a Vermont licensed engineer certifying that all required Owner improvements described in Exhibit A have been made and that the stormwater system is in compliance with the Final Design Plan and any Town or State permits and all other requirements in this Agreement.

7. <u>ACCEPTANCE BY TOWN</u>. The Town shall formally accept the stormwater system within forty-five (45) days of submission of the engineer's certification referred to in Section 6 to the Town and the submission of the legal documents executed in proper form specified in Paragraph 8. Formal acceptance of the stormwater system by the Town will be in the form of a written document as recommended by the Director of Public Works and his/her designee and signed by the Town Manager or his/her designee. As part of its formal acceptance of the stormwater system, the Town shall represent to Owner that all future repairs, maintenance, modifications and improvements related to the stormwater system shall be the sole responsibility of the Town. If the Town does not accept the stormwater system by virtue of Owner's failure to comply with this Agreement, Owner shall continue being responsible for the repair, maintenance and permit compliance of the stormwater system.

8. <u>OWNER'S EASEMENT TO TOWN</u>. Prior to Town's acceptance, Owner shall grant to Town the necessary easements and/or licenses to access the stormwater system from a public right of way in form and substance acceptable to Town's attorney and the Owner's attorney. The Town will provide model language to the Owner. The Easement Deed(s) and/or licenses shall be accompanied by a mylar prepaid at Owner's expense suitable for recording depicting the easements/licenses described in the transfer instrument and by the opinion of an attorney licensed to practice law in Vermont certifying that Owner has good and marketable title to the easement/license area free and clear of all material liens and encumbrances and has the authority to convey such easement/license.

9. <u>TOWN'S RESPONSIBILITY POST-ACCEPTANCE</u>. After Town accepts the stormwater system, it shall be solely responsible, at its own cost and expense for (a) maintaining and repairing the stormwater system in accordance with applicable law including the payment of fees (if any) arising after Town's acceptance of the system and submitting all required engineering certifications and statements of compliance, if any, that may be required by applicable law; and (b) for future upgrades to the stormwater system should they be required by applicable law.

10. INDEMNIFICATION. The Owner, its successors and/or assigns, shall indemnify and hold harmless the Town and its officers, agents and employees for any and all damages, accidents, casualties, occurrences, claims or attorney's fees arising prior to the Town's acceptance of the stormwater control facilities subject to the Agreement. In the event a claim is asserted against the Town, its officers, agents or employees, the Town shall notify Owner and the Owner shall defend at Owner's expense any suit based on such claim arising

out of any occurrence prior to the Town's acceptance of the system. (Owner shall have no obligation of indemnity on account of maintenance and repairs performed or which were required to be performed under this Agreement by Town. If any judgment or claims arising from an occurrence prior to the Town's acceptance of the stormwater system shall be allowed, the Owner shall pay all costs (including reasonable attorney's fees) and expenses in connection therewith. Notwithstanding the foregoing, Owner shall have no obligation to the Town hereunder for claims arising from the Town's gross negligence or willful misconduct.

11. <u>AGREEMENT RUNS WITH LAND</u>. This Agreement runs with the land/permit to which it applies. It is binding on the Owner and its successors and assigns and on the Town and its successors and assigns. The Owner shall not be able to transfer, assign or modify its responsibilities with respect to this Agreement without the Town's written consent. Nothing herein shall be construed to prohibit a transfer by Owner. If either party learns that an assignment, sale, conveyance, foreclosure, lease or any other event is likely to change the identity of any party, that party shall provide written notice to the other party within 48 hours of such change, and shall provide the other party with copies of all documents relating to the transfer of interest in the agreement.

12. <u>INSPECTIONS</u>. It is understood that the signature of the Owner in this Agreement constitutes permission for representatives of the Town to enter onto the private property for the purpose of completing the necessary inspections. The Owner further agrees to provide the Town with reasonable entry into locked areas, if any. Prior to the turnover of the system, the Owner will also, at its expense, provide the opportunity for the Town to discuss work on the improvements with contractors, designers and employees retained by the Owner. A final inspection schedule consistent with the Public Works Standards will be set at the pre-construction meeting, the date, time and place for which will be set by mutual agreement of the Town and the Owner.

13. <u>AS-BUILTS</u>. As-built drawings for the Owner's improvements described in Exhibit A must be provided to the Town as required by the Town's Public Works Standards.

14. <u>NOTICES</u>. Any notice or other communication to be given hereunder shall be in writing and mailed by certified mail, return receipt requested, to the address set forth below:

If to Town:	Town of Williston 7900 Williston Road
	Williston, VT 05495
If to Owner:	DSEHA
	c/o Myra Boenke
	348 Southfield Drive
	Williston, VT 05495
Copy to Attorney:	Kohn Roth Danon + Lynch, LLP
	atth: Robert Scharf
	P.D. Box 340
	Hines blug. VT 05461

or to such other person and address as the party entitled to such notice or communication shall have specified by notice to the other party. Any such notice or other communication shall be deemed given if mailed, when deposited in the United States mail, sent by certified mail, return receipt requested.

15. <u>WAIVER OF RULE OF CONSTRUCTION</u>. The parties waive the benefit of any rule that this Agreement is to be construed strictly against one party or the other.

16. <u>ENTIRE AGREEMENTS, APPLICABLE LAW</u>. This Agreement contains the entire agreement of the parties and no representations, inducements, promises or agreements not embodied herein shall be of any force or effect, unless the same were in writing and signed by or on behalf of the party to be charged. The captions of particular sections are inserted as a matter of convenience only and are in no way to affect or define the scope or intent of this Agreement or any provision thereof. This Agreement shall be governed by and interpreted in accordance with the laws of the State of Vermont.

17. <u>SEVERABILITY</u>. In case one or more of the provisions contained in this Agreement shall be invalid, illegal or unenforceable in any respect under any law, the validity, legality and enforceability of the remaining provisions contained herein shall not in any way be affected or impaired thereby.

DATED this <u>19</u> day of <u>August</u>, 20<u>16</u>. Zath <u>August</u> 2016 E PRESÉNCE OF: Town: TOWN OF WILLISTON

IN THE PRESENCE OF:

Witness

By:

Town Manager and Duly Authorized Agent

Print Name: Richard Mc Guire

DATED this _____ day of ______, 20_

IN THE PRESENCE OF:

Witness

Owner: <u>Old Stage Éskit</u>HOMEOWNER'S ASSOCIATION

By: Myra Roh Duly-appointed Agent of Owner

Print Name: Myra Boenke President, OSEHA Board

DL: 16 PG: 233 DOC: 0006;

h.	ECEIVE	
	JUN 202016	U
WILL	ISTON PUBLIC WORKS D	EPT.

STORMWATER AGREEMENT

This AGREEMENT, made this 16th day of June, 2016, by

and between the Town of Williston, (hereinafter referred to as "Town"), and the <u>Pinecrest Village</u> Homeowner's Association, (hereinafter referred to as "Owner").

WHEREAS, the Owner has an expired Stormwater Permit benefitting Owner's stormwater discharge system; and

WHEREAS, Town has agreed to accept responsibility for maintenance and future upgrades of Owner's stormwater system providing the conditions in this Agreement have been satisfied.

NOW, THEREFORE, in consideration of the mutual promises herein set forth and other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, the parties hereto agree as follows:

1. <u>OWNER'S STORMWATER SYSTEM</u>. Owner's stormwater system covered by Discharge Permit # 1 - 1047 and the components thereof are more particularly described in the Final Design Plan appended hereto and incorporated herein by reference as Exhibit A (hereinafter the "stormwater system").

2. <u>OWNER'S IMPROVEMENTS</u>. Owner shall take all necessary and appropriate action to improve/repair the stormwater system to the extent such system lies within its property and/or Owner has legal access thereto so that it complies with the Final Design Plan submitted and accepted by the Town as of the date of this Agreement (hereinafter "Owner's improvements"). (Prior to the execution of this Agreement, Owner shall advise Town if Owner does not have legal access to any portion of the stormwater system.) At Owner's request, Town agrees to review the Final Design Plan to determine if the plan complies with Town's Public Water Standards as adopted by the Williston Selectboard and in place at the time of this Agreement (hereinafter "Town's Public Works Standards"). Any construction/installation shall be in accord with any State or Town permits/approvals issued to Owner for such construction. Any changes in zoning bylaws or any other regulations which result in supplementary requirements for the Owner's stormwater system arising subsequent to

IILLISTON, YT TOWN CLERK'S DFFICE beceived Aus 01,2016 10:23A becorded in VOL: 16 PG: 233- 238 M Williston Land Records MTEST: Deborah Beckett, Town Clerk the Town's acceptance and approval of the Owner's Final Design Plan shall be the sole responsibility of the Town, and the Owner shall have no further obligation to revise its Final Design Plan or alter, add to or supplement its construction of any modifications, improvements or repairs as part of this Agreement.

<u>SCHEDULE</u>. The Owner shall complete Owner's improvements by
 <u>N/A</u> (month) of _____ (year) [____ years].

4. <u>PERMITS/APPROVALS</u>. Owner shall be solely responsible for securing all required permits/approvals for the construction of Owner's improvements to the stormwater system.

5. <u>FAILURE TO CONSTRUCT</u>. If the Owner fails to construct or install Owner's improvements covered by this Agreement within the time frame established, the Town, after thirty (30) days' written notice to the Owner, may ask the State to exercise its power under the Residual Designation Authority to ensure the Owner completes the required improvements. The Owner shall be responsible for any and all costs, including fines, penalties and/or attorney's fees, that may be imposed by the State for non-compliance of this Agreement. Town shall have no obligation to take over the stormwater system and to incur any expense on account thereof unless and until: (a) the Owner has completed the Owner's improvements described in Exhibit A; (b) all applicable permits/approvals have been issued therefor; and (c) the required certification set forth in Section 6 has been received by Town.

6. <u>NOTICE OF COMPLETION OF REQUIRED REPAIRS</u>. Owner shall notify Town when all of Owner's improvements to the stormwater system have been made. Such notice shall be accompanied by the certification by a Vermont licensed engineer certifying that all required Owner improvements described in Exhibit A have been made and that the stormwater system is in compliance with the Final Design Plan and any Town or State permits and all other requirements in this Agreement.

7. <u>ACCEPTANCE BY TOWN</u>. The Town shall formally accept the stormwater system within forty-five (45) days of submission of the engineer's certification referred to in Section 6 to the Town and the submission of the legal documents executed in proper form specified in Paragraph 8. Formal acceptance of the stormwater system by the Town will be in the form of a written document as recommended by the Director of Public Works and his/her designee and signed by the Town Manager or his/her designee. As part of its formal acceptance of the stormwater system, the Town shall represent to Owner that all future repairs, maintenance, modifications and improvements related to the stormwater system shall be the sole responsibility of the Town. If the Town does not accept the stormwater system by virtue of Owner's failure to comply with this Agreement, Owner shall continue being responsible for the repair, maintenance and permit compliance of the stormwater system.

8. <u>OWNER'S EASEMENT TO TOWN</u>. Prior to Town's acceptance, Owner shall grant to Town the necessary easements and/or licenses to access the stormwater system from a public right of way in form and substance acceptable to Town's attorney and the Owner's attorney. The Town will provide model language to the Owner. The Easement Deed(s) and/or licenses shall be accompanied by a mylar prepaid at Owner's expense suitable for recording depicting the easements/licenses described in the transfer instrument and by the opinion of an attorney licensed to practice law in Vermont certifying that Owner has good and marketable title to the easement/license area free and clear of all material liens and encumbrances and has the authority to convey such easement/license.

9. <u>TOWN'S RESPONSIBILITY POST-ACCEPTANCE</u>. After Town accepts the stormwater system, it shall be solely responsible, at its own cost and expense for (a) maintaining and repairing the stormwater system in accordance with applicable law including the payment of fees (if any) arising after Town's acceptance of the system and submitting all required engineering certifications and statements of compliance, if any, that may be required by applicable law; and (b) for future upgrades to the stormwater system should they be required by applicable law.

10. INDEMNIFICATION. The Owner, its successors and/or assigns, shall indemnify and hold harmless the Town and its officers, agents and employees for any and all damages, accidents, casualties, occurrences, claims or attorney's fees arising prior to the Town's acceptance of the stormwater control facilities subject to the Agreement. In the event a claim is asserted against the Town, its officers, agents or employees, the Town shall notify Owner and the Owner shall defend at Owner's expense any suit based on such claim arising out of any occurrence prior to the Town's acceptance of the system. (Owner shall have no obligation of indemnity on account of maintenance and repairs performed or which were required to be performed under this Agreement by Town. If any judgment or claims arising from an occurrence prior to the Town's acceptance of the stormwater system shall be allowed, the Owner shall pay all costs (including reasonable attorney's fees) and expenses in connection therewith. Notwithstanding the foregoing, Owner shall have no obligation to the Town hereunder for claims arising from the Town's gross negligence or willful misconduct.

11. <u>AGREEMENT RUNS WITH LAND</u>. This Agreement runs with the land/permit to which it applies. It is binding on the Owner and its successors and assigns and on the Town and its successors and assigns. The Owner shall not be able to transfer, assign or modify its responsibilities with respect to this Agreement without the Town's written consent. Nothing herein shall be construed to prohibit a transfer by Owner. If either party learns that an assignment, sale, conveyance, foreclosure, lease or any other event is likely to change the identity of any party, that party shall provide written notice to the other party within 48 hours of such change, and shall provide the other party with copies of all documents relating to the transfer of interest in the agreement.

12. <u>INSPECTIONS</u>. It is understood that the signature of the Owner in this Agreement constitutes permission for representatives of the Town to enter onto the private property for the purpose of completing the necessary inspections. The Owner further agrees to provide the Town with reasonable entry into locked areas, if any. Prior to the turnover of the system, the Owner will also, at its expense, provide the opportunity for the Town to discuss work on the improvements with contractors, designers and employees retained by the Owner. A final inspection schedule consistent with the Public Works Standards will be set at the pre-construction meeting, the date, time and place for which will be set by mutual agreement of the Town and the Owner.

13. <u>AS-BUILTS</u>. As-built drawings for the Owner's improvements described in Exhibit A must be provided to the Town as required by the Town's Public Works Standards.

14. <u>NOTICES</u>. Any notice or other communication to be given hereunder shall be in writing and mailed by certified mail, return receipt requested, to the address set forth below:

If to Town:	Town of Williston 7900 Williston Road Williston, VT 05495
If to Owner:	Pinecrest Village C/O PMA PO BOX 1201 Williston, VT 05495
Copy to Attorney:	

or to such other person and address as the party entitled to such notice or communication shall have specified by notice to the other party. Any such notice or other communication shall be deemed given if mailed, when deposited in the United States mail, sent by certified mail, return receipt requested.

15. <u>WAIVER OF RULE OF CONSTRUCTION</u>. The parties waive the benefit of any rule that this Agreement is to be construed strictly against one party or the other.

16. <u>ENTIRE AGREEMENTS, APPLICABLE LAW</u>. This Agreement contains the entire agreement of the parties and no representations, inducements, promises or agreements not embodied herein shall be of any force or effect, unless the same were in writing and signed by or on behalf of the party to be charged. The captions of particular sections are inserted as a matter of convenience only and are in no way to affect or define the scope or intent of this Agreement or any provision thereof. This Agreement shall be governed by and interpreted in accordance with the laws of the State of Vermont.

17. <u>SEVERABILITY</u>. In case one or more of the provisions contained in this Agreement shall be invalid, illegal or unenforceable in any respect under any law, the validity, legality and enforceability of the remaining provisions contained herein shall not in any way be affected or impaired thereby.

DATED this 1^{st} day of <u>August</u>, 20/6.

IN THE PRESENCE OF:

itness

Witness

.

Town: TOWN OF WILLISTON

By: Cicle Mr. His Town Manager and Duly Authorized Agent

Print Name: Richard McGuire

DATED this 16th day of June, 2016.

IN THE PRESENCE OF:

Owner: Increst Vilke HOMEOWNER'S

By: Duly-appointed Agent of Owner

Print Name: Kaci A Durat

STORMWATER AGREEMENT

This AGREEMENT, made this <u>30</u> day of <u>June</u>, 2016, by and between the Town of Williston, (hereinafter referred to as "Town"), and the

Pleasant Acres Homeowner's Association, (hereinafter referred to as "Owner").

WHEREAS, the Owner has an expired Stormwater Permit benefitting Owner's stormwater discharge system; and

WHEREAS, Town has agreed to accept responsibility for maintenance and future upgrades of Owner's stormwater system providing the conditions in this Agreement have been satisfied.

NOW, THEREFORE, in consideration of the mutual promises herein set forth and other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, the parties hereto agree as follows:

1. <u>OWNER'S STORMWATER SYSTEM</u>. Owner's stormwater system covered by Discharge Permit #______ and the components thereof are more particularly described in the Final Design Plan appended hereto and incorporated herein by reference as Exhibit A (hereinafter the "stormwater system").

2. <u>OWNER'S IMPROVEMENTS</u>. Owner shall take all necessary and appropriate action to improve/repair the stormwater system to the extent such system lies within its property and/or Owner has legal access thereto so that it complies with the Final Design Plan submitted and accepted by the Town as of the date of this Agreement (hereinafter "Owner's improvements"). (Prior to the execution of this Agreement, Owner shall advise Town if Owner does not have legal access to any portion of the stormwater system.) At Owner's request, Town agrees to review the Final Design Plan to determine if the plan complies with Town's Public Water Standards as adopted by the Williston Selectboard and in place at the time of this Agreement (hereinafter "Town's Public Works Standards"). Any construction/installation shall be in accord with any State or Town permits/approvals issued to Owner for such construction. Any changes in zoning bylaws or any other regulations which result in supplementary requirements for the Owner's stormwater system arising subsequent to the Town's acceptance and approval of the Owner's Final Design Plan shall be the sole responsibility of the Town, and the Owner shall have no further obligation to revise its Final Design Plan or alter, add to or supplement its construction of any modifications, improvements or repairs as part of this Agreement.

3. <u>SCHEDULE</u>. The Owner shall complete Owner's improvements by <u>December</u> (month) of <u>2019</u> (year) [<u>3</u> years].

4. <u>PERMITS/APPROVALS</u>. Owner shall be solely responsible for securing all required permits/approvals for the construction of Owner's improvements to the stormwater system.

5. <u>FAILURE TO CONSTRUCT</u>. If the Owner fails to construct or install Owner's improvements covered by this Agreement within the time frame established, the Town, after thirty (30) days' written notice to the Owner, may ask the State to exercise its power under the Residual Designation Authority to ensure the Owner completes the required improvements. The Owner shall be responsible for any and all costs, including fines, penalties and/or attorney's fees, that may be imposed by the State for non-compliance of this Agreement. Town shall have no obligation to take over the stormwater system and to incur any expense on account thereof unless and until: (a) the Owner has completed the Owner's improvements described in Exhibit A; (b) all applicable permits/approvals have been issued therefor; and (c) the required certification set forth in Section 6 has been received by Town.

6. NOTICE OF COMPLETION OF REQUIRED REPAIRS. Owner shall notify Town when all of Owner's improvements to the stormwater system have been made. Such notice shall be accompanied by the certification by a Vermont licensed engineer certifying that all required Owner improvements described in Exhibit A have been made and that the stormwater system is in compliance with the Final Design Plan and any Town or State permits and all other requirements in this Agreement.

7. <u>ACCEPTANCE BY TOWN</u>. The Town shall formally accept the stormwater system within forty-five (45) days of submission of the engineer's certification referred to in Section 6 to the Town and the submission of the legal documents executed in proper form specified in Paragraph 8. Formal acceptance of the stormwater system by the Town will be in the form of a written document as recommended by the Director of Public Works and his/her designee and signed by the Town Manager or his/her designee. As part of its formal acceptance of the stormwater system, the Town shall represent to Owner that all future repairs, maintenance, modifications and improvements related to the stormwater system shall be the sole responsibility of the Town. If the Town does not accept the stormwater system by virtue of Owner's failure to comply with this Agreement, Owner shall continue being responsible for the repair, maintenance and permit compliance of the stormwater system.

8. <u>OWNER'S EASEMENT TO TOWN</u>. Prior to Town's acceptance, Owner shall grant to Town the necessary easements and/or licenses to access the stormwater system from a public right of way in form and substance acceptable to Town's attorney and the Owner's attorney. The Town will provide model language to the Owner. The Easement Deed(s) and/or licenses shall be accompanied by a mylar prepaid at Owner's expense suitable for recording depicting the easements/licenses described in the transfer instrument and by the opinion of an attorney licensed to practice law in Vermont certifying that Owner has good and marketable title to the easement/license area free and clear of all material liens and encumbrances and has the authority to convey such easement/license.

9. <u>TOWN'S RESPONSIBILITY POST-ACCEPTANCE</u>. After Town accepts the stormwater system, it shall be solely responsible, at its own cost and expense for (a) maintaining and repairing the stormwater system in accordance with applicable law including the payment of fees (if any) arising after Town's acceptance of the system and submitting all required engineering certifications and statements of compliance, if any, that may be required by applicable law; and (b) for future upgrades to the stormwater system should they be required by applicable law.

10. INDEMNIFICATION. The Owner, its successors and/or assigns, shall indemnify and hold harmless the Town and its officers, agents and employees for any and all damages, accidents, casualties, occurrences, claims or attorney's fees arising prior to the Town's acceptance of the stormwater control facilities subject to the Agreement. In the event a claim is asserted against the Town, its officers, agents or employees, the Town shall notify Owner and the Owner shall defend at Owner's expense any suit based on such claim arising

out of any occurrence prior to the Town's acceptance of the system. (Owner shall have no obligation of indemnity on account of maintenance and repairs performed or which were required to be performed under this Agreement by Town. If any judgment or claims arising from an occurrence prior to the Town's acceptance of the stormwater system shall be allowed, the Owner shall pay all costs (including reasonable attorney's fees) and expenses in connection therewith. Notwithstanding the foregoing, Owner shall have no obligation to the Town hereunder for claims arising from the Town's gross negligence or willful misconduct.

11. <u>AGREEMENT RUNS WITH LAND</u>. This Agreement runs with the land/permit to which it applies. It is binding on the Owner and its successors and assigns and on the Town and its successors and assigns. The Owner shall not be able to transfer, assign or modify its responsibilities with respect to this Agreement without the Town's written consent. Nothing herein shall be construed to prohibit a transfer by Owner. If either party learns that an assignment, sale, conveyance, foreclosure, lease or any other event is likely to change the identity of any party, that party shall provide written notice to the other party within 48 hours of such change, and shall provide the other party with copies of all documents relating to the transfer of interest in the agreement.

12. <u>INSPECTIONS</u>. It is understood that the signature of the Owner in this Agreement constitutes permission for representatives of the Town to enter onto the private property for the purpose of completing the necessary inspections. The Owner further agrees to provide the Town with reasonable entry into locked areas, if any. Prior to the turnover of the system, the Owner will also, at its expense, provide the opportunity for the Town to discuss work on the improvements with contractors, designers and employees retained by the Owner. A final inspection schedule consistent with the Public Works Standards will be set at the pre-construction meeting, the date, time and place for which will be set by mutual agreement of the Town and the Owner.

13. <u>AS-BUILTS</u>. As-built drawings for the Owner's improvements described in Exhibit A must be provided to the Town as required by the Town's Public Works Standards.

14. <u>NOTICES</u>. Any notice or other communication to be given hereunder shall be in writing and mailed by certified mail, return receipt requested, to the address set forth below:

If to Town:	Town of Williston 7900 Williston Road Williston, VT 05495	
If to Owner:	Byron Batres 57 Pleasant Acres Drive	
Copy to Attorney:	Williston, VT 05495	

or to such other person and address as the party entitled to such notice or communication shall have specified by notice to the other party. Any such notice or other communication shall be deemed given if mailed, when deposited in the United States mail, sent by certified mail, return receipt requested.

15. <u>WAIVER OF RULE OF CONSTRUCTION</u>. The parties waive the benefit of any rule that this Agreement is to be construed strictly against one party or the other.

16. <u>ENTIRE AGREEMENTS, APPLICABLE LAW</u>. This Agreement contains the entire agreement of the parties and no representations, inducements, promises or agreements not embodied herein shall be of any force or effect, unless the same were in writing and signed by or on behalf of the party to be charged. The captions of particular sections are inserted as a matter of convenience only and are in no way to affect or define the scope or intent of this Agreement or any provision thereof. This Agreement shall be governed by and interpreted in accordance with the laws of the State of Vermont.

17. <u>SEVERABILITY</u>. In case one or more of the provisions contained in this Agreement shall be invalid, illegal or unenforceable in any respect under any law, the validity, legality and enforceability of the remaining provisions contained herein shall not in any way be affected or impaired thereby.

DATED this 30 day of _____ August June ,2016

IN THE PRESENCE OF:

itness

Town: TOWN OF WILLISTON

By:

Town Manager and Duly Authorized Agent

Print Name: Richard McGuise

, 2016.

DATED this 30 day of June

IN THE PRESENCE OF:

Witness

Owner: Pleasant Acres_{HOMEOWNER'S} Association By: Duly-appointed Agent of Owner

Print Name: Byron Batres

END OF DOCUMENT

STORMWATER AGREEMENT

This AGREEMENT, made this $30^{\frac{14}{2}}$ day of \overline{June} , 2016, by and between the Town of Williston, (hereinafter referred to as "Town"), and the

<u>South Ridge</u> Homeowner's Association, (hereinafter referred to as "Owner").

WHEREAS, the Owner has an expired Stormwater Permit benefitting Owner's stormwater discharge system; and

WHEREAS, Town has agreed to accept responsibility for maintenance and future upgrades of Owner's stormwater system providing the conditions in this Agreement have been satisfied.

NOW, THEREFORE, in consideration of the mutual promises herein set forth and other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, the parties hereto agree as follows:

1. <u>OWNER'S STORMWATER SYSTEM</u>. Owner's stormwater system covered by Discharge Permit # 1 - 0669 and the components thereof are more particularly described in the Final Design Plan appended hereto and incorporated herein by reference as Exhibit A (hereinafter the "stormwater system").

2. <u>OWNER'S IMPROVEMENTS</u>. Owner shall take all necessary and appropriate action to improve/repair the stormwater system to the extent such system lies within its property and/or Owner has legal access thereto so that it complies with the Final Design Plan submitted and accepted by the Town as of the date of this Agreement (hereinafter "Owner's improvements"). (Prior to the execution of this Agreement, Owner shall advise Town if Owner does not have legal access to any portion of the stormwater system.) At Owner's request, Town agrees to review the Final Design Plan to determine if the plan complies with Town's Public Water Standards as adopted by the Williston Selectboard and in place at the time of this Agreement (hereinafter "Town's Public Works Standards"). Any construction/installation shall be in accord with any State or Town permits/approvals issued to Owner for such construction. Any changes in zoning bylaws or any other regulations which result in supplementary requirements for the Owner's stormwater system arising subsequent to the Town's acceptance and approval of the Owner's Final Design Plan shall be the sole responsibility of the Town, and the Owner shall have no further obligation to revise its Final Design Plan or alter, add to or supplement its construction of any modifications, improvements or repairs as part of this Agreement.

3. <u>SCHEDULE</u>. The Owner shall complete Owner's improvements by <u>October</u> (month) of <u>2026</u> (year) [<u>/0</u> years].

4. <u>PERMITS/APPROVALS</u>. Owner shall be solely responsible for securing all required permits/approvals for the construction of Owner's improvements to the stormwater system.

5. <u>FAILURE TO CONSTRUCT</u>. If the Owner fails to construct or install Owner's improvements covered by this Agreement within the time frame established, the Town, after thirty (30) days' written notice to the Owner, may ask the State to exercise its power under the Residual Designation Authority to ensure the Owner completes the required improvements. The Owner shall be responsible for any and all costs, including fines, penalties and/or attorney's fees, that may be imposed by the State for non-compliance of this Agreement. Town shall have no obligation to take over the stormwater system and to incur any expense on account thereof unless and until: (a) the Owner has completed the Owner's improvements described in Exhibit A; (b) all applicable permits/approvals have been issued therefor; and (c) the required certification set forth in Section 6 has been received by Town.

6. <u>NOTICE OF COMPLETION OF REQUIRED REPAIRS</u>. Owner shall notify Town when all of Owner's improvements to the stormwater system have been made. Such notice shall be accompanied by the certification by a Vermont licensed engineer certifying that all required Owner improvements described in Exhibit A have been made and that the stormwater system is in compliance with the Final Design Plan and any Town or State permits and all other requirements in this Agreement.

7. <u>ACCEPTANCE BY TOWN</u>. The Town shall formally accept the stormwater system within forty-five (45) days of submission of the engineer's certification referred to in Section 6 to the Town and the submission of the legal documents executed in proper form specified in Paragraph 8. Formal acceptance of the stormwater system by the Town will be in the form of a written document as recommended by the Director of Public Works and his/her designee and signed by the Town Manager or his/her designee. As part of its formal acceptance of the stormwater system, the Town shall represent to Owner that all future repairs, maintenance, modifications and improvements related to the stormwater system shall be the sole responsibility of the Town. If the Town does not accept the stormwater system by virtue of Owner's failure to comply with this Agreement, Owner shall continue being responsible for the repair, maintenance and permit compliance of the stormwater system.

8. <u>OWNER'S EASEMENT TO TOWN</u>. Prior to Town's acceptance, Owner shall grant to Town the necessary easements and/or licenses to access the stormwater system from a public right of way in form and substance acceptable to Town's attorney and the Owner's attorney. The Town will provide model language to the Owner. The Easement Deed(s) and/or licenses shall be accompanied by a mylar prepaid at Owner's expense suitable for recording depicting the easements/licenses described in the transfer instrument and by the opinion of an attorney licensed to practice law in Vermont certifying that Owner has good and marketable title to the easement/license area free and clear of all material liens and encumbrances and has the authority to convey such easement/license.

9. <u>TOWN'S RESPONSIBILITY POST-ACCEPTANCE</u>. After Town accepts the stormwater system, it shall be solely responsible, at its own cost and expense for (a) maintaining and repairing the stormwater system in accordance with applicable law including the payment of fees (if any) arising after Town's acceptance of the system and submitting all required engineering certifications and statements of compliance, if any, that may be required by applicable law; and (b) for future upgrades to the stormwater system should they be required by applicable law.

10. INDEMNIFICATION. The Owner, its successors and/or assigns, shall indemnify and hold harmless the Town and its officers, agents and employees for any and all damages, accidents, casualties, occurrences, claims or attorney's fees arising prior to the Town's acceptance of the stormwater control facilities subject to the Agreement. In the event a claim is asserted against the Town, its officers, agents or employees, the Town shall notify Owner and the Owner shall defend at Owner's expense any suit based on such claim arising

out of any occurrence prior to the Town's acceptance of the system. (Owner shall have no obligation of indemnity on account of maintenance and repairs performed or which were required to be performed under this Agreement by Town. If any judgment or claims arising from an occurrence prior to the Town's acceptance of the stormwater system shall be allowed, the Owner shall pay all costs (including reasonable attorney's fees) and expenses in connection therewith. Notwithstanding the foregoing, Owner shall have no obligation to the Town hereunder for claims arising from the Town's gross negligence or willful misconduct.

11. <u>AGREEMENT RUNS WITH LAND</u>. This Agreement runs with the land/permit to which it applies. It is binding on the Owner and its successors and assigns and on the Town and its successors and assigns. The Owner shall not be able to transfer, assign or modify its responsibilities with respect to this Agreement without the Town's written consent. Nothing herein shall be construed to prohibit a transfer by Owner. If either party learns that an assignment, sale, conveyance, foreclosure, lease or any other event is likely to change the identity of any party, that party shall provide written notice to the other party within 48 hours of such change, and shall provide the other party with copies of all documents relating to the transfer of interest in the agreement.

12. <u>INSPECTIONS</u>. It is understood that the signature of the Owner in this Agreement constitutes permission for representatives of the Town to enter onto the private property for the purpose of completing the necessary inspections. The Owner further agrees to provide the Town with reasonable entry into locked areas, if any. Prior to the turnover of the system, the Owner will also, at its expense, provide the opportunity for the Town to discuss work on the improvements with contractors, designers and employees retained by the Owner. A final inspection schedule consistent with the Public Works Standards will be set at the pre-construction meeting, the date, time and place for which will be set by mutual agreement of the Town and the Owner.

13. <u>AS-BUILTS</u>. As-built drawings for the Owner's improvements described in Exhibit A must be provided to the Town as required by the Town's Public Works Standards.

14. <u>NOTICES</u>. Any notice or other communication to be given hereunder shall be in writing and mailed by certified mail, return receipt requested, to the address set forth below:

If to Town:

Town of Williston 7900 Williston Road Williston, VT 05495

If to Owner:

South Ridge Homeownes Association PO BOX 366 Williston, VT 05495

Copy to Attorney:

or to such other person and address as the party entitled to such notice or communication shall have specified by notice to the other party. Any such notice or other communication shall be deemed given if mailed, when deposited in the United States mail, sent by certified mail, return receipt requested.

15. <u>WAIVER OF RULE OF CONSTRUCTION</u>. The parties waive the benefit of any rule that this Agreement is to be construed strictly against one party or the other.

16. ENTIRE AGREEMENTS, APPLICABLE LAW. This Agreement contains the entire agreement of the parties and no representations, inducements, promises or agreements not embodied herein shall be of any force or effect, unless the same were in writing and signed by or on behalf of the party to be charged. The captions of particular sections are inserted as a matter of convenience only and are in no way to affect or define the scope or intent of this Agreement or any provision thereof. This Agreement shall be governed by and interpreted in accordance with the laws of the State of Vermont.

17. <u>SEVERABILITY</u>. In case one or more of the provisions contained in this Agreement shall be invalid, illegal or unenforceable in any respect under any law, the validity, legality and enforceability of the remaining provisions contained herein shall not in any way be affected or impaired thereby.

DATED this 1st day of <u>August</u> ____, 20<mark>/6</mark>_.

IN THE PRESENCE OF:

Witness

Town: TOWN OF WILLISTON

he By:

Town Manager and Duly Authorized Agent

Print Name: Richard McGuile

DATED this 30 day of June, 2016.

IN THE PRESENCE OF:

Mith Witness

Owner: South Ridge HOMEOWNER'S ASSOCIATION

By: Duly-appointed Agent of Owner-

Print Name: Steven Shep 2rd

END OF DOCUMENT

WILLISTON, VT TOWN CLERK'S OFFICE Received Aug 03,2016 09:35A Recorded in VOL: 16 PG: 268- 273 Of Williston Land Records ATTEST: Deborah Beckett, Town Clerk

STORMWATER AGREEMENT

This AGREEMENT, made this \underline{JJH} day of \underline{JJH} , 2016, by and between the Town of Williston, (hereinafter referred to as "Town"), and the Taff's farms Master Homeowner's Association, (hereinafter referred to as "Owner").

WHEREAS, the Owner has an expired Stormwater Permit benefitting Owner's stormwater discharge system; and

WHEREAS, Town has agreed to accept responsibility for maintenance and future upgrades of Owner's stormwater system providing the conditions in this Agreement have been satisfied.

NOW, THEREFORE, in consideration of the mutual promises herein set forth and other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, the parties hereto agree as follows:

1. <u>OWNER'S STORMWATER SYSTEM</u>. Owner's stormwater system covered by Discharge Permit [residential portions of permit #1-0513 east of Allen Brook] and the components thereof are more particularly described in the Final Design Plan appended hereto and incorporated herein by reference as Exhibit A (hereinafter the "stormwater system").

2. <u>OWNER'S IMPROVEMENTS</u>. Owner shall take all necessary and appropriate action to improve/repair the stormwater system to the extent such system lies within its property and/or Owner has legal access thereto so that it complies with the Final Design Plan submitted and accepted by the Town as of the date of this Agreement (hereinafter "Owner's improvements"). (Prior to the execution of this Agreement, Owner shall advise Town if Owner does not have legal access to any portion of the stormwater system.) At Owner's request, Town agrees to review the Final Design Plan to determine if the plan complies with Town's Public Water Standards as adopted by the Williston Selectboard and in place at the time of this Agreement (hereinafter "Town's Public Works Standards"). Any construction/installation shall be in accord with any State or Town permits/approvals issued to Owner for such construction. Any changes in zoning bylaws or any other regulations which result in supplementary requirements for the Owner's stormwater system arising subsequent to

the Town's acceptance and approval of the Owner's Final Design Plan shall be the sole responsibility of the Town, and the Owner shall have no further obligation to revise its Final Design Plan or alter, add to or supplement its construction of any modifications, improvements or repairs as part of this Agreement.

3. <u>SCHEDULE</u>. The Owner shall complete Owner's improvements by June (month) of <u>2023</u> (year) [<u>7</u> years].

4. <u>PERMITS/APPROVALS</u>. Owner shall be solely responsible for securing all required permits/approvals for the construction of Owner's improvements to the stormwater system.

5. <u>FAILURE TO CONSTRUCT</u>. If the Owner fails to construct or install Owner's improvements covered by this Agreement within the time frame established, the Town, after thirty (30) days' written notice to the Owner, may ask the State to exercise its power under the Residual Designation Authority to ensure the Owner completes the required improvements. The Owner shall be responsible for any and all costs, including fines, penalties and/or attorney's fees, that may be imposed by the State for non-compliance of this Agreement. Town shall have no obligation to take over the stormwater system and to incur any expense on account thereof unless and until: (a) the Owner has completed the Owner's improvements described in Exhibit A; (b) all applicable permits/approvals have been issued therefor; and (c) the required certification set forth in Section 6 has been received by Town.

6. <u>NOTICE OF COMPLETION OF REQUIRED REPAIRS</u>. Owner shall notify Town when all of Owner's improvements to the stormwater system have been made. Such notice shall be accompanied by the certification by a Vermont licensed engineer certifying that all required Owner improvements described in Exhibit A have been made and that the stormwater system is in compliance with the Final Design Plan and any Town or State permits and all other requirements in this Agreement.

7. <u>ACCEPTANCE BY TOWN</u>. The Town shall formally accept the stormwater system within forty-five (45) days of submission of the engineer's certification referred to in Section 6 to the Town and the submission of the legal documents executed in proper form specified in Paragraph 8. Formal acceptance of the stormwater system by the Town will be in

计通知 化二氟化化 化化化化化化化化化化化化化化化化化化化化化化化化化

the form of a written document as recommended by the Director of Public Works and his/her designee and signed by the Town Manager or his/her designee. As part of its formal acceptance of the stormwater system, the Town shall represent to Owner that all future repairs, maintenance, modifications and improvements related to the stormwater system shall be the sole responsibility of the Town. If the Town does not accept the stormwater system by virtue of Owner's failure to comply with this Agreement, Owner shall continue being responsible for the repair, maintenance and permit compliance of the stormwater system.

8. <u>OWNER'S EASEMENT TO TOWN</u>. Prior to Town's acceptance, Owner shall grant to Town the necessary easements and/or licenses to access the stormwater system from a public right of way in form and substance acceptable to Town's attorney and the Owner's attorney. The Town will provide model language to the Owner. The Easement Deed(s) and/or licenses shall be accompanied by a mylar prepaid at Owner's expense suitable for recording depicting the easements/licenses described in the transfer instrument and by the opinion of an attorney licensed to practice law in Vermont certifying that Owner has good and marketable title to the easement/license area free and clear of all material liens and encumbrances and has the authority to convey such easement/license.

9. <u>TOWN'S RESPONSIBILITY POST-ACCEPTANCE</u>. After Town accepts the stormwater system, it shall be solely responsible, at its own cost and expense for (a) maintaining and repairing the stormwater system in accordance with applicable law including the payment of fees (if any) arising after Town's acceptance of the system and submitting all required engineering certifications and statements of compliance, if any, that may be required by applicable law; and (b) for future upgrades to the stormwater system should they be required by applicable law.

10. INDEMNIFICATION. The Owner, its successors and/or assigns, shall indemnify and hold harmless the Town and its officers, agents and employees for any and all damages, accidents, casualties, occurrences, claims or attorney's fees arising prior to the Town's acceptance of the stormwater control facilities subject to the Agreement. In the event a claim is asserted against the Town, its officers, agents or employees, the Town shall notify Owner and the Owner shall defend at Owner's expense any suit based on such claim arising

out of any occurrence prior to the Town's acceptance of the system. (Owner shall have no obligation of indemnity on account of maintenance and repairs performed or which were required to be performed under this Agreement by Town. If any judgment or claims arising from an occurrence prior to the Town's acceptance of the stormwater system shall be allowed, the Owner shall pay all costs (including reasonable attorney's fees) and expenses in connection therewith. Notwithstanding the foregoing, Owner shall have no obligation to the Town hereunder for claims arising from the Town's gross negligence or willful misconduct.

11. <u>AGREEMENT RUNS WITH LAND</u>. This Agreement runs with the land/permit to which it applies. It is binding on the Owner and its successors and assigns and on the Town and its successors and assigns. The Owner shall not be able to transfer, assign or modify its responsibilities with respect to this Agreement without the Town's written consent. Nothing herein shall be construed to prohibit a transfer by Owner. If either party learns that an assignment, sale, conveyance, foreclosure, lease or any other event is likely to change the identity of any party, that party shall provide written notice to the other party within 48 hours of such change, and shall provide the other party with copies of all documents relating to the transfer of interest in the agreement.

12. <u>INSPECTIONS</u>. It is understood that the signature of the Owner in this Agreement constitutes permission for representatives of the Town to enter onto the private property for the purpose of completing the necessary inspections. The Owner further agrees to provide the Town with reasonable entry into locked areas, if any. Prior to the turnover of the system, the Owner will also, at its expense, provide the opportunity for the Town to discuss work on the improvements with contractors, designers and employees retained by the Owner. A final inspection schedule consistent with the Public Works Standards will be set at the pre-construction meeting, the date, time and place for which will be set by mutual agreement of the Town and the Owner.

13. <u>AS-BUILTS</u>. As-built drawings for the Owner's improvements described in Exhibit A must be provided to the Town as required by the Town's Public Works Standards.

14. <u>NOTICES</u>. Any notice or other communication to be given hereunder shall be in writing and mailed by certified mail, return receipt requested, to the address set forth below:

If to Town:	Town of Williston 7900 Williston Road Williston, VT 05495	
If to Owner:	Property Management Associates Post-Office Box 1201 Williston, Vermont 05495	
Copy to Attorney:	7	

or to such other person and address as the party entitled to such notice or communication shall have specified by notice to the other party. Any such notice or other communication shall be deemed given if mailed, when deposited in the United States mail, sent by certified mail, return receipt requested.

15. <u>WAIVER OF RULE OF CONSTRUCTION</u>. The parties waive the benefit of any rule that this Agreement is to be construed strictly against one party or the other.

16. <u>ENTIRE AGREEMENTS, APPLICABLE LAW</u>. This Agreement contains the entire agreement of the parties and no representations, inducements, promises or agreements not embodied herein shall be of any force or effect, unless the same were in writing and signed by or on behalf of the party to be charged. The captions of particular sections are inserted as a matter of convenience only and are in no way to affect or define the scope or intent of this Agreement or any provision thereof. This Agreement shall be governed by and interpreted in accordance with the laws of the State of Vermont.

17. <u>SEVERABILITY</u>. In case one or more of the provisions contained in this Agreement shall be invalid, illegal or unenforceable in any respect under any law, the validity, legality and enforceability of the remaining provisions contained herein shall not in any way be affected or impaired thereby.

DATED this $\frac{12}{3}$ day of $\frac{J_{obs}}{4_{5}}$, $20 \frac{16}{5}$.

IN THE PRESENCE OF: Witness

Town: TOWN OF WILLISTON

By: Town Manager and Duly Authorized Agent

Print Name: Richard McGuise

DATED this 12 day of July, 2016.

IN THE PRESENCE OF:

Owner: Tafle fam My HOMEOWNER'S

Molanic Boly

By: Sunt- Ay cit Duly-appointed Agent of Owner Print Name: Scuft Michaud. Agent

END OF DOCUMENT

STORMWATER AGREEMENT

This AGREEMENT, made this <u>15th</u> day of <u>August</u>, 2016, by and between the Town of Williston, (hereinafter referred to as "Town"), and the Turtle Crossing, <u>LLC</u>

WHEREAS, the Owner has an expired Stormwater Permit benefitting Owner's stormwater discharge system; and

WHEREAS, Town has agreed to accept responsibility for maintenance and future upgrades of Owner's stormwater system providing the conditions in this Agreement have been satisfied.

NOW, THEREFORE, in consideration of the mutual promises herein set forth and other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, the parties hereto agree as follows:

1. <u>OWNER'S STORMWATER SYSTEM</u>. Owner's stormwater system covered by Discharge Permit #1-0792 and the components thereof are more particularly described in the Final Design Plan appended hereto and incorporated herein by reference as Exhibit A (hereinafter the "stormwater system").

2. <u>OWNER'S IMPROVEMENTS</u>. Owner shall take all necessary and appropriate action to improve/repair the stormwater system to the extent such system lies within its property and/or Owner has legal access thereto so that it complies with the Final Design Plan submitted and accepted by the Town as of the date of this Agreement (hereinafter "Owner's improvements"). (Prior to the execution of this Agreement, Owner shall advise Town if Owner does not have legal access to any portion of the stormwater system.) At Owner's request, Town agrees to review the Final Design Plan to determine if the plan complies with Town's Public Water Standards as adopted by the Williston Selectboard and in place at the time of this Agreement (hereinafter "Town's Public Works Standards"). Any construction/installation shall be in accord with any State or Town permits/approvals issued to Owner for such construction. Any changes in zoning bylaws or any other regulations which result in supplementary requirements for the Owner's stormwater system arising subsequent to the Town's acceptance and approval of the Owner's Final Design Plan shall be the sole responsibility of the Town, and the Owner shall have no further obligation to revise its Final Design Plan or alter, add to or supplement its construction of any modifications, improvements or repairs as part of this Agreement.

3. <u>SCHEDULE</u>. The Owner shall complete Owner's improvements by October (month) of 2021 (year) [5 years].

4. <u>PERMITS/APPROVALS</u>. Owner shall be solely responsible for securing all required permits/approvals for the construction of Owner's improvements to the stormwater system.

5. <u>FAILURE TO CONSTRUCT</u>. If the Owner fails to construct or install Owner's improvements covered by this Agreement within the time frame established, the Town, after thirty (30) days' written notice to the Owner, may ask the State to exercise its power under the Residual Designation Authority to ensure the Owner completes the required improvements. The Owner shall be responsible for any and all costs, including fines, penalties and/or attorney's fees, that may be imposed by the State for non-compliance of this Agreement. Town shall have no obligation to take over the stormwater system and to incur any expense on account thereof unless and until: (a) the Owner has completed the Owner's improvements described in Exhibit A; (b) all applicable permits/approvals have been issued therefor; and (c) the required certification set forth in Section 6 has been received by Town.

6. <u>NOTICE OF COMPLETION OF REQUIRED REPAIRS</u>. Owner shall notify Town when all of Owner's improvements to the stormwater system have been made. Such notice shall be accompanied by the certification by a Vermont licensed engineer certifying that all required Owner improvements described in Exhibit A have been made and that the stormwater system is in compliance with the Final Design Plan and any Town or State permits and all other requirements in this Agreement.

7. <u>ACCEPTANCE BY TOWN</u>. The Town shall formally accept the stormwater system within forty-five (45) days of submission of the engineer's certification referred to in Section 6 to the Town and the submission of the legal documents executed in proper form specified in Paragraph 8. Formal acceptance of the stormwater system by the Town will be in the form of a written document as recommended by the Director of Public Works and his/her designce and signed by the Town Manager or his/her designee. As part of its formal acceptance of the stormwater system, the Town shall represent to Owner that all future repairs, maintenance, modifications and improvements related to the stormwater system shall be the sole responsibility of the Town. If the Town does not accept the stormwater system by virtue of Owner's failure to comply with this Agreement, Owner shall continue being responsible for the repair, maintenance and permit compliance of the stormwater system.

8. <u>OWNER'S EASEMENT TO TOWN</u>. Prior to Town's acceptance, Owner shall grant to Town the necessary easements and/or licenses to access the stormwater system from a public right of way in form and substance acceptable to Town's attorney and the Owner's attorney. The Town will provide model language to the Owner. The Easement Deed(s) and/or licenses shall be accompanied by a mylar prepaid at Owner's expense suitable for recording depicting the easements/licenses described in the transfer instrument and by the opinion of an attorney licensed to practice law in Vermont certifying that Owner has good and marketable title to the easement/license area free and clear of all material liens and encumbrances and has the authority to convey such easement/license.

9. <u>TOWN'S RESPONSIBILITY POST-ACCEPTANCE</u>. After Town accepts the stormwater system, it shall be solely responsible, at its own cost and expense for (a) maintaining and repairing the stormwater system in accordance with applicable law including the payment of fees (if any) arising after Town's acceptance of the system and submitting all required engineering certifications and statements of compliance, if any, that may be required by applicable law; and (b) for future upgrades to the stormwater system should they be required by applicable law.

10. INDEMNIFICATION. The Owner, its successors and/or assigns, shall indemnify and hold harmless the Town and its officers, agents and employees for any and all damages, accidents, casualties, occurrences, claims or attorney's fees arising prior to the Town's acceptance of the stormwater control facilities subject to the Agreement. In the event a claim is asserted against the Town, its officers, agents or employees, the Town shall notify Owner and the Owner shall defend at Owner's expense any suit based on such claim arising out of any occurrence prior to the Town's acceptance of the system. (Owner shall have no obligation of indemnity on account of maintenance and repairs performed or which were required to be performed under this Agreement by Town. If any judgment or claims arising from an occurrence prior to the Town's acceptance of the stormwater system shall be allowed, the Owner shall pay all costs (including reasonable attorney's fees) and expenses in connection therewith. Notwithstanding the foregoing, Owner shall have no obligation to the Town hereunder for claims arising from the Town's gross negligence or willful misconduct.

11. <u>AGREEMENT RUNS WITH LAND</u>. This Agreement runs with the land/permit to which it applies. It is binding on the Owner and its successors and assigns and on the Town and its successors and assigns. The Owner shall not be able to transfer, assign or modify its responsibilities with respect to this Agreement without the Town's written consent. Nothing herein shall be construed to prohibit a transfer by Owner. If either party learns that an assignment, sale, conveyance, foreclosure, lease or any other event is likely to change the identity of any party, that party shall provide written notice to the other party within 48 hours of such change, and shall provide the other party with copies of all documents relating to the transfer of interest in the agreement.

12. <u>INSPECTIONS</u>. It is understood that the signature of the Owner in this Agreement constitutes permission for representatives of the Town to enter onto the private property for the purpose of completing the necessary inspections. The Owner further agrees to provide the Town with reasonable entry into locked areas, if any. Prior to the turnover of the system, the Owner will also, at its expense, provide the opportunity for the Town to discuss work on the improvements with contractors, designers and employees retained by the Owner. A final inspection schedule consistent with the Public Works Standards will be set at the pre-construction meeting, the date, time and place for which will be set by mutual agreement of the Town and the Owner.

13. <u>AS-BUILTS</u>. As-built drawings for the Owner's improvements described in Exhibit A must be provided to the Town as required by the Town's Public Works Standards.

14. <u>NOTICES</u>. Any notice or other communication to be given hereunder shall be in writing and mailed by certified mail, return receipt requested, to the address set forth below:

If to Town:	Town of Williston 7900 Williston Road Williston, VT 05495	
If to Owner:	Andrew Beaumier 22 Brookside Dr.	Edward Kenney 46 Lawnwood Drive
	Williston, VT 05495	Williston, VT 05495
Copy to Attorney:	Edward M. Kenney, Esq. 46 Lawnwood Drive Williston, Vermont 05495	

or to such other person and address as the party entitled to such notice or communication shall have specified by notice to the other party. Any such notice or other communication shall be deemed given if mailed, when deposited in the United States mail, sent by certified mail, return receipt requested.

15. <u>WAIVER OF RULE OF CONSTRUCTION</u>. The parties waive the benefit of any rule that this Agreement is to be construed strictly against one party or the other.

16. ENTIRE AGREEMENTS, APPLICABLE LAW. This Agreement contains the entire agreement of the parties and no representations, inducements, promises or agreements not embodied herein shall be of any force or effect, unless the same were in writing and signed by or on behalf of the party to be charged. The captions of particular sections are inserted as a matter of convenience only and are in no way to affect or define the scope or intent of this Agreement or any provision thereof. This Agreement shall be governed by and interpreted in accordance with the laws of the State of Vermont.

17. <u>SEVERABILITY</u>. In case one or more of the provisions contained in this Agreement shall be invalid, illegal or unenforceable in any respect under any law, the validity, legality and enforceability of the remaining provisions contained herein shall not in any way be affected or impaired thereby.

DATED this Zath day of August, , 2016.

IN THE PRESENCE OF:

Town: TOWN OF WILLISTON

By: Zierhol Me-

Town Manager and Duly Authorized Agent

Print Name: Richard McGuire

DATED this $\frac{\partial^2}{\partial t}$ \leq day of August , 2016.

IN THE PRESENCE OF:

Mich. ALA-Witness

Duly-appointed Agent of Owner

Print Name: Andrew Beaumier, President

STORMWATER AGREEMENT

This AGREEMENT, made this 22nd day of August, 2016, by and between the Town of Williston, (hereinafter referred to as "Town"), and the Residents of Turtle Pond, Louis Kimball Simmons and June W. Simmons, Lori Durieux, Doug Aitken and Martha Aitken, Joel Klein and Abby Klein, Eric Simmons and Theresa Krainz, Mary Elizabeth Flegenheimer, The Marie T. Kerbaugh Trust, Jerold and Kathleen Fernee and Charles and Debra Goller, who all reside along Turtle Pond Road in the Town of Williston, (hereinafter referred to collectively as "Owner").

WHEREAS, the Owner has an expired Stormwater Permit benefitting Owner's stormwater discharge system; and

WHEREAS, Town has agreed to accept responsibility for maintenance and future upgrades of Owner's stormwater system providing the conditions in this Agreement have been satisfied.

NOW, THEREFORE, in consideration of the mutual promises herein set forth and other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, the parties hereto agree as follows:

1. <u>OWNER'S STORMWATER SYSTEM</u>. Owner's stormwater system covered by Discharge Permit #1191-1 and the components thereof are more particularly described in the Final Design Plan appended hereto and incorporated herein by reference as Exhibit A (hereinafter the "stormwater system").

2. <u>OWNER'S IMPROVEMENTS</u>. Owner shall take all necessary and appropriate action to improve/repair the stormwater system to the extent such system lies within its property and/or Owner has legal access thereto so that it complies with the Final Design Plan submitted and accepted by the Town as of the date of this Agreement (hereinafter "Owner's improvements"). (Prior to the execution of this Agreement, Owner shall advise Town if Owner does not have legal access to any portion of the stormwater system.) At Owner's request, Town agrees to review the Final Design Plan to determine if the plan complies with Town's Public Water Standards as adopted by the Williston Selectboard and in place at the time of this Agreement (hereinafter "Town's Public Works Standards"). Any construction/installation shall be in accord with any State or Town permits/approvals issued to Owner for such construction. Any changes in zoning bylaws or any other regulations which result in supplementary requirements for the Owner's

stormwater system arising subsequent to the Town's acceptance and approval of the Owner's Final Design Plan shall be the sole responsibility of the Town, and the Owner shall have no further obligation to revise its Final Design Plan or alter, add to or supplement its construction of any modifications, improvements or repairs as part of this Agreement.

3. <u>SCHEDULE</u>. The Owner shall complete Owner's improvements by September of 2021 [5 years].

4. <u>PERMITS/APPROVALS</u>. Owner shall be solely responsible for securing all required permits/approvals for the construction of Owner's improvements to the stormwater system.

5. <u>FAILURE TO CONSTRUCT</u>. If the Owner fails to construct or install Owner's improvements covered by this Agreement within the time frame established, the Town, after thirty (30) days' written notice to the Owner, may ask the State to exercise its power under the Residual Designation Authority to ensure the Owner completes the required improvements. The Owner shall be responsible for any and all costs, including fines, penalties and/or attorney's fees, which may be imposed by the State for non-compliance of this Agreement. Town shall have no obligation to take over the stormwater system and to incur any expense on account thereof unless and until: (a) the Owner has completed the Owner's improvements described in Exhibit A; (b) all applicable permits/approvals have been issued therefor; and (c) the required certification set forth in Section 6 has been received by Town.

6. <u>NOTICE OF COMPLETION OF REQUIRED REPAIRS</u>. Owner shall notify Town when all of Owner's improvements to the stormwater system have been made. Such notice shall be accompanied by the certification by a Vermont licensed engineer certifying that all required Owner improvements described in Exhibit A have been made and that the stormwater system is in compliance with the Final Design Plan and any Town or State permits and all other requirements in this Agreement.

7. <u>ACCEPTANCE BY TOWN</u>. The Town shall formally accept the stormwater system within forty-five (45) days of submission of the engineer's certification referred to in Section 6 to the Town and the submission of the legal documents executed in proper form specified in Paragraph 8. Formal acceptance of the stormwater system by the Town will be in the form of a written document as recommended by the Director of Public Works and his/her designee and signed by the Town Manager or his/her designee. As part of its formal acceptance of the

stormwater system, the Town shall represent to Owner that all future repairs, maintenance, modifications and improvements related to the stormwater system shall be the sole responsibility of the Town. If the Town does not accept the stormwater system by virtue of Owner's failure to comply with this Agreement, Owner shall continue being responsible for the repair, maintenance and permit compliance of the stormwater system.

8. <u>OWNER'S EASEMENT TO TOWN</u>. Prior to Town's acceptance, Owner shall grant to Town the necessary easements and/or licenses to access the stormwater system from a public right of way in form and substance set forth in the Stormwater Easement Deed and Bill of Sale appended hereto as Exhibit B. The Easement Deed(s) and/or licenses shall be accompanied by a mylar prepaid at Owner's expense suitable for recording depicting the easements/licenses described in the transfer instrument and by the opinion of an attorney licensed to practice law in Vermont certifying that Owner has good and marketable title to the easement/license area free and clear of all material liens and encumbrances and has the authority to convey such easement/license.

9. <u>TOWN'S RESPONSIBILITY POST-ACCEPTANCE</u>. After Town accepts the stormwater system, it shall be solely responsible, at its own cost and expense for (a) maintaining and repairing the stormwater system in accordance with applicable law including the payment of fees (if any) arising after Town's acceptance of the system and submitting all required engineering certifications and statements of compliance, if any, that may be required by applicable law; and (b) for future upgrades to the stormwater system should they be required by applicable law.

10. INDEMNIFICATION. The Owner (in their collective capacity), its successors and/or assigns, shall indemnify and hold harmless the Town and its officers, agents and employees for any and all damages, accidents, casualties, occurrences, claims or attorney's fees arising prior to the Town's acceptance of the stormwater control facilities subject to the Agreement. In the event a claim is asserted against the Town, its officers, agents or employees, the Town shall notify Owner and the Owner shall defend at Owner's expense any suit based on such claim arising out of any occurrence prior to the Town's acceptance of the system. Owner shall have no obligation or indemnity on account of maintenance and repairs performed or which were required to be performed under this Agreement by Town. If any judgment or claims arising from an occurrence prior to the Town's acceptance of the stormwater system shall be allowed, the Owner shall pay all costs (including reasonable attorney's fees) and expenses in connection therewith.

Notwithstanding the foregoing, Owner shall have no obligation to the Town hereunder for claims arising from the Town's gross negligence or willful misconduct.

11. <u>AGREEMENT RUNS WITH LAND</u>. This Agreement runs with the land/permit to which it applies. It is binding on the Owner and its successors and assigns and on the Town and its successors and assigns. The Owner shall not be able to transfer, assign or modify its responsibilities with respect to this Agreement without the Town's written consent. Nothing herein shall be construed to prohibit a transfer by Owner. If either party learns that an assignment, sale, conveyance, foreclosure, lease or any other event is likely to change the identity of any party, that party shall provide written notice to the other party within 48 hours of such change, and shall provide the other party with copies of all documents relating to the transfer of interest in the agreement.

12. <u>INSPECTIONS</u>. It is understood that the signature of the Owner in this Agreement constitutes permission for representatives of the Town to enter onto the private property for the purpose of completing the necessary inspections. The Owner further agrees to provide the Town with reasonable entry into locked areas, if any. Prior to the turnover of the system, the Owner will also, at its expense, provide the opportunity for the Town to discuss work on the improvements with contractors, designers and employees retained by the Owner. A final inspection schedule consistent with the Public Works Standards will be set at the pre-construction meeting, the date, time and place for which will be set by mutual agreement of the Town and the Owner.

13. <u>AS-BUILTS</u>. As-built drawings for the Owner's improvements described in Exhibit A must be provided to the Town as required by the Town's Public Works Standards.

14. <u>NOTICES</u>. Any notice or other communication to be given hereunder shall be in writing and mailed by certified mail, return receipt requested, to the address set forth below:

If to Town:	Town of Williston	
	7900 Williston Road	
	Williston, VT 05495	
If to Owner:	John Pitrowisksi	
	Trudell Consulting Engineers	
	478 Blair Park Road	

Copy to Attorney: _____Williston, VT 05495_____

or to such other person and address as the party entitled to such notice or communication shall have specified by notice to the other party. Any such notice or other communication shall be deemed given if mailed, when deposited in the United States mail, sent by certified mail, return receipt requested.

15. <u>WAIVER OF RULE OF CONSTRUCTION</u>. The parties waive the benefit of any rule that this Agreement is to be construed strictly against one party or the other.

16. <u>ENTIRE AGREEMENTS, APPLICABLE LAW</u>. This Agreement contains the entire agreement of the parties and no representations, inducements, promises or agreements not embodied herein shall be of any force or effect, unless the same were in writing and signed by or on behalf of the party to be charged. The captions of particular sections are inserted as a matter of convenience only and are in no way to affect or define the scope or intent of this Agreement or any provision thereof. This Agreement shall be governed by and interpreted in accordance with the laws of the State of Vermont.

17. <u>SEVERABILITY</u>. In case one or more of the provisions contained in this Agreement shall be invalid, illegal or unenforceable in any respect under any law, the validity, legality and enforceability of the remaining provisions contained herein shall not in any way be affected or impaired thereby.

18. <u>ACT 250.</u> This Agreement and Owner's obligations to proceed hereunder are expressly contingent upon the Act 250 Commission's approval of the amendments identified on Exhibit A, and the issuance of an Amended Act 250 Permit #4C0697 required to effect changes to Owner's stormwater system contemplated by this Agreement.

19. <u>REQUIRED CONTACT FOR OWNER</u>. At all times during the term of this Agreement Owner shall provide Town with the name, address, telephone number and email address of a representative of Owner which Town is required to contact under this Agreement or under the Stormwater Easement Deed and Bill of Sale to be executed by Owner in connection with this Agreement.

DATED this 29th day of August, 2016.

IN THE PRESENCE OF:

Town: TOWN OF WILLISTON

Witness

By: Conf Manager and Duly Authorized Agent

Print Name: Richard McGuire

DATED this 22 day of Angust, 20/6.

IN PRESENCE OF:

OWNER:

Witness (as to all Owners)

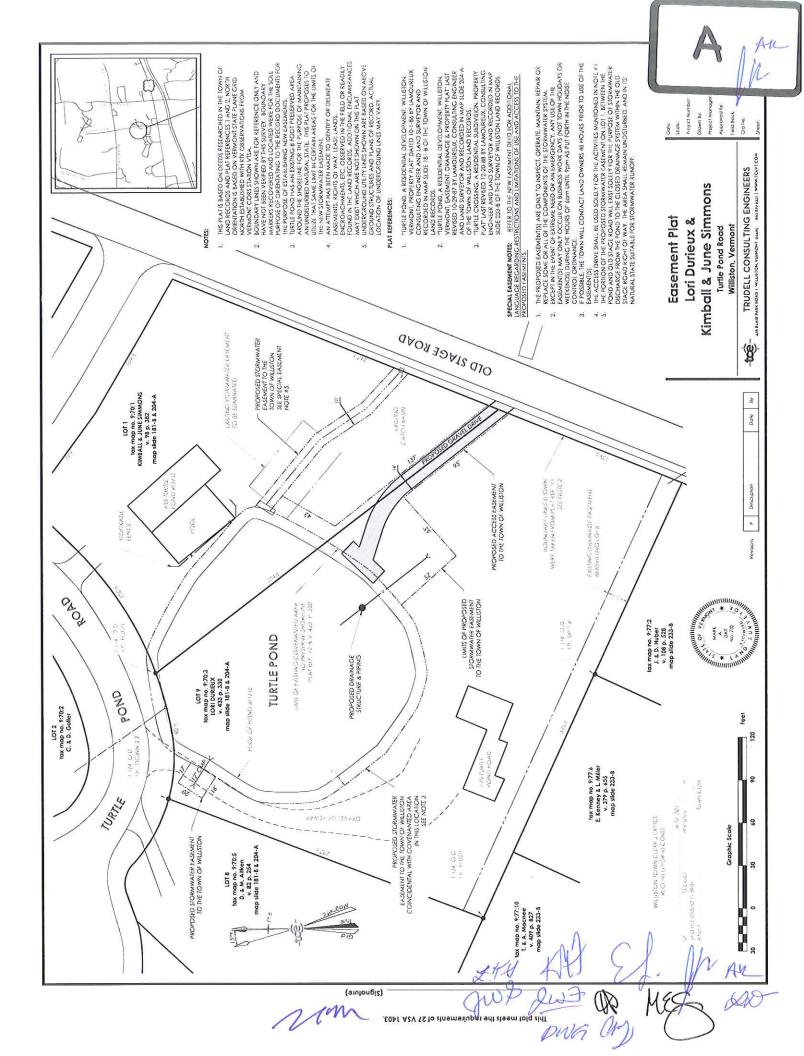
By: Louis Huball In-on

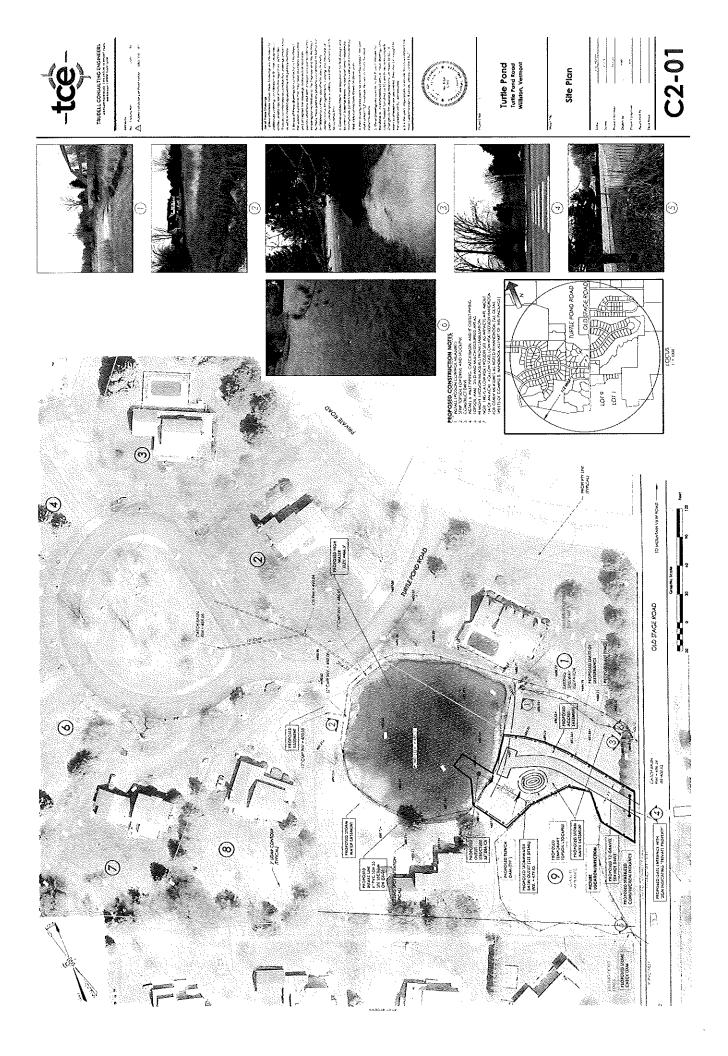
Louis Kimball Simmons

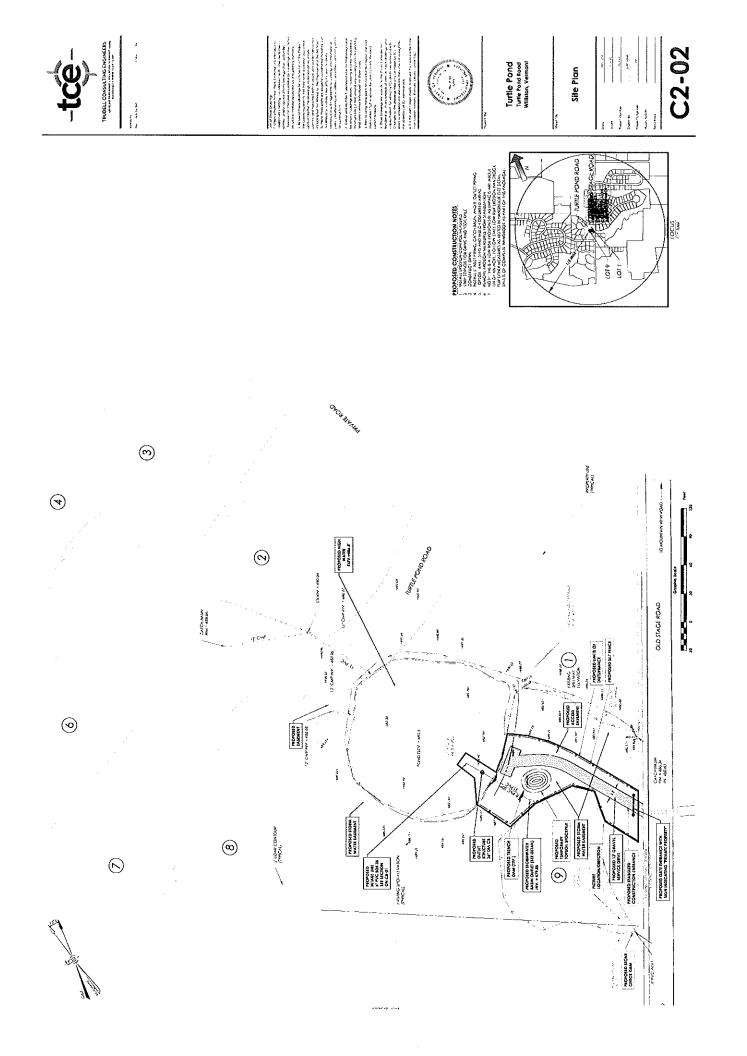
By: June W. Simmons

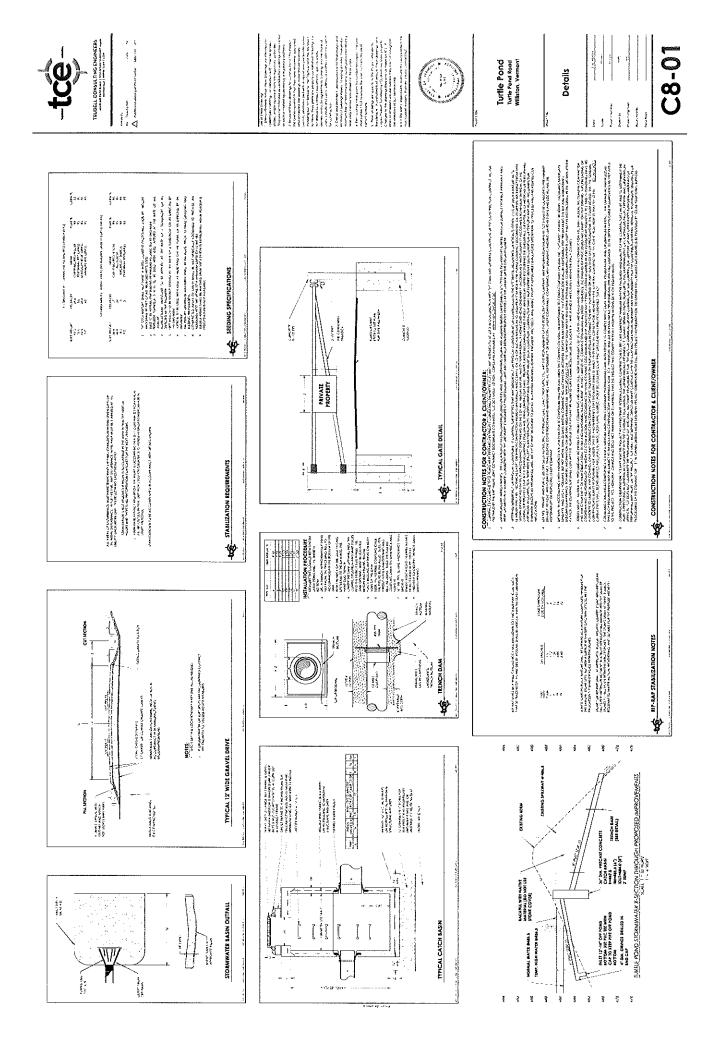
By: <u><u>by</u> Lori Durieux</u>

By: Daug Aither by ASh w/award


By: Martha Aidken Martha Aitken / by AJL W/authory


By: Jeel Klein By: Abby Klein


By: (144 mmon **Eric Simmons**


By: <u>Cheresa</u> Theresa Krainz non By:_ a Mary Elizabeth Flegenheime By: MTK by co Trustee of the Marie T. Kerbaugh Trust By rol no 01 Jerold Fernee el By: all Kathleen Fernee By: Charles Goller

By: <u>Debra Goller</u>

STORMWATER EASEMENT DEED and BILL OF SALE (Stormwater System)

KNOW ALL PERSONS BY THESE PRESENTS, that we, Louis Kimball Simmons and June W. Simmons, Lori Durieux, Doug Aitken and Martha Aitken, Joel Klein and Abby Klein, Eric Simmons and Theresa Krainz, Mary Elizabeth Flegenheimer, The Marie T. Kerbaugh Trust, Jerold and Kathleen Fernee and Charles and Debra Goller who all reside along Turtle Pond Road in the Town of Williston ("Grantors"), in consideration of the sum of Ten and More Dollars paid to our full satisfaction by the TOWN OF WILLISTON, a Vermont municipality in the County of Chittenden and State of Vermont ("Grantee"), by these presents, does freely GIVE, GRANT, SELL, CONVEY and CONFIRM unto the said Grantee, the TOWN OF WILLISTON, and its successors and assigns forever, a perpetual easement and right-of-way for the purpose of inspecting, operating, maintaining, repairing and replacing the Stormwater System described below, on and through property located off Turtle Pond Road in the Town of Williston, County of Chittenden and State of Vermont described as follows, viz:

Being an easement over Grantors' lands and premises in the Town of Williston for Grantee and its successors and assigns to use, maintain, repair and replace the components of the existing Stormwater System that has been constructed within the area as specifically identified on "Easement Drainage & Property Plat" recorded in Map Volume 8, Page 38 of the Town of Williston Land Records and permitted under Stormwater Permit No. 1191 issued to Sterling Construction, ("Existing Condition Plan") and as such existing Stormwater System may be altered by those changes to Turtle Pond depicted on Easement Plat, Lori Durieux & Kimball & June Simmons, Turtle Pond Road, Williston, Vermont" dated 3/3/16 by Trudell Consulting Engineers and recorded in Map Slide ______ of the Town of Williston Land Records ("Permitted Alterations Plan").

These easements over Grantors properties are only granted as reasonably necessary to construct, inspect, operate, maintain, repair or replace any the portions of the Stormwater System, including Turtle Pond, not accessible from public Turtle Pond Road.

In the course of inspecting, operating, maintaining, repairing or replacing portions of the Stormwater System, or due to failing to inspect or maintain, should the Town cause damage to lands, the Town shall restore any damaged portion to their prior condition.

Grantee agrees for itself and its successors and assigns that it will not remove any trees, shrubs, boulders, bushes or other landscaping except as necessary to maintain the Stormwater System.

The easement granted for stormwater on Lot 1 running between Turtle Pond and Old Stage Road shall not permit the Town to do any construction, or alter the ground surface in anyway. This easement is only for purposes of stormwater discharge from Turtle Pond to Old Stage Road. Should the discharge or stormwater alter the surface in anyway, the Town shall restore the land to its current undisturbed grass state.

(H)

The "Proposed Gravel Drive" shall only grant the Town the right of access for the purposes of inspecting, operating, maintaining, repairing or replacing portions of the Stormwater System in Turtle Pond. Should the Town use this right of access to access the Stormwater System and cause damage, the Town shall restore any damages portion of the property to its prior condition. The Grantors shall have the right to cover this drive with 2" of topsoil and grass at their discretion. Such coverage shall not extinguish or in any way alter the easement.

This Stormwater Easement, and the rights of access herein, shall only be used on business workdays (not legal holidays or weekends) between the hours of 8 A.M. and 5 P.M. Grantee will attempt to provide Grantor's representative with 24 hours' advance notice of when it intends to exercise its rights under this Easement Deed; provided, however, that no notice need be given in cases of emergency.

This Stormwater Easement requires that the Town of Williston utilize and maintain Turtle Pond in its current condition except as specifically permitted to be altered as shown on the Permitted Alterations Plat or any applicable permits.

Upon the execution of this Stormwater Easement, the Town of Williston shall have the duty and responsibility to inspect, operate, maintain, repair, and upkeep the Stormwater System, including all responsibility to ensure that the Stormwater System meets all applicable State and Federal regulations, permitting requirements and discharge or treatment standards. including but not limited to Act 250 Permit No. 4C0697 and Stormwater Permit No. 1191, as such may be amended.

The components of the Stormwater System and all related improvements and appurtenances are hereby conveyed to Grantee in "as is, where is" condition and this Easement Deed shall act as a bill of sale for all the stormwater components. Fee ownership of Turtle Pond shall remain with Louis Kimball Simmons and June W. Simmons, Lori Durieux their heirs and assigns.

Grantors and their successors and assigns shall have the right to make use of the portions of the Property subject to the Easement, including landscaping, provided such use is not inconsistent with the use of the easement by the within Grantee. Grantors and their successors and assigns shall place no structures on the portions of the Property subject to the Easement or take action which shall prevent or interfere with Grantee's ability to exercise its rights granted hereunder.

By its recording of this Easement Deed, Grantee agrees, for itself and its successors and assigns, that any premises of Grantors lying outside the easement area disturbed or affected by Grantee's exercise of the rights granted it hereunder shall be restored to their condition prior to such entry at Grantee's own cost and within a reasonable time.

The rights and easements granted hereby are subject to: (a) all easements, rights of way and encroachments depicted on the Plat, not meaning to reinstate any claims barred by operation of the Vermont Marketable Record Title Act, 27 V.S.A. § 601 et seq.; (b) terms

and conditions of the following permits and approvals issued in connection with the proposed development of the Property, including without limitation the improvements that are depicted on the drawings and plans approved thereby (c) the provisions of municipal ordinances, public laws, and special acts.

Reference is hereby made to the above-mentioned plan and deeds and the records thereof, and the references therein made all in further aid of this description.

TO HAVE AND TO HOLD the rights and easements conveyed hereby, with all the privileges and appurtenances thereto, to Grantee, The Town of Williston, and its successors and assigns, to their own use and behoof forever; and we said Grantors, Louis Kimball Simmons and June W. Simmons, Lori Durieux, Doug Aitken and Martha Aitken, Joel Klein and Abby Klein, Eric Simmons and Theresa Krainz, Mary Elizabeth Flegenheimer, The Marie T. Kerbaugh Trust, Jerold and Kathleen Fernee and Charles and Debra Goller, the residents of Turtle Pond Road, for ourselves and our heirs and assigns, does covenant with the said Grantee and its successors and assigns, that until the ensealing of these presents, Grantor is the sole owner of the Property, and has good right and title to convey the same in the manner aforesaid, that the Property is FREE FROM EVERY ENCUMBRANCE, except as aforementioned; and it hereby engages to WARRANT and DEFEND the same against all lawful claims whatever, except as aforementioned.

Signature Page to Follow

STORMWATER AGREEMENT

This AGREEMENT, made this <u>28th</u> day of <u>Vane</u>, 2016, by and between the Town of Williston, (hereinafter referred to as "Town"), and the <u>lommons at Willistor Villeg</u> Homeowner's Association, (hereinafter referred to as "Owner").

WHEREAS, the Owner has an expired Stormwater Permit benefitting Owner's stormwater discharge system; and

WHEREAS, Town has agreed to accept responsibility for maintenance and future upgrades of Owner's stormwater system providing the conditions in this Agreement have been satisfied.

NOW, THEREFORE, in consideration of the mutual promises herein set forth and other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, the parties hereto agree as follows:

1. <u>OWNER'S STORMWATER SYSTEM</u>. Owner's stormwater system covered by Discharge Permit # 1 - 1052 and the components thereof are more particularly described in the Final Design Plan appended hereto and incorporated herein by reference as Exhibit A (hereinafter the "stormwater system").

2. <u>OWNER'S IMPROVEMENTS</u>. Owner shall take all necessary and appropriate action to improve/repair the stormwater system to the extent such system lies within its property and/or Owner has legal access thereto so that it complies with the Final Design Plan submitted and accepted by the Town as of the date of this Agreement (hereinafter "Owner's improvements"). (Prior to the execution of this Agreement, Owner shall advise Town if Owner does not have legal access to any portion of the stormwater system.) At Owner's request, Town agrees to review the Final Design Plan to determine if the plan complies with Town's Public Water Standards as adopted by the Williston Selectboard and in place at the time of this Agreement (hereinafter "Town's Public Works Standards"). Any construction/installation shall be in accord with any State or Town permits/approvals issued to Owner for such construction. Any changes in zoning bylaws or any other regulations which result in supplementary requirements for the Owner's stormwater system arising subsequent to the Town's acceptance and approval of the Owner's Final Design Plan shall be the sole responsibility of the Town, and the Owner shall have no further obligation to revise its Final Design Plan or alter, add to or supplement its construction of any modifications, improvements or repairs as part of this Agreement.

3. <u>SCHEDULE</u>. The Owner shall complete Owner's improvements by October (month) of <u>2026</u> (year) [*ten* years].

4. <u>PERMITS/APPROVALS</u>. Owner shall be solely responsible for securing all required permits/approvals for the construction of Owner's improvements to the stormwater system.

5. <u>FAILURE TO CONSTRUCT</u>. If the Owner fails to construct or install Owner's improvements covered by this Agreement within the time frame established, the Town, after thirty (30) days' written notice to the Owner, may ask the State to exercise its power under the Residual Designation Authority to ensure the Owner completes the required improvements. The Owner shall be responsible for any and all costs, including fines, penalties and/or attorney's fees, that may be imposed by the State for non-compliance of this Agreement. Town shall have no obligation to take over the stormwater system and to incur any expense on account thereof unless and until: (a) the Owner has completed the Owner's improvements described in Exhibit A; (b) all applicable permits/approvals have been issued therefor; and (c) the required certification set forth in Section 6 has been received by Town.

6. <u>NOTICE OF COMPLETION OF REQUIRED REPAIRS</u>. Owner shall notify Town when all of Owner's improvements to the stormwater system have been made. Such notice shall be accompanied by the certification by a Vermont licensed engineer certifying that all required Owner improvements described in Exhibit A have been made and that the stormwater system is in compliance with the Final Design Plan and any Town or State permits and all other requirements in this Agreement.

7. <u>ACCEPTANCE BY TOWN</u>. The Town shall formally accept the stormwater system within forty-five (45) days of submission of the engineer's certification referred to in Section 6 to the Town and the submission of the legal documents executed in proper form specified in Paragraph 8. Formal acceptance of the stormwater system by the Town will be in the form of a written document as recommended by the Director of Public Works and his/her designee and signed by the Town Manager or his/her designee. As part of its formal acceptance of the stormwater system, the Town shall represent to Owner that all future repairs, maintenance, modifications and improvements related to the stormwater system shall be the sole responsibility of the Town. If the Town does not accept the stormwater system by virtue of Owner's failure to comply with this Agreement, Owner shall continue being responsible for the repair, maintenance and permit compliance of the stormwater system.

8. <u>OWNER'S EASEMENT TO TOWN</u>. Prior to Town's acceptance, Owner shall grant to Town the necessary easements and/or licenses to access the stormwater system from a public right of way in form and substance acceptable to Town's attorney and the Owner's attorney. The Town will provide model language to the Owner. The Easement Deed(s) and/or licenses shall be accompanied by a mylar prepaid at Owner's expense suitable for recording depicting the easements/licenses described in the transfer instrument and by the opinion of an attorney licensed to practice law in Vermont certifying that Owner has good and marketable title to the easement/license area free and clear of all material liens and encumbrances and has the authority to convey such easement/license.

9. <u>TOWN'S RESPONSIBILITY POST-ACCEPTANCE</u>. After Town accepts the stormwater system, it shall be solely responsible, at its own cost and expense for (a) maintaining and repairing the stormwater system in accordance with applicable law including the payment of fees (if any) arising after Town's acceptance of the system and submitting all required engineering certifications and statements of compliance, if any, that may be required by applicable law; and (b) for future upgrades to the stormwater system should they be required by applicable law.

10. INDEMNIFICATION. The Owner, its successors and/or assigns, shall indemnify and hold harmless the Town and its officers, agents and employees for any and all damages, accidents, casualties, occurrences, claims or attorney's fees arising prior to the Town's acceptance of the stormwater control facilities subject to the Agreement. In the event a claim is asserted against the Town, its officers, agents or employees, the Town shall notify Owner and the Owner shall defend at Owner's expense any suit based on such claim arising

out of any occurrence prior to the Town's acceptance of the system. (Owner shall have no obligation of indemnity on account of maintenance and repairs performed or which were required to be performed under this Agreement by Town. If any judgment or claims arising from an occurrence prior to the Town's acceptance of the stormwater system shall be allowed, the Owner shall pay all costs (including reasonable attorney's fees) and expenses in connection therewith. Notwithstanding the foregoing, Owner shall have no obligation to the Town hereunder for claims arising from the Town's gross negligence or willful misconduct.

11. <u>AGREEMENT RUNS WITH LAND</u>. This Agreement runs with the land/permit to which it applies. It is binding on the Owner and its successors and assigns and on the Town and its successors and assigns. The Owner shall not be able to transfer, assign or modify its responsibilities with respect to this Agreement without the Town's written consent. Nothing herein shall be construed to prohibit a transfer by Owner. If either party learns that an assignment, sale, conveyance, foreclosure, lease or any other event is likely to change the identity of any party, that party shall provide written notice to the other party within 48 hours of such change, and shall provide the other party with copies of all documents relating to the transfer of interest in the agreement.

12. <u>INSPECTIONS</u>. It is understood that the signature of the Owner in this Agreement constitutes permission for representatives of the Town to enter onto the private property for the purpose of completing the necessary inspections. The Owner further agrees to provide the Town with reasonable entry into locked areas, if any. Prior to the turnover of the system, the Owner will also, at its expense, provide the opportunity for the Town to discuss work on the improvements with contractors, designers and employees retained by the Owner. A final inspection schedule consistent with the Public Works Standards will be set at the pre-construction meeting, the date, time and place for which will be set by mutual agreement of the Town and the Owner.

13. <u>AS-BUILTS</u>. As-built drawings for the Owner's improvements described in Exhibit A must be provided to the Town as required by the Town's Public Works Standards.

14. <u>NOTICES</u>. Any notice or other communication to be given hereunder shall be in writing and mailed by certified mail, return receipt requested, to the address set forth below:

If to Town:	Town of Williston
	7900 Williston Road
	Williston, VT 05495
If to Owner:	The Commons at Williston Village
	40 John W. Sherpless 152 Commons Rd.
	152 Commons Rd.
	Williston, VT 05495
Copy to Attorney:	Carl Lisman, Egg
	84 Pine St., 5th floor
	Burlington, VT 05401

or to such other person and address as the party entitled to such notice or communication shall have specified by notice to the other party. Any such notice or other communication shall be deemed given if mailed, when deposited in the United States mail, sent by certified mail, return receipt requested.

15. <u>WAIVER OF RULE OF CONSTRUCTION</u>. The parties waive the benefit of any rule that this Agreement is to be construed strictly against one party or the other.

16. <u>ENTIRE AGREEMENTS, APPLICABLE LAW</u>. This Agreement contains the entire agreement of the parties and no representations, inducements, promises or agreements not embodied herein shall be of any force or effect, unless the same were in writing and signed by or on behalf of the party to be charged. The captions of particular sections are inserted as a matter of convenience only and are in no way to affect or define the scope or intent of this Agreement or any provision thereof. This Agreement shall be governed by and interpreted in accordance with the laws of the State of Vermont.

17. <u>SEVERABILITY</u>. In case one or more of the provisions contained in this Agreement shall be invalid, illegal or unenforceable in any respect under any law, the validity, legality and enforceability of the remaining provisions contained herein shall not in any way be affected or impaired thereby.

DATED this 1st day of August _,20<mark>/6</mark>_.

IN THE PRESENCE OF:

itness,

Town: TOWN OF WILLISTON

By: 🧲

Town Manager and Duly Authorized Agent

Print Name: Richard McGvive

DATED this 28 day of June

IN THE PRESENCE OF:

love R. Otowell less secretary

ne, 20<u>16</u>. The Commons at Owner: <u>Williston Village</u> HOMEOWNER'S ASSOCIATION

By: Duly-appointed Agent of Owner

Print Name: John W. Sharpless